ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
63#endif 103#endif
64 104
65#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
67#endif 107#endif
96#endif 136#endif
97 137
98#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
100 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
101typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
102typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
104 147
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
106ev_tstamp ev_now;
107int ev_method;
108
109static int have_monotonic; /* runtime */
110
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
112static void (*method_modify)(int fd, int oev, int nev);
113static void (*method_poll)(ev_tstamp timeout);
114 149
115/*****************************************************************************/ 150/*****************************************************************************/
116 151
117ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
118ev_time (void) 186ev_time (void)
119{ 187{
120#if EV_USE_REALTIME 188#if EV_USE_REALTIME
121 struct timespec ts; 189 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
126 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 196#endif
129} 197}
130 198
131static ev_tstamp 199inline ev_tstamp
132get_clock (void) 200get_clock (void)
133{ 201{
134#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
136 { 204 {
139 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
140 } 208 }
141#endif 209#endif
142 210
143 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
144} 218}
145 219
146#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
147 221
148#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
160 cur = newcnt; \ 234 cur = newcnt; \
161 } 235 }
162 236
163/*****************************************************************************/ 237/*****************************************************************************/
164 238
165typedef struct
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171
172static ANFD *anfds;
173static int anfdmax;
174
175static void 239static void
176anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
177{ 241{
178 while (count--) 242 while (count--)
179 { 243 {
183 247
184 ++base; 248 ++base;
185 } 249 }
186} 250}
187 251
188typedef struct
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void 252static void
198event (W w, int events) 253event (EV_P_ W w, int events)
199{ 254{
200 if (w->pending) 255 if (w->pending)
201 { 256 {
202 pendings [w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
203 return; 258 return;
204 } 259 }
205 260
206 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
207 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
208 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
209 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
210} 265}
211 266
212static void 267static void
213queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 269{
215 int i; 270 int i;
216 271
217 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 273 event (EV_A_ events [i], type);
219} 274}
220 275
221static void 276static void
222fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
223{ 278{
224 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 280 struct ev_io *w;
226 281
227 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 { 283 {
229 int ev = w->events & events; 284 int ev = w->events & events;
230 285
231 if (ev) 286 if (ev)
232 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
233 } 288 }
234} 289}
235 290
236/*****************************************************************************/ 291/*****************************************************************************/
237 292
238static int *fdchanges;
239static int fdchangemax, fdchangecnt;
240
241static void 293static void
242fd_reify (void) 294fd_reify (EV_P)
243{ 295{
244 int i; 296 int i;
245 297
246 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
247 { 299 {
249 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 302 struct ev_io *w;
251 303
252 int events = 0; 304 int events = 0;
253 305
254 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 events |= w->events; 307 events |= w->events;
256 308
257 anfd->reify = 0; 309 anfd->reify = 0;
258 310
259 if (anfd->events != events) 311 if (anfd->events != events)
260 { 312 {
261 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
262 anfd->events = events; 314 anfd->events = events;
263 } 315 }
264 } 316 }
265 317
266 fdchangecnt = 0; 318 fdchangecnt = 0;
267} 319}
268 320
269static void 321static void
270fd_change (int fd) 322fd_change (EV_P_ int fd)
271{ 323{
272 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
273 return; 325 return;
274 326
275 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
277 ++fdchangecnt; 329 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
279 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
280} 332}
281 333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
282/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
283static void 347static void
284fd_recheck (void) 348fd_ebadf (EV_P)
285{ 349{
286 int fd; 350 int fd;
287 351
288 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 353 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
291 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
292 { 366 {
293 ev_io_stop (anfds [fd].head); 367 close (fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 368 fd_kill (EV_A_ fd);
369 return;
295 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
296} 386}
297 387
298/*****************************************************************************/ 388/*****************************************************************************/
299 389
300static struct ev_timer **timers;
301static int timermax, timercnt;
302
303static struct ev_periodic **periodics;
304static int periodicmax, periodiccnt;
305
306static void 390static void
307upheap (WT *timers, int k) 391upheap (WT *heap, int k)
308{ 392{
309 WT w = timers [k]; 393 WT w = heap [k];
310 394
311 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
312 { 396 {
313 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
314 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
315 k >>= 1; 399 k >>= 1;
316 } 400 }
317 401
318 timers [k] = w; 402 heap [k] = w;
319 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
320 404
321} 405}
322 406
323static void 407static void
324downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
325{ 409{
326 WT w = timers [k]; 410 WT w = heap [k];
327 411
328 while (k < (N >> 1)) 412 while (k < (N >> 1))
329 { 413 {
330 int j = k << 1; 414 int j = k << 1;
331 415
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
333 ++j; 417 ++j;
334 418
335 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
336 break; 420 break;
337 421
338 timers [k] = timers [j]; 422 heap [k] = heap [j];
339 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
340 k = j; 424 k = j;
341 } 425 }
342 426
343 timers [k] = w; 427 heap [k] = w;
344 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
345} 429}
346 430
347/*****************************************************************************/ 431/*****************************************************************************/
348 432
349typedef struct 433typedef struct
350{ 434{
351 struct ev_signal *head; 435 struct ev_watcher_list *head;
352 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
353} ANSIG; 437} ANSIG;
354 438
355static ANSIG *signals; 439static ANSIG *signals;
356static int signalmax; 440static int signalmax;
376{ 460{
377 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
378 462
379 if (!gotsig) 463 if (!gotsig)
380 { 464 {
465 int old_errno = errno;
381 gotsig = 1; 466 gotsig = 1;
382 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
383 } 469 }
384} 470}
385 471
386static void 472static void
387sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
388{ 474{
389 struct ev_signal *w; 475 struct ev_watcher_list *w;
390 int signum; 476 int signum;
391 477
392 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
393 gotsig = 0; 479 gotsig = 0;
394 480
396 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
397 { 483 {
398 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
399 485
400 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
402 } 488 }
403} 489}
404 490
405static void 491static void
406siginit (void) 492siginit (EV_P)
407{ 493{
494#ifndef WIN32
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410 497
411 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
414 502
415 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
417} 506}
418 507
419/*****************************************************************************/ 508/*****************************************************************************/
420 509
421static struct ev_idle **idles; 510#ifndef WIN32
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431 511
432static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev; 513static struct ev_signal childev;
434 514
435#ifndef WCONTINUED 515#ifndef WCONTINUED
436# define WCONTINUED 0 516# define WCONTINUED 0
437#endif 517#endif
438 518
439static void 519static void
440childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
441{ 521{
442 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 w->priority = sw->priority; /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
443 int pid, status; 537 int pid, status;
444 538
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
447 if (w->pid == pid || !w->pid) 541 /* make sure we are called again until all childs have been reaped */
448 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
449 w->status = status; 543
450 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
451 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
452} 547}
548
549#endif
453 550
454/*****************************************************************************/ 551/*****************************************************************************/
455 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
456#if EV_USE_EPOLL 556#if EV_USE_EPOLL
457# include "ev_epoll.c" 557# include "ev_epoll.c"
458#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
459#if EV_USE_SELECT 562#if EV_USE_SELECT
460# include "ev_select.c" 563# include "ev_select.c"
461#endif 564#endif
462 565
463int 566int
470ev_version_minor (void) 573ev_version_minor (void)
471{ 574{
472 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
473} 576}
474 577
475int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
476{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
477 if (!ev_method) 599 if (!method)
478 { 600 {
479#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
480 { 602 {
481 struct timespec ts; 603 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 605 have_monotonic = 1;
484 } 606 }
485#endif 607#endif
486 608
487 ev_now = ev_time (); 609 rt_now = ev_time ();
488 now = get_clock (); 610 mn_now = get_clock ();
489 now_floor = now; 611 now_floor = mn_now;
490 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
491 613
492 if (pipe (sigpipe)) 614 if (methods == EVMETHOD_AUTO)
493 return 0; 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
494 616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
495 ev_method = EVMETHOD_NONE; 618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
496#if EV_USE_EPOLL 627#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
498#endif 632#endif
499#if EV_USE_SELECT 633#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
501#endif 635#endif
636 }
637}
502 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
503 if (ev_method) 729 if (ev_method (EV_A))
504 { 730 {
505 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
506 siginit (); 733 siginit (EV_A);
507 734
735#ifndef WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif
510 } 741 }
742 else
743 default_loop = 0;
511 } 744 }
512 745
513 return ev_method; 746 return default_loop;
514} 747}
515 748
516/*****************************************************************************/
517
518void 749void
519ev_fork_prepare (void) 750ev_default_destroy (void)
520{ 751{
521 /* nop */ 752#if EV_MULTIPLICITY
522} 753 struct ev_loop *loop = default_loop;
523
524void
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif 754#endif
537 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
538 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
539 close (sigpipe [0]); 778 close (sigpipe [0]);
540 close (sigpipe [1]); 779 close (sigpipe [1]);
541 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
542 siginit (); 783 siginit (EV_A);
543} 784}
544 785
545/*****************************************************************************/ 786/*****************************************************************************/
546 787
547static void 788static void
548call_pending (void) 789call_pending (EV_P)
549{ 790{
791 int pri;
792
793 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 794 while (pendingcnt [pri])
551 { 795 {
552 ANPENDING *p = pendings + --pendingcnt; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 797
554 if (p->w) 798 if (p->w)
555 { 799 {
556 p->w->pending = 0; 800 p->w->pending = 0;
557 p->w->cb (p->w, p->events); 801 p->w->cb (EV_A_ p->w, p->events);
558 } 802 }
559 } 803 }
560} 804}
561 805
562static void 806static void
563timers_reify (void) 807timers_reify (EV_P)
564{ 808{
565 while (timercnt && timers [0]->at <= now) 809 while (timercnt && timers [0]->at <= mn_now)
566 { 810 {
567 struct ev_timer *w = timers [0]; 811 struct ev_timer *w = timers [0];
812
813 assert (("inactive timer on timer heap detected", ev_is_active (w)));
568 814
569 /* first reschedule or stop timer */ 815 /* first reschedule or stop timer */
570 if (w->repeat) 816 if (w->repeat)
571 { 817 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 819 w->at = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 820 downheap ((WT *)timers, timercnt, 0);
575 } 821 }
576 else 822 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 824
579 event ((W)w, EV_TIMEOUT); 825 event (EV_A_ (W)w, EV_TIMEOUT);
580 } 826 }
581} 827}
582 828
583static void 829static void
584periodics_reify (void) 830periodics_reify (EV_P)
585{ 831{
586 while (periodiccnt && periodics [0]->at <= ev_now) 832 while (periodiccnt && periodics [0]->at <= rt_now)
587 { 833 {
588 struct ev_periodic *w = periodics [0]; 834 struct ev_periodic *w = periodics [0];
835
836 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
589 837
590 /* first reschedule or stop timer */ 838 /* first reschedule or stop timer */
591 if (w->interval) 839 if (w->interval)
592 { 840 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
595 downheap ((WT *)periodics, periodiccnt, 0); 843 downheap ((WT *)periodics, periodiccnt, 0);
596 } 844 }
597 else 845 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 847
600 event ((W)w, EV_PERIODIC); 848 event (EV_A_ (W)w, EV_PERIODIC);
601 } 849 }
602} 850}
603 851
604static void 852static void
605periodics_reschedule (ev_tstamp diff) 853periodics_reschedule (EV_P)
606{ 854{
607 int i; 855 int i;
608 856
609 /* adjust periodics after time jump */ 857 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 858 for (i = 0; i < periodiccnt; ++i)
611 { 859 {
612 struct ev_periodic *w = periodics [i]; 860 struct ev_periodic *w = periodics [i];
613 861
614 if (w->interval) 862 if (w->interval)
615 { 863 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
617 865
618 if (fabs (diff) >= 1e-4) 866 if (fabs (diff) >= 1e-4)
619 { 867 {
620 ev_periodic_stop (w); 868 ev_periodic_stop (EV_A_ w);
621 ev_periodic_start (w); 869 ev_periodic_start (EV_A_ w);
622 870
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 872 }
625 } 873 }
626 } 874 }
627} 875}
628 876
629static int 877inline int
630time_update_monotonic (void) 878time_update_monotonic (EV_P)
631{ 879{
632 now = get_clock (); 880 mn_now = get_clock ();
633 881
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
635 { 883 {
636 ev_now = now + diff; 884 rt_now = rtmn_diff + mn_now;
637 return 0; 885 return 0;
638 } 886 }
639 else 887 else
640 { 888 {
641 now_floor = now; 889 now_floor = mn_now;
642 ev_now = ev_time (); 890 rt_now = ev_time ();
643 return 1; 891 return 1;
644 } 892 }
645} 893}
646 894
647static void 895static void
648time_update (void) 896time_update (EV_P)
649{ 897{
650 int i; 898 int i;
651 899
652#if EV_USE_MONOTONIC 900#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic)) 901 if (expect_true (have_monotonic))
654 { 902 {
655 if (time_update_monotonic ()) 903 if (time_update_monotonic (EV_A))
656 { 904 {
657 ev_tstamp odiff = diff; 905 ev_tstamp odiff = rtmn_diff;
658 906
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 907 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 { 908 {
661 diff = ev_now - now; 909 rtmn_diff = rt_now - mn_now;
662 910
663 if (fabs (odiff - diff) < MIN_TIMEJUMP) 911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
664 return; /* all is well */ 912 return; /* all is well */
665 913
666 ev_now = ev_time (); 914 rt_now = ev_time ();
667 now = get_clock (); 915 mn_now = get_clock ();
668 now_floor = now; 916 now_floor = mn_now;
669 } 917 }
670 918
671 periodics_reschedule (diff - odiff); 919 periodics_reschedule (EV_A);
672 /* no timer adjustment, as the monotonic clock doesn't jump */ 920 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
673 } 922 }
674 } 923 }
675 else 924 else
676#endif 925#endif
677 { 926 {
678 ev_now = ev_time (); 927 rt_now = ev_time ();
679 928
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 { 930 {
682 periodics_reschedule (ev_now - now); 931 periodics_reschedule (EV_A);
683 932
684 /* adjust timers. this is easy, as the offset is the same for all */ 933 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i) 934 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff; 935 timers [i]->at += rt_now - mn_now;
687 } 936 }
688 937
689 now = ev_now; 938 mn_now = rt_now;
690 } 939 }
691} 940}
692 941
693int ev_loop_done; 942void
943ev_ref (EV_P)
944{
945 ++activecnt;
946}
694 947
948void
949ev_unref (EV_P)
950{
951 --activecnt;
952}
953
954static int loop_done;
955
956void
695void ev_loop (int flags) 957ev_loop (EV_P_ int flags)
696{ 958{
697 double block; 959 double block;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 961
700 do 962 do
701 { 963 {
702 /* queue check watchers (and execute them) */ 964 /* queue check watchers (and execute them) */
703 if (expect_false (preparecnt)) 965 if (expect_false (preparecnt))
704 { 966 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 968 call_pending (EV_A);
707 } 969 }
708 970
709 /* update fd-related kernel structures */ 971 /* update fd-related kernel structures */
710 fd_reify (); 972 fd_reify (EV_A);
711 973
712 /* calculate blocking time */ 974 /* calculate blocking time */
713 975
714 /* we only need this for !monotonic clockor timers, but as we basically 976 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */ 977 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC 978#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 979 if (expect_true (have_monotonic))
718 time_update_monotonic (); 980 time_update_monotonic (EV_A);
719 else 981 else
720#endif 982#endif
721 { 983 {
722 ev_now = ev_time (); 984 rt_now = ev_time ();
723 now = ev_now; 985 mn_now = rt_now;
724 } 986 }
725 987
726 if (flags & EVLOOP_NONBLOCK || idlecnt) 988 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.; 989 block = 0.;
728 else 990 else
729 { 991 {
730 block = MAX_BLOCKTIME; 992 block = MAX_BLOCKTIME;
731 993
732 if (timercnt) 994 if (timercnt)
733 { 995 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 996 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
735 if (block > to) block = to; 997 if (block > to) block = to;
736 } 998 }
737 999
738 if (periodiccnt) 1000 if (periodiccnt)
739 { 1001 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
741 if (block > to) block = to; 1003 if (block > to) block = to;
742 } 1004 }
743 1005
744 if (block < 0.) block = 0.; 1006 if (block < 0.) block = 0.;
745 } 1007 }
746 1008
747 method_poll (block); 1009 method_poll (EV_A_ block);
748 1010
749 /* update ev_now, do magic */ 1011 /* update rt_now, do magic */
750 time_update (); 1012 time_update (EV_A);
751 1013
752 /* queue pending timers and reschedule them */ 1014 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 1015 timers_reify (EV_A); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */ 1016 periodics_reify (EV_A); /* absolute timers called first */
755 1017
756 /* queue idle watchers unless io or timers are pending */ 1018 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt) 1019 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
759 1021
760 /* queue check watchers, to be executed first */ 1022 /* queue check watchers, to be executed first */
761 if (checkcnt) 1023 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 1025
764 call_pending (); 1026 call_pending (EV_A);
765 } 1027 }
766 while (!ev_loop_done); 1028 while (activecnt && !loop_done);
767 1029
768 if (ev_loop_done != 2) 1030 if (loop_done != 2)
769 ev_loop_done = 0; 1031 loop_done = 0;
1032}
1033
1034void
1035ev_unloop (EV_P_ int how)
1036{
1037 loop_done = how;
770} 1038}
771 1039
772/*****************************************************************************/ 1040/*****************************************************************************/
773 1041
774static void 1042inline void
775wlist_add (WL *head, WL elem) 1043wlist_add (WL *head, WL elem)
776{ 1044{
777 elem->next = *head; 1045 elem->next = *head;
778 *head = elem; 1046 *head = elem;
779} 1047}
780 1048
781static void 1049inline void
782wlist_del (WL *head, WL elem) 1050wlist_del (WL *head, WL elem)
783{ 1051{
784 while (*head) 1052 while (*head)
785 { 1053 {
786 if (*head == elem) 1054 if (*head == elem)
791 1059
792 head = &(*head)->next; 1060 head = &(*head)->next;
793 } 1061 }
794} 1062}
795 1063
796static void 1064inline void
797ev_clear_pending (W w) 1065ev_clear_pending (EV_P_ W w)
798{ 1066{
799 if (w->pending) 1067 if (w->pending)
800 { 1068 {
801 pendings [w->pending - 1].w = 0; 1069 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1070 w->pending = 0;
803 } 1071 }
804} 1072}
805 1073
806static void 1074inline void
807ev_start (W w, int active) 1075ev_start (EV_P_ W w, int active)
808{ 1076{
1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1079
809 w->active = active; 1080 w->active = active;
1081 ev_ref (EV_A);
810} 1082}
811 1083
812static void 1084inline void
813ev_stop (W w) 1085ev_stop (EV_P_ W w)
814{ 1086{
1087 ev_unref (EV_A);
815 w->active = 0; 1088 w->active = 0;
816} 1089}
817 1090
818/*****************************************************************************/ 1091/*****************************************************************************/
819 1092
820void 1093void
821ev_io_start (struct ev_io *w) 1094ev_io_start (EV_P_ struct ev_io *w)
822{ 1095{
823 int fd = w->fd; 1096 int fd = w->fd;
824 1097
825 if (ev_is_active (w)) 1098 if (ev_is_active (w))
826 return; 1099 return;
827 1100
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1101 assert (("ev_io_start called with negative fd", fd >= 0));
829 1102
830 ev_start ((W)w, 1); 1103 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1105 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833 1106
834 fd_change (fd); 1107 fd_change (EV_A_ fd);
835} 1108}
836 1109
837void 1110void
838ev_io_stop (struct ev_io *w) 1111ev_io_stop (EV_P_ struct ev_io *w)
839{ 1112{
840 ev_clear_pending ((W)w); 1113 ev_clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1114 if (!ev_is_active (w))
842 return; 1115 return;
843 1116
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1118 ev_stop (EV_A_ (W)w);
846 1119
847 fd_change (w->fd); 1120 fd_change (EV_A_ w->fd);
848} 1121}
849 1122
850void 1123void
851ev_timer_start (struct ev_timer *w) 1124ev_timer_start (EV_P_ struct ev_timer *w)
852{ 1125{
853 if (ev_is_active (w)) 1126 if (ev_is_active (w))
854 return; 1127 return;
855 1128
856 w->at += now; 1129 w->at += mn_now;
857 1130
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 1132
860 ev_start ((W)w, ++timercnt); 1133 ev_start (EV_A_ (W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, ); 1134 array_needsize (timers, timermax, timercnt, );
862 timers [timercnt - 1] = w; 1135 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1); 1136 upheap ((WT *)timers, timercnt - 1);
864}
865 1137
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139}
1140
866void 1141void
867ev_timer_stop (struct ev_timer *w) 1142ev_timer_stop (EV_P_ struct ev_timer *w)
868{ 1143{
869 ev_clear_pending ((W)w); 1144 ev_clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 1145 if (!ev_is_active (w))
871 return; 1146 return;
872 1147
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149
873 if (w->active < timercnt--) 1150 if (((W)w)->active < timercnt--)
874 { 1151 {
875 timers [w->active - 1] = timers [timercnt]; 1152 timers [((W)w)->active - 1] = timers [timercnt];
876 downheap ((WT *)timers, timercnt, w->active - 1); 1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
877 } 1154 }
878 1155
879 w->at = w->repeat; 1156 w->at = w->repeat;
880 1157
881 ev_stop ((W)w); 1158 ev_stop (EV_A_ (W)w);
882} 1159}
883 1160
884void 1161void
885ev_timer_again (struct ev_timer *w) 1162ev_timer_again (EV_P_ struct ev_timer *w)
886{ 1163{
887 if (ev_is_active (w)) 1164 if (ev_is_active (w))
888 { 1165 {
889 if (w->repeat) 1166 if (w->repeat)
890 { 1167 {
891 w->at = now + w->repeat; 1168 w->at = mn_now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1); 1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
893 } 1170 }
894 else 1171 else
895 ev_timer_stop (w); 1172 ev_timer_stop (EV_A_ w);
896 } 1173 }
897 else if (w->repeat) 1174 else if (w->repeat)
898 ev_timer_start (w); 1175 ev_timer_start (EV_A_ w);
899} 1176}
900 1177
901void 1178void
902ev_periodic_start (struct ev_periodic *w) 1179ev_periodic_start (EV_P_ struct ev_periodic *w)
903{ 1180{
904 if (ev_is_active (w)) 1181 if (ev_is_active (w))
905 return; 1182 return;
906 1183
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908 1185
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 1186 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval) 1187 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
912 1189
913 ev_start ((W)w, ++periodiccnt); 1190 ev_start (EV_A_ (W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 1191 array_needsize (periodics, periodicmax, periodiccnt, );
915 periodics [periodiccnt - 1] = w; 1192 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1); 1193 upheap ((WT *)periodics, periodiccnt - 1);
917}
918 1194
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196}
1197
919void 1198void
920ev_periodic_stop (struct ev_periodic *w) 1199ev_periodic_stop (EV_P_ struct ev_periodic *w)
921{ 1200{
922 ev_clear_pending ((W)w); 1201 ev_clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 1202 if (!ev_is_active (w))
924 return; 1203 return;
925 1204
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206
926 if (w->active < periodiccnt--) 1207 if (((W)w)->active < periodiccnt--)
927 { 1208 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 1209 periodics [((W)w)->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
930 } 1211 }
931 1212
932 ev_stop ((W)w); 1213 ev_stop (EV_A_ (W)w);
933} 1214}
934 1215
935void 1216void
936ev_signal_start (struct ev_signal *w) 1217ev_idle_start (EV_P_ struct ev_idle *w)
937{ 1218{
938 if (ev_is_active (w)) 1219 if (ev_is_active (w))
939 return; 1220 return;
940 1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225}
1226
1227void
1228ev_idle_stop (EV_P_ struct ev_idle *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1280}
1281
1282#ifndef SA_RESTART
1283# define SA_RESTART 0
1284#endif
1285
1286void
1287ev_signal_start (EV_P_ struct ev_signal *w)
1288{
1289#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1291#endif
1292 if (ev_is_active (w))
1293 return;
1294
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 1296
943 ev_start ((W)w, 1); 1297 ev_start (EV_A_ (W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init); 1298 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946 1300
947 if (!w->next) 1301 if (!w->next)
948 { 1302 {
949 struct sigaction sa; 1303 struct sigaction sa;
950 sa.sa_handler = sighandler; 1304 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask); 1305 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 1307 sigaction (w->signum, &sa, 0);
954 } 1308 }
955} 1309}
956 1310
957void 1311void
958ev_signal_stop (struct ev_signal *w) 1312ev_signal_stop (EV_P_ struct ev_signal *w)
959{ 1313{
960 ev_clear_pending ((W)w); 1314 ev_clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 1315 if (!ev_is_active (w))
962 return; 1316 return;
963 1317
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 1319 ev_stop (EV_A_ (W)w);
966 1320
967 if (!signals [w->signum - 1].head) 1321 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 1322 signal (w->signum, SIG_DFL);
969} 1323}
970 1324
971void 1325void
972ev_idle_start (struct ev_idle *w) 1326ev_child_start (EV_P_ struct ev_child *w)
973{ 1327{
1328#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop));
1330#endif
974 if (ev_is_active (w)) 1331 if (ev_is_active (w))
975 return; 1332 return;
976 1333
977 ev_start ((W)w, ++idlecnt); 1334 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 1336}
981 1337
982void 1338void
983ev_idle_stop (struct ev_idle *w) 1339ev_child_stop (EV_P_ struct ev_child *w)
984{ 1340{
985 ev_clear_pending ((W)w); 1341 ev_clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 1342 if (ev_is_active (w))
987 return; 1343 return;
988 1344
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w); 1346 ev_stop (EV_A_ (W)w);
1056} 1347}
1057 1348
1058/*****************************************************************************/ 1349/*****************************************************************************/
1059 1350
1060struct ev_once 1351struct ev_once
1064 void (*cb)(int revents, void *arg); 1355 void (*cb)(int revents, void *arg);
1065 void *arg; 1356 void *arg;
1066}; 1357};
1067 1358
1068static void 1359static void
1069once_cb (struct ev_once *once, int revents) 1360once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 1361{
1071 void (*cb)(int revents, void *arg) = once->cb; 1362 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 1363 void *arg = once->arg;
1073 1364
1074 ev_io_stop (&once->io); 1365 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 1366 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 1367 free (once);
1077 1368
1078 cb (revents, arg); 1369 cb (revents, arg);
1079} 1370}
1080 1371
1081static void 1372static void
1082once_cb_io (struct ev_io *w, int revents) 1373once_cb_io (EV_P_ struct ev_io *w, int revents)
1083{ 1374{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 1376}
1086 1377
1087static void 1378static void
1088once_cb_to (struct ev_timer *w, int revents) 1379once_cb_to (EV_P_ struct ev_timer *w, int revents)
1089{ 1380{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 1382}
1092 1383
1093void 1384void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 1386{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 1387 struct ev_once *once = malloc (sizeof (struct ev_once));
1097 1388
1098 if (!once) 1389 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1104 1395
1105 ev_watcher_init (&once->io, once_cb_io); 1396 ev_watcher_init (&once->io, once_cb_io);
1106 if (fd >= 0) 1397 if (fd >= 0)
1107 { 1398 {
1108 ev_io_set (&once->io, fd, events); 1399 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 1400 ev_io_start (EV_A_ &once->io);
1110 } 1401 }
1111 1402
1112 ev_watcher_init (&once->to, once_cb_to); 1403 ev_watcher_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 1404 if (timeout >= 0.)
1114 { 1405 {
1115 ev_timer_set (&once->to, timeout, 0.); 1406 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 1407 ev_timer_start (EV_A_ &once->to);
1117 } 1408 }
1118 } 1409 }
1119} 1410}
1120 1411
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif
1200
1201
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines