ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.90 by root, Sun Nov 11 00:05:59 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
57#include <math.h> 62#include <math.h>
58#include <stdlib.h> 63#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 64#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 65#include <stddef.h>
63 66
64#include <stdio.h> 67#include <stdio.h>
65 68
66#include <assert.h> 69#include <assert.h>
67#include <errno.h> 70#include <errno.h>
68#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
69#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
70# include <sys/wait.h> 79# include <sys/wait.h>
71#endif 80#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 81/**/
76 82
77#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
79#endif 85#endif
94# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
95#endif 101#endif
96 102
97#ifndef EV_USE_WIN32 103#ifndef EV_USE_WIN32
98# ifdef WIN32 104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 107# define EV_USE_SELECT 1
100# else 108# else
101# define EV_USE_WIN32 0 109# define EV_USE_WIN32 0
102# endif 110# endif
103#endif 111#endif
104 112
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 135
136#ifdef EV_H
137# include EV_H
138#else
128#include "ev.h" 139# include "ev.h"
140#endif
129 141
130#if __GNUC__ >= 3 142#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 144# define inline inline
133#else 145#else
145typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
147 159
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 161
162#include "ev_win32.c"
163
150/*****************************************************************************/ 164/*****************************************************************************/
151 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
152typedef struct 214typedef struct
153{ 215{
154 struct ev_watcher_list *head; 216 WL head;
155 unsigned char events; 217 unsigned char events;
156 unsigned char reify; 218 unsigned char reify;
157} ANFD; 219} ANFD;
158 220
159typedef struct 221typedef struct
162 int events; 224 int events;
163} ANPENDING; 225} ANPENDING;
164 226
165#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
166 228
167struct ev_loop 229 struct ev_loop
168{ 230 {
231 ev_tstamp ev_rt_now;
169# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
170# include "ev_vars.h" 233 #include "ev_vars.h"
171};
172# undef VAR 234 #undef VAR
235 };
173# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
174 240
175#else 241#else
176 242
243 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 245 #include "ev_vars.h"
179# undef VAR 246 #undef VAR
247
248 static int default_loop;
180 249
181#endif 250#endif
182 251
183/*****************************************************************************/ 252/*****************************************************************************/
184 253
209#endif 278#endif
210 279
211 return ev_time (); 280 return ev_time ();
212} 281}
213 282
283#if EV_MULTIPLICITY
214ev_tstamp 284ev_tstamp
215ev_now (EV_P) 285ev_now (EV_P)
216{ 286{
217 return rt_now; 287 return ev_rt_now;
218} 288}
289#endif
219 290
220#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
221 292
222#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
224 { \ 295 { \
225 int newcnt = cur; \ 296 int newcnt = cur; \
226 do \ 297 do \
227 { \ 298 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 300 } \
230 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
231 \ 302 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 305 cur = newcnt; \
235 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 323
237/*****************************************************************************/ 324/*****************************************************************************/
238 325
239static void 326static void
240anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
247 334
248 ++base; 335 ++base;
249 } 336 }
250} 337}
251 338
252static void 339void
253event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
254{ 341{
342 W w_ = (W)w;
343
255 if (w->pending) 344 if (w_->pending)
256 { 345 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 347 return;
259 } 348 }
260 349
261 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 354}
266 355
267static void 356static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 358{
270 int i; 359 int i;
271 360
272 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
274} 363}
275 364
276static void 365inline void
277fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
278{ 367{
279 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 369 struct ev_io *w;
281 370
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 372 {
284 int ev = w->events & events; 373 int ev = w->events & revents;
285 374
286 if (ev) 375 if (ev)
287 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
288 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
289} 384}
290 385
291/*****************************************************************************/ 386/*****************************************************************************/
292 387
293static void 388static void
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 402 events |= w->events;
308 403
309 anfd->reify = 0; 404 anfd->reify = 0;
310 405
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 407 anfd->events = events;
315 }
316 } 408 }
317 409
318 fdchangecnt = 0; 410 fdchangecnt = 0;
319} 411}
320 412
321static void 413static void
322fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
323{ 415{
324 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
325 return; 417 return;
326 418
327 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
328 420
329 ++fdchangecnt; 421 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
332} 424}
333 425
334static void 426static void
335fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
337 struct ev_io *w; 429 struct ev_io *w;
338 430
339 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
340 { 432 {
341 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
344} 446}
345 447
346/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
347static void 449static void
348fd_ebadf (EV_P) 450fd_ebadf (EV_P)
349{ 451{
350 int fd; 452 int fd;
351 453
352 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 455 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
356} 458}
357 459
358/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 461static void
362 int fd; 464 int fd;
363 465
364 for (fd = anfdmax; fd--; ) 466 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 467 if (anfds [fd].events)
366 { 468 {
367 close (fd);
368 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
369 return; 470 return;
370 } 471 }
371} 472}
372 473
373/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 475static void
375fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
376{ 477{
377 int fd; 478 int fd;
378 479
426 527
427 heap [k] = w; 528 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
429} 530}
430 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
431/*****************************************************************************/ 544/*****************************************************************************/
432 545
433typedef struct 546typedef struct
434{ 547{
435 struct ev_watcher_list *head; 548 WL head;
436 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
437} ANSIG; 550} ANSIG;
438 551
439static ANSIG *signals; 552static ANSIG *signals;
440static int signalmax; 553static int signalmax;
456} 569}
457 570
458static void 571static void
459sighandler (int signum) 572sighandler (int signum)
460{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
461 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
462 579
463 if (!gotsig) 580 if (!gotsig)
464 { 581 {
465 int old_errno = errno; 582 int old_errno = errno;
466 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
467 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
468 errno = old_errno; 589 errno = old_errno;
469 } 590 }
470} 591}
471 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
472static void 613static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 615{
475 struct ev_watcher_list *w;
476 int signum; 616 int signum;
477 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
478 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
479 gotsig = 0; 623 gotsig = 0;
480 624
481 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
483 { 627 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 628}
490 629
491static void 630static void
492siginit (EV_P) 631siginit (EV_P)
493{ 632{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 645}
507 646
508/*****************************************************************************/ 647/*****************************************************************************/
509 648
649static struct ev_child *childs [PID_HASHSIZE];
650
510#ifndef WIN32 651#ifndef WIN32
511 652
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 653static struct ev_signal childev;
514 654
515#ifndef WCONTINUED 655#ifndef WCONTINUED
516# define WCONTINUED 0 656# define WCONTINUED 0
517#endif 657#endif
522 struct ev_child *w; 662 struct ev_child *w;
523 663
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
526 { 666 {
527 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 668 w->rpid = pid;
529 w->rstatus = status; 669 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 671 }
532} 672}
533 673
534static void 674static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 677 int pid, status;
538 678
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 680 {
541 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 683
544 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 686 }
547} 687}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 745 have_monotonic = 1;
606 } 746 }
607#endif 747#endif
608 748
609 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 750 mn_now = get_clock ();
611 now_floor = mn_now; 751 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
613 753
614 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 757 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 772#endif
633#if EV_USE_SELECT 773#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
636 } 779 }
637} 780}
638 781
639void 782void
640loop_destroy (EV_P) 783loop_destroy (EV_P)
641{ 784{
785 int i;
786
642#if EV_USE_WIN32 787#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif 789#endif
645#if EV_USE_KQUEUE 790#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
653#endif 798#endif
654#if EV_USE_SELECT 799#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 801#endif
657 802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809 array_free_microshit (periodic);
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813
658 method = 0; 814 method = 0;
659 /*TODO*/
660} 815}
661 816
662void 817static void
663loop_fork (EV_P) 818loop_fork (EV_P)
664{ 819{
665 /*TODO*/
666#if EV_USE_EPOLL 820#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 822#endif
669#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
672} 843}
673 844
674#if EV_MULTIPLICITY 845#if EV_MULTIPLICITY
675struct ev_loop * 846struct ev_loop *
676ev_loop_new (int methods) 847ev_loop_new (int methods)
677{ 848{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
679 852
680 loop_init (EV_A_ methods); 853 loop_init (EV_A_ methods);
681 854
682 if (ev_method (EV_A)) 855 if (ev_method (EV_A))
683 return loop; 856 return loop;
687 860
688void 861void
689ev_loop_destroy (EV_P) 862ev_loop_destroy (EV_P)
690{ 863{
691 loop_destroy (EV_A); 864 loop_destroy (EV_A);
692 free (loop); 865 ev_free (loop);
693} 866}
694 867
695void 868void
696ev_loop_fork (EV_P) 869ev_loop_fork (EV_P)
697{ 870{
698 loop_fork (EV_A); 871 postfork = 1;
699} 872}
700 873
701#endif 874#endif
702 875
703#if EV_MULTIPLICITY 876#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 877struct ev_loop *
708#else 878#else
709static int default_loop;
710
711int 879int
712#endif 880#endif
713ev_default_loop (int methods) 881ev_default_loop (int methods)
714{ 882{
715 if (sigpipe [0] == sigpipe [1]) 883 if (sigpipe [0] == sigpipe [1])
726 894
727 loop_init (EV_A_ methods); 895 loop_init (EV_A_ methods);
728 896
729 if (ev_method (EV_A)) 897 if (ev_method (EV_A))
730 { 898 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 899 siginit (EV_A);
734 900
735#ifndef WIN32 901#ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
751{ 917{
752#if EV_MULTIPLICITY 918#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 919 struct ev_loop *loop = default_loop;
754#endif 920#endif
755 921
922#ifndef WIN32
756 ev_ref (EV_A); /* child watcher */ 923 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 924 ev_signal_stop (EV_A_ &childev);
925#endif
758 926
759 ev_ref (EV_A); /* signal watcher */ 927 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 928 ev_io_stop (EV_A_ &sigev);
761 929
762 close (sigpipe [0]); sigpipe [0] = 0; 930 close (sigpipe [0]); sigpipe [0] = 0;
770{ 938{
771#if EV_MULTIPLICITY 939#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 940 struct ev_loop *loop = default_loop;
773#endif 941#endif
774 942
775 loop_fork (EV_A); 943 if (method)
776 944 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 945}
785 946
786/*****************************************************************************/ 947/*****************************************************************************/
948
949static int
950any_pending (EV_P)
951{
952 int pri;
953
954 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri])
956 return 1;
957
958 return 0;
959}
787 960
788static void 961static void
789call_pending (EV_P) 962call_pending (EV_P)
790{ 963{
791 int pri; 964 int pri;
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 970
798 if (p->w) 971 if (p->w)
799 { 972 {
800 p->w->pending = 0; 973 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
802 } 975 }
803 } 976 }
804} 977}
805 978
806static void 979static void
807timers_reify (EV_P) 980timers_reify (EV_P)
808{ 981{
809 while (timercnt && timers [0]->at <= mn_now) 982 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 983 {
811 struct ev_timer *w = timers [0]; 984 struct ev_timer *w = timers [0];
812 985
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 987
815 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
816 if (w->repeat) 989 if (w->repeat)
817 { 990 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992
819 w->at = mn_now + w->repeat; 993 ((WT)w)->at += w->repeat;
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
820 downheap ((WT *)timers, timercnt, 0); 997 downheap ((WT *)timers, timercnt, 0);
821 } 998 }
822 else 999 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 1001
825 event (EV_A_ (W)w, EV_TIMEOUT); 1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 1003 }
827} 1004}
828 1005
829static void 1006static void
830periodics_reify (EV_P) 1007periodics_reify (EV_P)
831{ 1008{
832 while (periodiccnt && periodics [0]->at <= rt_now) 1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 1010 {
834 struct ev_periodic *w = periodics [0]; 1011 struct ev_periodic *w = periodics [0];
835 1012
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1013 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1014
838 /* first reschedule or stop timer */ 1015 /* first reschedule or stop timer */
839 if (w->interval) 1016 if (w->reschedule_cb)
840 { 1017 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1019
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 }
1023 else if (w->interval)
1024 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1027 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1028 }
845 else 1029 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1031
848 event (EV_A_ (W)w, EV_PERIODIC); 1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1033 }
850} 1034}
851 1035
852static void 1036static void
853periodics_reschedule (EV_P) 1037periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1041 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1042 for (i = 0; i < periodiccnt; ++i)
859 { 1043 {
860 struct ev_periodic *w = periodics [i]; 1044 struct ev_periodic *w = periodics [i];
861 1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1048 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
875} 1055}
876 1056
877inline int 1057inline int
878time_update_monotonic (EV_P) 1058time_update_monotonic (EV_P)
879{ 1059{
880 mn_now = get_clock (); 1060 mn_now = get_clock ();
881 1061
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 { 1063 {
884 rt_now = rtmn_diff + mn_now; 1064 ev_rt_now = rtmn_diff + mn_now;
885 return 0; 1065 return 0;
886 } 1066 }
887 else 1067 else
888 { 1068 {
889 now_floor = mn_now; 1069 now_floor = mn_now;
890 rt_now = ev_time (); 1070 ev_rt_now = ev_time ();
891 return 1; 1071 return 1;
892 } 1072 }
893} 1073}
894 1074
895static void 1075static void
904 { 1084 {
905 ev_tstamp odiff = rtmn_diff; 1085 ev_tstamp odiff = rtmn_diff;
906 1086
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 { 1088 {
909 rtmn_diff = rt_now - mn_now; 1089 rtmn_diff = ev_rt_now - mn_now;
910 1090
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1092 return; /* all is well */
913 1093
914 rt_now = ev_time (); 1094 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1095 mn_now = get_clock ();
916 now_floor = mn_now; 1096 now_floor = mn_now;
917 } 1097 }
918 1098
919 periodics_reschedule (EV_A); 1099 periodics_reschedule (EV_A);
922 } 1102 }
923 } 1103 }
924 else 1104 else
925#endif 1105#endif
926 { 1106 {
927 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
928 1108
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 { 1110 {
931 periodics_reschedule (EV_A); 1111 periodics_reschedule (EV_A);
932 1112
933 /* adjust timers. this is easy, as the offset is the same for all */ 1113 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1114 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
936 } 1116 }
937 1117
938 mn_now = rt_now; 1118 mn_now = ev_rt_now;
939 } 1119 }
940} 1120}
941 1121
942void 1122void
943ev_ref (EV_P) 1123ev_ref (EV_P)
966 { 1146 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1147 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1148 call_pending (EV_A);
969 } 1149 }
970 1150
1151 /* we might have forked, so reify kernel state if necessary */
1152 if (expect_false (postfork))
1153 loop_fork (EV_A);
1154
971 /* update fd-related kernel structures */ 1155 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1156 fd_reify (EV_A);
973 1157
974 /* calculate blocking time */ 1158 /* calculate blocking time */
975 1159
976 /* we only need this for !monotonic clockor timers, but as we basically 1160 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1161 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1163 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1164 time_update_monotonic (EV_A);
981 else 1165 else
982#endif 1166#endif
983 { 1167 {
984 rt_now = ev_time (); 1168 ev_rt_now = ev_time ();
985 mn_now = rt_now; 1169 mn_now = ev_rt_now;
986 } 1170 }
987 1171
988 if (flags & EVLOOP_NONBLOCK || idlecnt) 1172 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.; 1173 block = 0.;
990 else 1174 else
991 { 1175 {
992 block = MAX_BLOCKTIME; 1176 block = MAX_BLOCKTIME;
993 1177
994 if (timercnt) 1178 if (timercnt)
995 { 1179 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1180 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1181 if (block > to) block = to;
998 } 1182 }
999 1183
1000 if (periodiccnt) 1184 if (periodiccnt)
1001 { 1185 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1003 if (block > to) block = to; 1187 if (block > to) block = to;
1004 } 1188 }
1005 1189
1006 if (block < 0.) block = 0.; 1190 if (block < 0.) block = 0.;
1007 } 1191 }
1008 1192
1009 method_poll (EV_A_ block); 1193 method_poll (EV_A_ block);
1010 1194
1011 /* update rt_now, do magic */ 1195 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1196 time_update (EV_A);
1013 1197
1014 /* queue pending timers and reschedule them */ 1198 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1199 timers_reify (EV_A); /* relative timers called last */
1016 periodics_reify (EV_A); /* absolute timers called first */ 1200 periodics_reify (EV_A); /* absolute timers called first */
1017 1201
1018 /* queue idle watchers unless io or timers are pending */ 1202 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1203 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1205
1022 /* queue check watchers, to be executed first */ 1206 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1207 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1099 return; 1283 return;
1100 1284
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1285 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1286
1103 ev_start (EV_A_ (W)w, 1); 1287 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1290
1107 fd_change (EV_A_ fd); 1291 fd_change (EV_A_ fd);
1108} 1292}
1109 1293
1112{ 1296{
1113 ev_clear_pending (EV_A_ (W)w); 1297 ev_clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 1298 if (!ev_is_active (w))
1115 return; 1299 return;
1116 1300
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1302
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 1304 ev_stop (EV_A_ (W)w);
1119 1305
1120 fd_change (EV_A_ w->fd); 1306 fd_change (EV_A_ w->fd);
1121} 1307}
1124ev_timer_start (EV_P_ struct ev_timer *w) 1310ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1311{
1126 if (ev_is_active (w)) 1312 if (ev_is_active (w))
1127 return; 1313 return;
1128 1314
1129 w->at += mn_now; 1315 ((WT)w)->at += mn_now;
1130 1316
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1318
1133 ev_start (EV_A_ (W)w, ++timercnt); 1319 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1135 timers [timercnt - 1] = w; 1321 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1322 upheap ((WT *)timers, timercnt - 1);
1137 1323
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1325}
1151 { 1337 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1338 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1339 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1340 }
1155 1341
1156 w->at = w->repeat; 1342 ((WT)w)->at = w->repeat;
1157 1343
1158 ev_stop (EV_A_ (W)w); 1344 ev_stop (EV_A_ (W)w);
1159} 1345}
1160 1346
1161void 1347void
1162ev_timer_again (EV_P_ struct ev_timer *w) 1348ev_timer_again (EV_P_ struct ev_timer *w)
1163{ 1349{
1164 if (ev_is_active (w)) 1350 if (ev_is_active (w))
1165 { 1351 {
1166 if (w->repeat) 1352 if (w->repeat)
1167 {
1168 w->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1170 }
1171 else 1354 else
1172 ev_timer_stop (EV_A_ w); 1355 ev_timer_stop (EV_A_ w);
1173 } 1356 }
1174 else if (w->repeat) 1357 else if (w->repeat)
1175 ev_timer_start (EV_A_ w); 1358 ev_timer_start (EV_A_ w);
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1362ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1363{
1181 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1182 return; 1365 return;
1183 1366
1367 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval)
1370 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1372 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1374 }
1189 1375
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1376 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1192 periodics [periodiccnt - 1] = w; 1378 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1379 upheap ((WT *)periodics, periodiccnt - 1);
1194 1380
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1382}
1212 1398
1213 ev_stop (EV_A_ (W)w); 1399 ev_stop (EV_A_ (W)w);
1214} 1400}
1215 1401
1216void 1402void
1403ev_periodic_again (EV_P_ struct ev_periodic *w)
1404{
1405 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w);
1408}
1409
1410void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1411ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1412{
1219 if (ev_is_active (w)) 1413 if (ev_is_active (w))
1220 return; 1414 return;
1221 1415
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1416 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1224 idles [idlecnt - 1] = w; 1418 idles [idlecnt - 1] = w;
1225} 1419}
1226 1420
1227void 1421void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1422ev_idle_stop (EV_P_ struct ev_idle *w)
1240{ 1434{
1241 if (ev_is_active (w)) 1435 if (ev_is_active (w))
1242 return; 1436 return;
1243 1437
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1438 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1246 prepares [preparecnt - 1] = w; 1440 prepares [preparecnt - 1] = w;
1247} 1441}
1248 1442
1249void 1443void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1262{ 1456{
1263 if (ev_is_active (w)) 1457 if (ev_is_active (w))
1264 return; 1458 return;
1265 1459
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1460 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1268 checks [checkcnt - 1] = w; 1462 checks [checkcnt - 1] = w;
1269} 1463}
1270 1464
1271void 1465void
1272ev_check_stop (EV_P_ struct ev_check *w) 1466ev_check_stop (EV_P_ struct ev_check *w)
1293 return; 1487 return;
1294 1488
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1490
1297 ev_start (EV_A_ (W)w, 1); 1491 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1494
1301 if (!w->next) 1495 if (!((WL)w)->next)
1302 { 1496 {
1497#if WIN32
1498 signal (w->signum, sighandler);
1499#else
1303 struct sigaction sa; 1500 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1501 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1502 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1503 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1504 sigaction (w->signum, &sa, 0);
1505#endif
1308 } 1506 }
1309} 1507}
1310 1508
1311void 1509void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1510ev_signal_stop (EV_P_ struct ev_signal *w)
1362 void (*cb)(int revents, void *arg) = once->cb; 1560 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1561 void *arg = once->arg;
1364 1562
1365 ev_io_stop (EV_A_ &once->io); 1563 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1564 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1565 ev_free (once);
1368 1566
1369 cb (revents, arg); 1567 cb (revents, arg);
1370} 1568}
1371 1569
1372static void 1570static void
1382} 1580}
1383 1581
1384void 1582void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1584{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1586
1389 if (!once) 1587 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1589 else
1392 { 1590 {
1393 once->cb = cb; 1591 once->cb = cb;
1394 once->arg = arg; 1592 once->arg = arg;
1395 1593
1396 ev_watcher_init (&once->io, once_cb_io); 1594 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1595 if (fd >= 0)
1398 { 1596 {
1399 ev_io_set (&once->io, fd, events); 1597 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1598 ev_io_start (EV_A_ &once->io);
1401 } 1599 }
1402 1600
1403 ev_watcher_init (&once->to, once_cb_to); 1601 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1602 if (timeout >= 0.)
1405 { 1603 {
1406 ev_timer_set (&once->to, timeout, 0.); 1604 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1605 ev_timer_start (EV_A_ &once->to);
1408 } 1606 }
1409 } 1607 }
1410} 1608}
1411 1609
1610#ifdef __cplusplus
1611}
1612#endif
1613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines