ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC vs.
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 56# define EV_USE_SELECT 1
57# else
58# define EV_USE_SELECT 0
41# endif 59# endif
42 60
43# if HAVE_POLL && HAVE_POLL_H 61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 62# define EV_USE_POLL 1
63# else
64# define EV_USE_POLL 0
45# endif 65# endif
46 66
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 68# define EV_USE_EPOLL 1
69# else
70# define EV_USE_EPOLL 0
49# endif 71# endif
50 72
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 74# define EV_USE_KQUEUE 1
75# else
76# define EV_USE_KQUEUE 0
77# endif
78
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
80# define EV_USE_PORT 1
81# else
82# define EV_USE_PORT 0
53# endif 83# endif
54 84
55#endif 85#endif
56 86
57#include <math.h> 87#include <math.h>
58#include <stdlib.h> 88#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 89#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 90#include <stddef.h>
63 91
64#include <stdio.h> 92#include <stdio.h>
65 93
66#include <assert.h> 94#include <assert.h>
67#include <errno.h> 95#include <errno.h>
68#include <sys/types.h> 96#include <sys/types.h>
97#include <time.h>
98
99#include <signal.h>
100
69#ifndef WIN32 101#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h>
70# include <sys/wait.h> 104# include <sys/wait.h>
105#else
106# define WIN32_LEAN_AND_MEAN
107# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1
71#endif 110# endif
72#include <sys/time.h> 111#endif
73#include <time.h>
74 112
75/**/ 113/**/
76 114
77#ifndef EV_USE_MONOTONIC 115#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0
79#endif 121#endif
80 122
81#ifndef EV_USE_SELECT 123#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 124# define EV_USE_SELECT 1
83#endif 125#endif
84 126
85#ifndef EV_USE_POLL 127#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 128# ifdef _WIN32
129# define EV_USE_POLL 0
130# else
131# define EV_USE_POLL 1
132# endif
87#endif 133#endif
88 134
89#ifndef EV_USE_EPOLL 135#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 136# define EV_USE_EPOLL 0
91#endif 137#endif
92 138
93#ifndef EV_USE_KQUEUE 139#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 140# define EV_USE_KQUEUE 0
95#endif 141#endif
96 142
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 143#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 144# define EV_USE_PORT 0
107#endif 145#endif
108 146
109/**/ 147/**/
148
149/* darwin simply cannot be helped */
150#ifdef __APPLE__
151# undef EV_USE_POLL
152# undef EV_USE_KQUEUE
153#endif
110 154
111#ifndef CLOCK_MONOTONIC 155#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 156# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 157# define EV_USE_MONOTONIC 0
114#endif 158#endif
116#ifndef CLOCK_REALTIME 160#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 161# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 162# define EV_USE_REALTIME 0
119#endif 163#endif
120 164
165#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h>
167#endif
168
121/**/ 169/**/
122 170
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 175
176#ifdef EV_H
177# include EV_H
178#else
128#include "ev.h" 179# include "ev.h"
180#endif
129 181
130#if __GNUC__ >= 3 182#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 183# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 184# define inline static inline
133#else 185#else
134# define expect(expr,value) (expr) 186# define expect(expr,value) (expr)
135# define inline static 187# define inline static
136#endif 188#endif
137 189
139#define expect_true(expr) expect ((expr) != 0, 1) 191#define expect_true(expr) expect ((expr) != 0, 1)
140 192
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 194#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 195
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */
198
144typedef struct ev_watcher *W; 199typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 200typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 201typedef struct ev_watcher_time *WT;
147 202
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 204
205#ifdef _WIN32
206# include "ev_win32.c"
207#endif
208
150/*****************************************************************************/ 209/*****************************************************************************/
151 210
211static void (*syserr_cb)(const char *msg);
212
213void ev_set_syserr_cb (void (*cb)(const char *msg))
214{
215 syserr_cb = cb;
216}
217
218static void
219syserr (const char *msg)
220{
221 if (!msg)
222 msg = "(libev) system error";
223
224 if (syserr_cb)
225 syserr_cb (msg);
226 else
227 {
228 perror (msg);
229 abort ();
230 }
231}
232
233static void *(*alloc)(void *ptr, long size);
234
235void ev_set_allocator (void *(*cb)(void *ptr, long size))
236{
237 alloc = cb;
238}
239
240static void *
241ev_realloc (void *ptr, long size)
242{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
244
245 if (!ptr && size)
246 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort ();
249 }
250
251 return ptr;
252}
253
254#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0)
256
257/*****************************************************************************/
258
152typedef struct 259typedef struct
153{ 260{
154 struct ev_watcher_list *head; 261 WL head;
155 unsigned char events; 262 unsigned char events;
156 unsigned char reify; 263 unsigned char reify;
264#if EV_SELECT_IS_WINSOCKET
265 SOCKET handle;
266#endif
157} ANFD; 267} ANFD;
158 268
159typedef struct 269typedef struct
160{ 270{
161 W w; 271 W w;
162 int events; 272 int events;
163} ANPENDING; 273} ANPENDING;
164 274
165#if EV_MULTIPLICITY 275#if EV_MULTIPLICITY
166 276
167struct ev_loop 277 struct ev_loop
168{ 278 {
279 ev_tstamp ev_rt_now;
280 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 281 #define VAR(name,decl) decl;
170# include "ev_vars.h" 282 #include "ev_vars.h"
171};
172# undef VAR 283 #undef VAR
284 };
173# include "ev_wrap.h" 285 #include "ev_wrap.h"
286
287 static struct ev_loop default_loop_struct;
288 struct ev_loop *ev_default_loop_ptr;
174 289
175#else 290#else
176 291
292 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 293 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 294 #include "ev_vars.h"
179# undef VAR 295 #undef VAR
296
297 static int ev_default_loop_ptr;
180 298
181#endif 299#endif
182 300
183/*****************************************************************************/ 301/*****************************************************************************/
184 302
185inline ev_tstamp 303ev_tstamp
186ev_time (void) 304ev_time (void)
187{ 305{
188#if EV_USE_REALTIME 306#if EV_USE_REALTIME
189 struct timespec ts; 307 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 308 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 327#endif
210 328
211 return ev_time (); 329 return ev_time ();
212} 330}
213 331
332#if EV_MULTIPLICITY
214ev_tstamp 333ev_tstamp
215ev_now (EV_P) 334ev_now (EV_P)
216{ 335{
217 return rt_now; 336 return ev_rt_now;
218} 337}
338#endif
219 339
220#define array_roundsize(base,n) ((n) | 4 & ~3) 340#define array_roundsize(type,n) (((n) | 4) & ~3)
221 341
222#define array_needsize(base,cur,cnt,init) \ 342#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 343 if (expect_false ((cnt) > cur)) \
224 { \ 344 { \
225 int newcnt = cur; \ 345 int newcnt = cur; \
226 do \ 346 do \
227 { \ 347 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 348 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 349 } \
230 while ((cnt) > newcnt); \ 350 while ((cnt) > newcnt); \
231 \ 351 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 353 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 354 cur = newcnt; \
235 } 355 }
356
357#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 }
364
365#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 367
237/*****************************************************************************/ 368/*****************************************************************************/
238 369
239static void 370static void
240anfds_init (ANFD *base, int count) 371anfds_init (ANFD *base, int count)
247 378
248 ++base; 379 ++base;
249 } 380 }
250} 381}
251 382
252static void 383void
253event (EV_P_ W w, int events) 384ev_feed_event (EV_P_ void *w, int revents)
254{ 385{
255 if (w->pending) 386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
256 { 389 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 391 return;
259 } 392 }
260 393
261 w->pending = ++pendingcnt [ABSPRI (w)]; 394 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 398}
266 399
267static void 400static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 401queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 402{
270 int i; 403 int i;
271 404
272 for (i = 0; i < eventcnt; ++i) 405 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 406 ev_feed_event (EV_A_ events [i], type);
274} 407}
275 408
276static void 409inline void
277fd_event (EV_P_ int fd, int events) 410fd_event (EV_P_ int fd, int revents)
278{ 411{
279 ANFD *anfd = anfds + fd; 412 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 413 struct ev_io *w;
281 414
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 416 {
284 int ev = w->events & events; 417 int ev = w->events & revents;
285 418
286 if (ev) 419 if (ev)
287 event (EV_A_ (W)w, ev); 420 ev_feed_event (EV_A_ (W)w, ev);
288 } 421 }
422}
423
424void
425ev_feed_fd_event (EV_P_ int fd, int revents)
426{
427 fd_event (EV_A_ fd, revents);
289} 428}
290 429
291/*****************************************************************************/ 430/*****************************************************************************/
292 431
293static void 432inline void
294fd_reify (EV_P) 433fd_reify (EV_P)
295{ 434{
296 int i; 435 int i;
297 436
298 for (i = 0; i < fdchangecnt; ++i) 437 for (i = 0; i < fdchangecnt; ++i)
304 int events = 0; 443 int events = 0;
305 444
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 446 events |= w->events;
308 447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 {
451 unsigned long argp;
452 anfd->handle = _get_osfhandle (fd);
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 }
455#endif
456
309 anfd->reify = 0; 457 anfd->reify = 0;
310 458
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 459 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 460 anfd->events = events;
315 }
316 } 461 }
317 462
318 fdchangecnt = 0; 463 fdchangecnt = 0;
319} 464}
320 465
321static void 466static void
322fd_change (EV_P_ int fd) 467fd_change (EV_P_ int fd)
323{ 468{
324 if (anfds [fd].reify || fdchangecnt < 0) 469 if (expect_false (anfds [fd].reify))
325 return; 470 return;
326 471
327 anfds [fd].reify = 1; 472 anfds [fd].reify = 1;
328 473
329 ++fdchangecnt; 474 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 476 fdchanges [fdchangecnt - 1] = fd;
332} 477}
333 478
334static void 479static void
335fd_kill (EV_P_ int fd) 480fd_kill (EV_P_ int fd)
337 struct ev_io *w; 482 struct ev_io *w;
338 483
339 while ((w = (struct ev_io *)anfds [fd].head)) 484 while ((w = (struct ev_io *)anfds [fd].head))
340 { 485 {
341 ev_io_stop (EV_A_ w); 486 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 488 }
489}
490
491inline int
492fd_valid (int fd)
493{
494#ifdef _WIN32
495 return _get_osfhandle (fd) != -1;
496#else
497 return fcntl (fd, F_GETFD) != -1;
498#endif
344} 499}
345 500
346/* called on EBADF to verify fds */ 501/* called on EBADF to verify fds */
347static void 502static void
348fd_ebadf (EV_P) 503fd_ebadf (EV_P)
349{ 504{
350 int fd; 505 int fd;
351 506
352 for (fd = 0; fd < anfdmax; ++fd) 507 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 508 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 509 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 510 fd_kill (EV_A_ fd);
356} 511}
357 512
358/* called on ENOMEM in select/poll to kill some fds and retry */ 513/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 514static void
362 int fd; 517 int fd;
363 518
364 for (fd = anfdmax; fd--; ) 519 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 520 if (anfds [fd].events)
366 { 521 {
367 close (fd);
368 fd_kill (EV_A_ fd); 522 fd_kill (EV_A_ fd);
369 return; 523 return;
370 } 524 }
371} 525}
372 526
373/* susually called after fork if method needs to re-arm all fds from scratch */ 527/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 528static void
375fd_rearm_all (EV_P) 529fd_rearm_all (EV_P)
376{ 530{
377 int fd; 531 int fd;
378 532
426 580
427 heap [k] = w; 581 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 582 ((W)heap [k])->active = k + 1;
429} 583}
430 584
585inline void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
431/*****************************************************************************/ 592/*****************************************************************************/
432 593
433typedef struct 594typedef struct
434{ 595{
435 struct ev_watcher_list *head; 596 WL head;
436 sig_atomic_t volatile gotsig; 597 sig_atomic_t volatile gotsig;
437} ANSIG; 598} ANSIG;
438 599
439static ANSIG *signals; 600static ANSIG *signals;
440static int signalmax; 601static int signalmax;
456} 617}
457 618
458static void 619static void
459sighandler (int signum) 620sighandler (int signum)
460{ 621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
461 signals [signum - 1].gotsig = 1; 626 signals [signum - 1].gotsig = 1;
462 627
463 if (!gotsig) 628 if (!gotsig)
464 { 629 {
465 int old_errno = errno; 630 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 632 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 633 errno = old_errno;
469 } 634 }
470} 635}
471 636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
472static void 657static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 658sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 659{
475 struct ev_watcher_list *w;
476 int signum; 660 int signum;
477 661
478 read (sigpipe [0], &revents, 1); 662 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 663 gotsig = 0;
480 664
481 for (signum = signalmax; signum--; ) 665 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 666 if (signals [signum].gotsig)
483 { 667 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 668}
485 669
486 for (w = signals [signum].head; w; w = w->next) 670static void
487 event (EV_A_ (W)w, EV_SIGNAL); 671fd_intern (int fd)
488 } 672{
673#ifdef _WIN32
674 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
676#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif
489} 680}
490 681
491static void 682static void
492siginit (EV_P) 683siginit (EV_P)
493{ 684{
494#ifndef WIN32 685 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 686 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 687
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 688 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 689 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 690 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 691}
507 692
508/*****************************************************************************/ 693/*****************************************************************************/
509 694
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 695static struct ev_child *childs [PID_HASHSIZE];
696
697#ifndef _WIN32
698
513static struct ev_signal childev; 699static struct ev_signal childev;
514 700
515#ifndef WCONTINUED 701#ifndef WCONTINUED
516# define WCONTINUED 0 702# define WCONTINUED 0
517#endif 703#endif
525 if (w->pid == pid || !w->pid) 711 if (w->pid == pid || !w->pid)
526 { 712 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 714 w->rpid = pid;
529 w->rstatus = status; 715 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 717 }
532} 718}
533 719
534static void 720static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 721childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 723 int pid, status;
538 724
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 726 {
541 /* make sure we are called again until all childs have been reaped */ 727 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 729
544 child_reap (EV_A_ sw, pid, pid, status); 730 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 732 }
547} 733}
548 734
549#endif 735#endif
550 736
551/*****************************************************************************/ 737/*****************************************************************************/
552 738
739#if EV_USE_PORT
740# include "ev_port.c"
741#endif
553#if EV_USE_KQUEUE 742#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 743# include "ev_kqueue.c"
555#endif 744#endif
556#if EV_USE_EPOLL 745#if EV_USE_EPOLL
557# include "ev_epoll.c" 746# include "ev_epoll.c"
577 766
578/* return true if we are running with elevated privileges and should ignore env variables */ 767/* return true if we are running with elevated privileges and should ignore env variables */
579static int 768static int
580enable_secure (void) 769enable_secure (void)
581{ 770{
582#ifdef WIN32 771#ifdef _WIN32
583 return 0; 772 return 0;
584#else 773#else
585 return getuid () != geteuid () 774 return getuid () != geteuid ()
586 || getgid () != getegid (); 775 || getgid () != getegid ();
587#endif 776#endif
588} 777}
589 778
590int 779unsigned int
591ev_method (EV_P) 780ev_method (EV_P)
592{ 781{
593 return method; 782 return method;
594} 783}
595 784
596static void 785static void
597loop_init (EV_P_ int methods) 786loop_init (EV_P_ unsigned int flags)
598{ 787{
599 if (!method) 788 if (!method)
600 { 789 {
601#if EV_USE_MONOTONIC 790#if EV_USE_MONOTONIC
602 { 791 {
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 793 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 794 have_monotonic = 1;
606 } 795 }
607#endif 796#endif
608 797
609 rt_now = ev_time (); 798 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 799 mn_now = get_clock ();
611 now_floor = mn_now; 800 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 801 rtmn_diff = ev_rt_now - mn_now;
613 802
614 if (methods == EVMETHOD_AUTO) 803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 804 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else 805
618 methods = EVMETHOD_ANY; 806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
619 808
620 method = 0; 809 method = 0;
621#if EV_USE_WIN32 810#if EV_USE_PORT
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
623#endif 812#endif
624#if EV_USE_KQUEUE 813#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
626#endif 815#endif
627#if EV_USE_EPOLL 816#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
629#endif 818#endif
630#if EV_USE_POLL 819#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
632#endif 821#endif
633#if EV_USE_SELECT 822#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
635#endif 824#endif
636 }
637}
638 825
639void 826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
640loop_destroy (EV_P) 832loop_destroy (EV_P)
641{ 833{
642#if EV_USE_WIN32 834 int i;
835
836#if EV_USE_PORT
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
644#endif 838#endif
645#if EV_USE_KQUEUE 839#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif 841#endif
648#if EV_USE_EPOLL 842#if EV_USE_EPOLL
653#endif 847#endif
654#if EV_USE_SELECT 848#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 850#endif
657 851
852 for (i = NUMPRI; i--; )
853 array_free (pending, [i]);
854
855 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0);
857 array_free (timer, EMPTY0);
858#if EV_PERIODICS
859 array_free (periodic, EMPTY0);
860#endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
658 method = 0; 865 method = 0;
659 /*TODO*/
660} 866}
661 867
662void 868static void
663loop_fork (EV_P) 869loop_fork (EV_P)
664{ 870{
665 /*TODO*/ 871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
666#if EV_USE_EPOLL 877#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 879#endif
669#if EV_USE_KQUEUE 880
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 881 if (ev_is_active (&sigev))
671#endif 882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
672} 897}
673 898
674#if EV_MULTIPLICITY 899#if EV_MULTIPLICITY
675struct ev_loop * 900struct ev_loop *
676ev_loop_new (int methods) 901ev_loop_new (unsigned int flags)
677{ 902{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
679 904
905 memset (loop, 0, sizeof (struct ev_loop));
906
680 loop_init (EV_A_ methods); 907 loop_init (EV_A_ flags);
681 908
682 if (ev_method (EV_A)) 909 if (ev_method (EV_A))
683 return loop; 910 return loop;
684 911
685 return 0; 912 return 0;
687 914
688void 915void
689ev_loop_destroy (EV_P) 916ev_loop_destroy (EV_P)
690{ 917{
691 loop_destroy (EV_A); 918 loop_destroy (EV_A);
692 free (loop); 919 ev_free (loop);
693} 920}
694 921
695void 922void
696ev_loop_fork (EV_P) 923ev_loop_fork (EV_P)
697{ 924{
698 loop_fork (EV_A); 925 postfork = 1;
699} 926}
700 927
701#endif 928#endif
702 929
703#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
708#else 933#else
709static int default_loop;
710
711int 934int
935ev_default_loop (unsigned int flags)
712#endif 936#endif
713ev_default_loop (int methods)
714{ 937{
715 if (sigpipe [0] == sigpipe [1]) 938 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe)) 939 if (pipe (sigpipe))
717 return 0; 940 return 0;
718 941
719 if (!default_loop) 942 if (!ev_default_loop_ptr)
720 { 943 {
721#if EV_MULTIPLICITY 944#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct; 945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
723#else 946#else
724 default_loop = 1; 947 ev_default_loop_ptr = 1;
725#endif 948#endif
726 949
727 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
728 951
729 if (ev_method (EV_A)) 952 if (ev_method (EV_A))
730 { 953 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 954 siginit (EV_A);
734 955
735#ifndef WIN32 956#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 957 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 958 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 959 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 960 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 961#endif
741 } 962 }
742 else 963 else
743 default_loop = 0; 964 ev_default_loop_ptr = 0;
744 } 965 }
745 966
746 return default_loop; 967 return ev_default_loop_ptr;
747} 968}
748 969
749void 970void
750ev_default_destroy (void) 971ev_default_destroy (void)
751{ 972{
752#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 974 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 975#endif
755 976
977#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 978 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 979 ev_signal_stop (EV_A_ &childev);
980#endif
758 981
759 ev_ref (EV_A); /* signal watcher */ 982 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 983 ev_io_stop (EV_A_ &sigev);
761 984
762 close (sigpipe [0]); sigpipe [0] = 0; 985 close (sigpipe [0]); sigpipe [0] = 0;
767 990
768void 991void
769ev_default_fork (void) 992ev_default_fork (void)
770{ 993{
771#if EV_MULTIPLICITY 994#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 995 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 996#endif
774 997
775 loop_fork (EV_A); 998 if (method)
776 999 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 1000}
785 1001
786/*****************************************************************************/ 1002/*****************************************************************************/
787 1003
788static void 1004static int
1005any_pending (EV_P)
1006{
1007 int pri;
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014}
1015
1016inline void
789call_pending (EV_P) 1017call_pending (EV_P)
790{ 1018{
791 int pri; 1019 int pri;
792 1020
793 for (pri = NUMPRI; pri--; ) 1021 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 1022 while (pendingcnt [pri])
795 { 1023 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 1025
798 if (p->w) 1026 if (expect_true (p->w))
799 { 1027 {
800 p->w->pending = 0; 1028 p->w->pending = 0;
801 1029 EV_CB_INVOKE (p->w, p->events);
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
803 } 1030 }
804 } 1031 }
805} 1032}
806 1033
807static void 1034inline void
808timers_reify (EV_P) 1035timers_reify (EV_P)
809{ 1036{
810 while (timercnt && ((WT)timers [0])->at <= mn_now) 1037 while (timercnt && ((WT)timers [0])->at <= mn_now)
811 { 1038 {
812 struct ev_timer *w = timers [0]; 1039 struct ev_timer *w = timers [0];
815 1042
816 /* first reschedule or stop timer */ 1043 /* first reschedule or stop timer */
817 if (w->repeat) 1044 if (w->repeat)
818 { 1045 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047
820 ((WT)w)->at = mn_now + w->repeat; 1048 ((WT)w)->at += w->repeat;
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
821 downheap ((WT *)timers, timercnt, 0); 1052 downheap ((WT *)timers, timercnt, 0);
822 } 1053 }
823 else 1054 else
824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825 1056
826 event (EV_A_ (W)w, EV_TIMEOUT); 1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
827 } 1058 }
828} 1059}
829 1060
830static void 1061#if EV_PERIODICS
1062inline void
831periodics_reify (EV_P) 1063periodics_reify (EV_P)
832{ 1064{
833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
834 { 1066 {
835 struct ev_periodic *w = periodics [0]; 1067 struct ev_periodic *w = periodics [0];
836 1068
837 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1069 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838 1070
839 /* first reschedule or stop timer */ 1071 /* first reschedule or stop timer */
840 if (w->interval) 1072 if (w->reschedule_cb)
841 { 1073 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 }
1078 else if (w->interval)
1079 {
842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
844 downheap ((WT *)periodics, periodiccnt, 0); 1082 downheap ((WT *)periodics, periodiccnt, 0);
845 } 1083 }
846 else 1084 else
847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
848 1086
849 event (EV_A_ (W)w, EV_PERIODIC); 1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
850 } 1088 }
851} 1089}
852 1090
853static void 1091static void
854periodics_reschedule (EV_P) 1092periodics_reschedule (EV_P)
858 /* adjust periodics after time jump */ 1096 /* adjust periodics after time jump */
859 for (i = 0; i < periodiccnt; ++i) 1097 for (i = 0; i < periodiccnt; ++i)
860 { 1098 {
861 struct ev_periodic *w = periodics [i]; 1099 struct ev_periodic *w = periodics [i];
862 1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
863 if (w->interval) 1103 else if (w->interval)
864 {
865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
866
867 if (fabs (diff) >= 1e-4)
868 {
869 ev_periodic_stop (EV_A_ w);
870 ev_periodic_start (EV_A_ w);
871
872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
873 }
874 }
875 } 1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
876} 1110}
1111#endif
877 1112
878inline int 1113inline int
879time_update_monotonic (EV_P) 1114time_update_monotonic (EV_P)
880{ 1115{
881 mn_now = get_clock (); 1116 mn_now = get_clock ();
882 1117
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 { 1119 {
885 rt_now = rtmn_diff + mn_now; 1120 ev_rt_now = rtmn_diff + mn_now;
886 return 0; 1121 return 0;
887 } 1122 }
888 else 1123 else
889 { 1124 {
890 now_floor = mn_now; 1125 now_floor = mn_now;
891 rt_now = ev_time (); 1126 ev_rt_now = ev_time ();
892 return 1; 1127 return 1;
893 } 1128 }
894} 1129}
895 1130
896static void 1131inline void
897time_update (EV_P) 1132time_update (EV_P)
898{ 1133{
899 int i; 1134 int i;
900 1135
901#if EV_USE_MONOTONIC 1136#if EV_USE_MONOTONIC
905 { 1140 {
906 ev_tstamp odiff = rtmn_diff; 1141 ev_tstamp odiff = rtmn_diff;
907 1142
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 { 1144 {
910 rtmn_diff = rt_now - mn_now; 1145 rtmn_diff = ev_rt_now - mn_now;
911 1146
912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
913 return; /* all is well */ 1148 return; /* all is well */
914 1149
915 rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
916 mn_now = get_clock (); 1151 mn_now = get_clock ();
917 now_floor = mn_now; 1152 now_floor = mn_now;
918 } 1153 }
919 1154
1155# if EV_PERIODICS
920 periodics_reschedule (EV_A); 1156 periodics_reschedule (EV_A);
1157# endif
921 /* no timer adjustment, as the monotonic clock doesn't jump */ 1158 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
923 } 1160 }
924 } 1161 }
925 else 1162 else
926#endif 1163#endif
927 { 1164 {
928 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
929 1166
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 { 1168 {
1169#if EV_PERIODICS
932 periodics_reschedule (EV_A); 1170 periodics_reschedule (EV_A);
1171#endif
933 1172
934 /* adjust timers. this is easy, as the offset is the same for all */ 1173 /* adjust timers. this is easy, as the offset is the same for all */
935 for (i = 0; i < timercnt; ++i) 1174 for (i = 0; i < timercnt; ++i)
936 ((WT)timers [i])->at += rt_now - mn_now; 1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
937 } 1176 }
938 1177
939 mn_now = rt_now; 1178 mn_now = ev_rt_now;
940 } 1179 }
941} 1180}
942 1181
943void 1182void
944ev_ref (EV_P) 1183ev_ref (EV_P)
958ev_loop (EV_P_ int flags) 1197ev_loop (EV_P_ int flags)
959{ 1198{
960 double block; 1199 double block;
961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
962 1201
963 do 1202 while (activecnt)
964 { 1203 {
965 /* queue check watchers (and execute them) */ 1204 /* queue check watchers (and execute them) */
966 if (expect_false (preparecnt)) 1205 if (expect_false (preparecnt))
967 { 1206 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A); 1208 call_pending (EV_A);
970 } 1209 }
971 1210
1211 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork))
1213 loop_fork (EV_A);
1214
972 /* update fd-related kernel structures */ 1215 /* update fd-related kernel structures */
973 fd_reify (EV_A); 1216 fd_reify (EV_A);
974 1217
975 /* calculate blocking time */ 1218 /* calculate blocking time */
976 1219
977 /* we only need this for !monotonic clockor timers, but as we basically 1220 /* we only need this for !monotonic clock or timers, but as we basically
978 always have timers, we just calculate it always */ 1221 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A); 1224 time_update_monotonic (EV_A);
982 else 1225 else
983#endif 1226#endif
984 { 1227 {
985 rt_now = ev_time (); 1228 ev_rt_now = ev_time ();
986 mn_now = rt_now; 1229 mn_now = ev_rt_now;
987 } 1230 }
988 1231
989 if (flags & EVLOOP_NONBLOCK || idlecnt) 1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
990 block = 0.; 1233 block = 0.;
991 else 1234 else
996 { 1239 {
997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
998 if (block > to) block = to; 1241 if (block > to) block = to;
999 } 1242 }
1000 1243
1244#if EV_PERIODICS
1001 if (periodiccnt) 1245 if (periodiccnt)
1002 { 1246 {
1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1004 if (block > to) block = to; 1248 if (block > to) block = to;
1005 } 1249 }
1250#endif
1006 1251
1007 if (block < 0.) block = 0.; 1252 if (expect_false (block < 0.)) block = 0.;
1008 } 1253 }
1009 1254
1010 method_poll (EV_A_ block); 1255 method_poll (EV_A_ block);
1011 1256
1012 /* update rt_now, do magic */ 1257 /* update ev_rt_now, do magic */
1013 time_update (EV_A); 1258 time_update (EV_A);
1014 1259
1015 /* queue pending timers and reschedule them */ 1260 /* queue pending timers and reschedule them */
1016 timers_reify (EV_A); /* relative timers called last */ 1261 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS
1017 periodics_reify (EV_A); /* absolute timers called first */ 1263 periodics_reify (EV_A); /* absolute timers called first */
1264#endif
1018 1265
1019 /* queue idle watchers unless io or timers are pending */ 1266 /* queue idle watchers unless io or timers are pending */
1020 if (!pendingcnt) 1267 if (idlecnt && !any_pending (EV_A))
1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1022 1269
1023 /* queue check watchers, to be executed first */ 1270 /* queue check watchers, to be executed first */
1024 if (checkcnt) 1271 if (expect_false (checkcnt))
1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1026 1273
1027 call_pending (EV_A); 1274 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1028 } 1278 }
1029 while (activecnt && !loop_done);
1030 1279
1031 if (loop_done != 2) 1280 if (loop_done != 2)
1032 loop_done = 0; 1281 loop_done = 0;
1033} 1282}
1034 1283
1094void 1343void
1095ev_io_start (EV_P_ struct ev_io *w) 1344ev_io_start (EV_P_ struct ev_io *w)
1096{ 1345{
1097 int fd = w->fd; 1346 int fd = w->fd;
1098 1347
1099 if (ev_is_active (w)) 1348 if (expect_false (ev_is_active (w)))
1100 return; 1349 return;
1101 1350
1102 assert (("ev_io_start called with negative fd", fd >= 0)); 1351 assert (("ev_io_start called with negative fd", fd >= 0));
1103 1352
1104 ev_start (EV_A_ (W)w, 1); 1353 ev_start (EV_A_ (W)w, 1);
1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1106 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1355 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1107 1356
1108 fd_change (EV_A_ fd); 1357 fd_change (EV_A_ fd);
1109} 1358}
1110 1359
1111void 1360void
1112ev_io_stop (EV_P_ struct ev_io *w) 1361ev_io_stop (EV_P_ struct ev_io *w)
1113{ 1362{
1114 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1115 if (!ev_is_active (w)) 1364 if (expect_false (!ev_is_active (w)))
1116 return; 1365 return;
1366
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1117 1368
1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1119 ev_stop (EV_A_ (W)w); 1370 ev_stop (EV_A_ (W)w);
1120 1371
1121 fd_change (EV_A_ w->fd); 1372 fd_change (EV_A_ w->fd);
1122} 1373}
1123 1374
1124void 1375void
1125ev_timer_start (EV_P_ struct ev_timer *w) 1376ev_timer_start (EV_P_ struct ev_timer *w)
1126{ 1377{
1127 if (ev_is_active (w)) 1378 if (expect_false (ev_is_active (w)))
1128 return; 1379 return;
1129 1380
1130 ((WT)w)->at += mn_now; 1381 ((WT)w)->at += mn_now;
1131 1382
1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133 1384
1134 ev_start (EV_A_ (W)w, ++timercnt); 1385 ev_start (EV_A_ (W)w, ++timercnt);
1135 array_needsize (timers, timermax, timercnt, ); 1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1136 timers [timercnt - 1] = w; 1387 timers [timercnt - 1] = w;
1137 upheap ((WT *)timers, timercnt - 1); 1388 upheap ((WT *)timers, timercnt - 1);
1138 1389
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140} 1391}
1141 1392
1142void 1393void
1143ev_timer_stop (EV_P_ struct ev_timer *w) 1394ev_timer_stop (EV_P_ struct ev_timer *w)
1144{ 1395{
1145 ev_clear_pending (EV_A_ (W)w); 1396 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w)) 1397 if (expect_false (!ev_is_active (w)))
1147 return; 1398 return;
1148 1399
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150 1401
1151 if (((W)w)->active < timercnt--) 1402 if (expect_true (((W)w)->active < timercnt--))
1152 { 1403 {
1153 timers [((W)w)->active - 1] = timers [timercnt]; 1404 timers [((W)w)->active - 1] = timers [timercnt];
1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1155 } 1406 }
1156 1407
1157 ((WT)w)->at = w->repeat; 1408 ((WT)w)->at -= mn_now;
1158 1409
1159 ev_stop (EV_A_ (W)w); 1410 ev_stop (EV_A_ (W)w);
1160} 1411}
1161 1412
1162void 1413void
1165 if (ev_is_active (w)) 1416 if (ev_is_active (w))
1166 { 1417 {
1167 if (w->repeat) 1418 if (w->repeat)
1168 { 1419 {
1169 ((WT)w)->at = mn_now + w->repeat; 1420 ((WT)w)->at = mn_now + w->repeat;
1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1171 } 1422 }
1172 else 1423 else
1173 ev_timer_stop (EV_A_ w); 1424 ev_timer_stop (EV_A_ w);
1174 } 1425 }
1175 else if (w->repeat) 1426 else if (w->repeat)
1427 {
1428 w->at = w->repeat;
1176 ev_timer_start (EV_A_ w); 1429 ev_timer_start (EV_A_ w);
1430 }
1177} 1431}
1178 1432
1433#if EV_PERIODICS
1179void 1434void
1180ev_periodic_start (EV_P_ struct ev_periodic *w) 1435ev_periodic_start (EV_P_ struct ev_periodic *w)
1181{ 1436{
1182 if (ev_is_active (w)) 1437 if (expect_false (ev_is_active (w)))
1183 return; 1438 return;
1184 1439
1440 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval)
1443 {
1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1186
1187 /* this formula differs from the one in periodic_reify because we do not always round up */ 1445 /* this formula differs from the one in periodic_reify because we do not always round up */
1188 if (w->interval)
1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 }
1190 1448
1191 ev_start (EV_A_ (W)w, ++periodiccnt); 1449 ev_start (EV_A_ (W)w, ++periodiccnt);
1192 array_needsize (periodics, periodicmax, periodiccnt, ); 1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1193 periodics [periodiccnt - 1] = w; 1451 periodics [periodiccnt - 1] = w;
1194 upheap ((WT *)periodics, periodiccnt - 1); 1452 upheap ((WT *)periodics, periodiccnt - 1);
1195 1453
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197} 1455}
1198 1456
1199void 1457void
1200ev_periodic_stop (EV_P_ struct ev_periodic *w) 1458ev_periodic_stop (EV_P_ struct ev_periodic *w)
1201{ 1459{
1202 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1203 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1204 return; 1462 return;
1205 1463
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207 1465
1208 if (((W)w)->active < periodiccnt--) 1466 if (expect_true (((W)w)->active < periodiccnt--))
1209 { 1467 {
1210 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1468 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1212 } 1470 }
1213 1471
1214 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1215} 1473}
1216 1474
1217void 1475void
1476ev_periodic_again (EV_P_ struct ev_periodic *w)
1477{
1478 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w);
1481}
1482#endif
1483
1484void
1218ev_idle_start (EV_P_ struct ev_idle *w) 1485ev_idle_start (EV_P_ struct ev_idle *w)
1219{ 1486{
1220 if (ev_is_active (w)) 1487 if (expect_false (ev_is_active (w)))
1221 return; 1488 return;
1222 1489
1223 ev_start (EV_A_ (W)w, ++idlecnt); 1490 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, ); 1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1225 idles [idlecnt - 1] = w; 1492 idles [idlecnt - 1] = w;
1226} 1493}
1227 1494
1228void 1495void
1229ev_idle_stop (EV_P_ struct ev_idle *w) 1496ev_idle_stop (EV_P_ struct ev_idle *w)
1230{ 1497{
1231 ev_clear_pending (EV_A_ (W)w); 1498 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w)) 1499 if (expect_false (!ev_is_active (w)))
1233 return; 1500 return;
1234 1501
1235 idles [((W)w)->active - 1] = idles [--idlecnt]; 1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w); 1503 ev_stop (EV_A_ (W)w);
1237} 1504}
1238 1505
1239void 1506void
1240ev_prepare_start (EV_P_ struct ev_prepare *w) 1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{ 1508{
1242 if (ev_is_active (w)) 1509 if (expect_false (ev_is_active (w)))
1243 return; 1510 return;
1244 1511
1245 ev_start (EV_A_ (W)w, ++preparecnt); 1512 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, ); 1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1247 prepares [preparecnt - 1] = w; 1514 prepares [preparecnt - 1] = w;
1248} 1515}
1249 1516
1250void 1517void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w) 1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{ 1519{
1253 ev_clear_pending (EV_A_ (W)w); 1520 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w)) 1521 if (expect_false (!ev_is_active (w)))
1255 return; 1522 return;
1256 1523
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w); 1525 ev_stop (EV_A_ (W)w);
1259} 1526}
1260 1527
1261void 1528void
1262ev_check_start (EV_P_ struct ev_check *w) 1529ev_check_start (EV_P_ struct ev_check *w)
1263{ 1530{
1264 if (ev_is_active (w)) 1531 if (expect_false (ev_is_active (w)))
1265 return; 1532 return;
1266 1533
1267 ev_start (EV_A_ (W)w, ++checkcnt); 1534 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, ); 1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1269 checks [checkcnt - 1] = w; 1536 checks [checkcnt - 1] = w;
1270} 1537}
1271 1538
1272void 1539void
1273ev_check_stop (EV_P_ struct ev_check *w) 1540ev_check_stop (EV_P_ struct ev_check *w)
1274{ 1541{
1275 ev_clear_pending (EV_A_ (W)w); 1542 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w)) 1543 if (expect_false (!ev_is_active (w)))
1277 return; 1544 return;
1278 1545
1279 checks [((W)w)->active - 1] = checks [--checkcnt]; 1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1281} 1548}
1286 1553
1287void 1554void
1288ev_signal_start (EV_P_ struct ev_signal *w) 1555ev_signal_start (EV_P_ struct ev_signal *w)
1289{ 1556{
1290#if EV_MULTIPLICITY 1557#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1292#endif 1559#endif
1293 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1294 return; 1561 return;
1295 1562
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297 1564
1298 ev_start (EV_A_ (W)w, 1); 1565 ev_start (EV_A_ (W)w, 1);
1299 array_needsize (signals, signalmax, w->signum, signals_init); 1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1301 1568
1302 if (!((WL)w)->next) 1569 if (!((WL)w)->next)
1303 { 1570 {
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1304 struct sigaction sa; 1574 struct sigaction sa;
1305 sa.sa_handler = sighandler; 1575 sa.sa_handler = sighandler;
1306 sigfillset (&sa.sa_mask); 1576 sigfillset (&sa.sa_mask);
1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1308 sigaction (w->signum, &sa, 0); 1578 sigaction (w->signum, &sa, 0);
1579#endif
1309 } 1580 }
1310} 1581}
1311 1582
1312void 1583void
1313ev_signal_stop (EV_P_ struct ev_signal *w) 1584ev_signal_stop (EV_P_ struct ev_signal *w)
1314{ 1585{
1315 ev_clear_pending (EV_A_ (W)w); 1586 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 1587 if (expect_false (!ev_is_active (w)))
1317 return; 1588 return;
1318 1589
1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 1591 ev_stop (EV_A_ (W)w);
1321 1592
1325 1596
1326void 1597void
1327ev_child_start (EV_P_ struct ev_child *w) 1598ev_child_start (EV_P_ struct ev_child *w)
1328{ 1599{
1329#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1331#endif 1602#endif
1332 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1333 return; 1604 return;
1334 1605
1335 ev_start (EV_A_ (W)w, 1); 1606 ev_start (EV_A_ (W)w, 1);
1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1337} 1608}
1338 1609
1339void 1610void
1340ev_child_stop (EV_P_ struct ev_child *w) 1611ev_child_stop (EV_P_ struct ev_child *w)
1341{ 1612{
1342 ev_clear_pending (EV_A_ (W)w); 1613 ev_clear_pending (EV_A_ (W)w);
1343 if (ev_is_active (w)) 1614 if (expect_false (!ev_is_active (w)))
1344 return; 1615 return;
1345 1616
1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1347 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1348} 1619}
1363 void (*cb)(int revents, void *arg) = once->cb; 1634 void (*cb)(int revents, void *arg) = once->cb;
1364 void *arg = once->arg; 1635 void *arg = once->arg;
1365 1636
1366 ev_io_stop (EV_A_ &once->io); 1637 ev_io_stop (EV_A_ &once->io);
1367 ev_timer_stop (EV_A_ &once->to); 1638 ev_timer_stop (EV_A_ &once->to);
1368 free (once); 1639 ev_free (once);
1369 1640
1370 cb (revents, arg); 1641 cb (revents, arg);
1371} 1642}
1372 1643
1373static void 1644static void
1383} 1654}
1384 1655
1385void 1656void
1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1387{ 1658{
1388 struct ev_once *once = malloc (sizeof (struct ev_once)); 1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1389 1660
1390 if (!once) 1661 if (expect_false (!once))
1662 {
1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 else 1664 return;
1393 { 1665 }
1666
1394 once->cb = cb; 1667 once->cb = cb;
1395 once->arg = arg; 1668 once->arg = arg;
1396 1669
1397 ev_watcher_init (&once->io, once_cb_io); 1670 ev_init (&once->io, once_cb_io);
1398 if (fd >= 0) 1671 if (fd >= 0)
1399 { 1672 {
1400 ev_io_set (&once->io, fd, events); 1673 ev_io_set (&once->io, fd, events);
1401 ev_io_start (EV_A_ &once->io); 1674 ev_io_start (EV_A_ &once->io);
1402 } 1675 }
1403 1676
1404 ev_watcher_init (&once->to, once_cb_to); 1677 ev_init (&once->to, once_cb_to);
1405 if (timeout >= 0.) 1678 if (timeout >= 0.)
1406 { 1679 {
1407 ev_timer_set (&once->to, timeout, 0.); 1680 ev_timer_set (&once->to, timeout, 0.);
1408 ev_timer_start (EV_A_ &once->to); 1681 ev_timer_start (EV_A_ &once->to);
1409 }
1410 } 1682 }
1411} 1683}
1412 1684
1685#ifdef __cplusplus
1686}
1687#endif
1688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines