ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC vs.
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 192# define inline static inline
133#else 193#else
134# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
135# define inline static 195# define inline static
136#endif 196#endif
137 197
139#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
140 200
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
144typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
147 210
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 212
213#ifdef _WIN32
214# include "ev_win32.c"
215#endif
216
150/*****************************************************************************/ 217/*****************************************************************************/
151 218
219static void (*syserr_cb)(const char *msg);
220
221void ev_set_syserr_cb (void (*cb)(const char *msg))
222{
223 syserr_cb = cb;
224}
225
226static void
227syserr (const char *msg)
228{
229 if (!msg)
230 msg = "(libev) system error";
231
232 if (syserr_cb)
233 syserr_cb (msg);
234 else
235 {
236 perror (msg);
237 abort ();
238 }
239}
240
241static void *(*alloc)(void *ptr, long size);
242
243void ev_set_allocator (void *(*cb)(void *ptr, long size))
244{
245 alloc = cb;
246}
247
248static void *
249ev_realloc (void *ptr, long size)
250{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252
253 if (!ptr && size)
254 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort ();
257 }
258
259 return ptr;
260}
261
262#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0)
264
265/*****************************************************************************/
266
152typedef struct 267typedef struct
153{ 268{
154 struct ev_watcher_list *head; 269 WL head;
155 unsigned char events; 270 unsigned char events;
156 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
157} ANFD; 275} ANFD;
158 276
159typedef struct 277typedef struct
160{ 278{
161 W w; 279 W w;
162 int events; 280 int events;
163} ANPENDING; 281} ANPENDING;
164 282
165#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
166 284
167struct ev_loop 285 struct ev_loop
168{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
170# include "ev_vars.h" 290 #include "ev_vars.h"
171};
172# undef VAR 291 #undef VAR
292 };
173# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
174 297
175#else 298#else
176 299
300 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 302 #include "ev_vars.h"
179# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
180 306
181#endif 307#endif
182 308
183/*****************************************************************************/ 309/*****************************************************************************/
184 310
185inline ev_tstamp 311ev_tstamp
186ev_time (void) 312ev_time (void)
187{ 313{
188#if EV_USE_REALTIME 314#if EV_USE_REALTIME
189 struct timespec ts; 315 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 335#endif
210 336
211 return ev_time (); 337 return ev_time ();
212} 338}
213 339
340#if EV_MULTIPLICITY
214ev_tstamp 341ev_tstamp
215ev_now (EV_P) 342ev_now (EV_P)
216{ 343{
217 return rt_now; 344 return ev_rt_now;
218} 345}
346#endif
219 347
220#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
221 349
222#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
224 { \ 352 { \
225 int newcnt = cur; \ 353 int newcnt = cur; \
226 do \ 354 do \
227 { \ 355 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 357 } \
230 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
231 \ 359 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 362 cur = newcnt; \
235 } 363 }
364
365#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 }
372
373#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 375
237/*****************************************************************************/ 376/*****************************************************************************/
238 377
239static void 378static void
240anfds_init (ANFD *base, int count) 379anfds_init (ANFD *base, int count)
247 386
248 ++base; 387 ++base;
249 } 388 }
250} 389}
251 390
252static void 391void
253event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
254{ 393{
255 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
256 { 397 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 399 return;
259 } 400 }
260 401
402 if (expect_false (!w_->cb))
403 return;
404
261 w->pending = ++pendingcnt [ABSPRI (w)]; 405 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 409}
266 410
267static void 411static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 412queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 413{
270 int i; 414 int i;
271 415
272 for (i = 0; i < eventcnt; ++i) 416 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 417 ev_feed_event (EV_A_ events [i], type);
274} 418}
275 419
276static void 420inline void
277fd_event (EV_P_ int fd, int events) 421fd_event (EV_P_ int fd, int revents)
278{ 422{
279 ANFD *anfd = anfds + fd; 423 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 424 struct ev_io *w;
281 425
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 427 {
284 int ev = w->events & events; 428 int ev = w->events & revents;
285 429
286 if (ev) 430 if (ev)
287 event (EV_A_ (W)w, ev); 431 ev_feed_event (EV_A_ (W)w, ev);
288 } 432 }
433}
434
435void
436ev_feed_fd_event (EV_P_ int fd, int revents)
437{
438 fd_event (EV_A_ fd, revents);
289} 439}
290 440
291/*****************************************************************************/ 441/*****************************************************************************/
292 442
293static void 443inline void
294fd_reify (EV_P) 444fd_reify (EV_P)
295{ 445{
296 int i; 446 int i;
297 447
298 for (i = 0; i < fdchangecnt; ++i) 448 for (i = 0; i < fdchangecnt; ++i)
304 int events = 0; 454 int events = 0;
305 455
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 457 events |= w->events;
308 458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 {
462 unsigned long argp;
463 anfd->handle = _get_osfhandle (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 }
466#endif
467
309 anfd->reify = 0; 468 anfd->reify = 0;
310 469
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 470 backend_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 471 anfd->events = events;
315 }
316 } 472 }
317 473
318 fdchangecnt = 0; 474 fdchangecnt = 0;
319} 475}
320 476
321static void 477static void
322fd_change (EV_P_ int fd) 478fd_change (EV_P_ int fd)
323{ 479{
324 if (anfds [fd].reify || fdchangecnt < 0) 480 if (expect_false (anfds [fd].reify))
325 return; 481 return;
326 482
327 anfds [fd].reify = 1; 483 anfds [fd].reify = 1;
328 484
329 ++fdchangecnt; 485 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 487 fdchanges [fdchangecnt - 1] = fd;
332} 488}
333 489
334static void 490static void
335fd_kill (EV_P_ int fd) 491fd_kill (EV_P_ int fd)
337 struct ev_io *w; 493 struct ev_io *w;
338 494
339 while ((w = (struct ev_io *)anfds [fd].head)) 495 while ((w = (struct ev_io *)anfds [fd].head))
340 { 496 {
341 ev_io_stop (EV_A_ w); 497 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 499 }
500}
501
502inline int
503fd_valid (int fd)
504{
505#ifdef _WIN32
506 return _get_osfhandle (fd) != -1;
507#else
508 return fcntl (fd, F_GETFD) != -1;
509#endif
344} 510}
345 511
346/* called on EBADF to verify fds */ 512/* called on EBADF to verify fds */
347static void 513static void
348fd_ebadf (EV_P) 514fd_ebadf (EV_P)
349{ 515{
350 int fd; 516 int fd;
351 517
352 for (fd = 0; fd < anfdmax; ++fd) 518 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 519 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 520 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 521 fd_kill (EV_A_ fd);
356} 522}
357 523
358/* called on ENOMEM in select/poll to kill some fds and retry */ 524/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 525static void
362 int fd; 528 int fd;
363 529
364 for (fd = anfdmax; fd--; ) 530 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 531 if (anfds [fd].events)
366 { 532 {
367 close (fd);
368 fd_kill (EV_A_ fd); 533 fd_kill (EV_A_ fd);
369 return; 534 return;
370 } 535 }
371} 536}
372 537
373/* susually called after fork if method needs to re-arm all fds from scratch */ 538/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 539static void
375fd_rearm_all (EV_P) 540fd_rearm_all (EV_P)
376{ 541{
377 int fd; 542 int fd;
378 543
426 591
427 heap [k] = w; 592 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 593 ((W)heap [k])->active = k + 1;
429} 594}
430 595
596inline void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
431/*****************************************************************************/ 603/*****************************************************************************/
432 604
433typedef struct 605typedef struct
434{ 606{
435 struct ev_watcher_list *head; 607 WL head;
436 sig_atomic_t volatile gotsig; 608 sig_atomic_t volatile gotsig;
437} ANSIG; 609} ANSIG;
438 610
439static ANSIG *signals; 611static ANSIG *signals;
440static int signalmax; 612static int signalmax;
456} 628}
457 629
458static void 630static void
459sighandler (int signum) 631sighandler (int signum)
460{ 632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
461 signals [signum - 1].gotsig = 1; 637 signals [signum - 1].gotsig = 1;
462 638
463 if (!gotsig) 639 if (!gotsig)
464 { 640 {
465 int old_errno = errno; 641 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 643 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 644 errno = old_errno;
469 } 645 }
470} 646}
471 647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
472static void 668static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 669sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 670{
475 struct ev_watcher_list *w;
476 int signum; 671 int signum;
477 672
478 read (sigpipe [0], &revents, 1); 673 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 674 gotsig = 0;
480 675
481 for (signum = signalmax; signum--; ) 676 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 677 if (signals [signum].gotsig)
483 { 678 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 679}
485 680
486 for (w = signals [signum].head; w; w = w->next) 681static void
487 event (EV_A_ (W)w, EV_SIGNAL); 682fd_intern (int fd)
488 } 683{
684#ifdef _WIN32
685 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif
489} 691}
490 692
491static void 693static void
492siginit (EV_P) 694siginit (EV_P)
493{ 695{
494#ifndef WIN32 696 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 697 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 698
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 699 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 700 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 701 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 702}
507 703
508/*****************************************************************************/ 704/*****************************************************************************/
509 705
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 706static struct ev_child *childs [PID_HASHSIZE];
707
708#ifndef _WIN32
709
513static struct ev_signal childev; 710static struct ev_signal childev;
514 711
515#ifndef WCONTINUED 712#ifndef WCONTINUED
516# define WCONTINUED 0 713# define WCONTINUED 0
517#endif 714#endif
525 if (w->pid == pid || !w->pid) 722 if (w->pid == pid || !w->pid)
526 { 723 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 725 w->rpid = pid;
529 w->rstatus = status; 726 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 728 }
532} 729}
533 730
534static void 731static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 732childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 734 int pid, status;
538 735
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 737 {
541 /* make sure we are called again until all childs have been reaped */ 738 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 741
544 child_reap (EV_A_ sw, pid, pid, status); 742 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 } 744 }
547} 745}
548 746
549#endif 747#endif
550 748
551/*****************************************************************************/ 749/*****************************************************************************/
552 750
751#if EV_USE_PORT
752# include "ev_port.c"
753#endif
553#if EV_USE_KQUEUE 754#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 755# include "ev_kqueue.c"
555#endif 756#endif
556#if EV_USE_EPOLL 757#if EV_USE_EPOLL
557# include "ev_epoll.c" 758# include "ev_epoll.c"
577 778
578/* return true if we are running with elevated privileges and should ignore env variables */ 779/* return true if we are running with elevated privileges and should ignore env variables */
579static int 780static int
580enable_secure (void) 781enable_secure (void)
581{ 782{
582#ifdef WIN32 783#ifdef _WIN32
583 return 0; 784 return 0;
584#else 785#else
585 return getuid () != geteuid () 786 return getuid () != geteuid ()
586 || getgid () != getegid (); 787 || getgid () != getegid ();
587#endif 788#endif
588} 789}
589 790
590int 791unsigned int
591ev_method (EV_P) 792ev_supported_backends (void)
592{ 793{
593 return method; 794 unsigned int flags = 0;
594}
595 795
596static void 796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 797 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
798 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
799 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801
802 return flags;
803}
804
805unsigned int
806ev_recommended_backends (void)
598{ 807{
599 if (!method) 808 unsigned int flags = ev_supported_backends ();
809
810#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE;
814#endif
815#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation
817 flags &= ~EVBACKEND_POLL;
818#endif
819
820 return flags;
821}
822
823unsigned int
824ev_embeddable_backends (void)
825{
826 return EVBACKEND_EPOLL
827 | EVBACKEND_KQUEUE
828 | EVBACKEND_PORT;
829}
830
831unsigned int
832ev_backend (EV_P)
833{
834 return backend;
835}
836
837static void
838loop_init (EV_P_ unsigned int flags)
839{
840 if (!backend)
600 { 841 {
601#if EV_USE_MONOTONIC 842#if EV_USE_MONOTONIC
602 { 843 {
603 struct timespec ts; 844 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 845 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 846 have_monotonic = 1;
606 } 847 }
607#endif 848#endif
608 849
609 rt_now = ev_time (); 850 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 851 mn_now = get_clock ();
611 now_floor = mn_now; 852 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 853 rtmn_diff = ev_rt_now - mn_now;
613 854
614 if (methods == EVMETHOD_AUTO) 855 if (!(flags & EVFLAG_NOENV)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 856 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 858 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 859
620 method = 0; 860 if (!(flags & 0x0000ffffUL))
621#if EV_USE_WIN32 861 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 862
863 backend = 0;
864#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 866#endif
624#if EV_USE_KQUEUE 867#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 869#endif
627#if EV_USE_EPOLL 870#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 872#endif
630#if EV_USE_POLL 873#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 875#endif
633#if EV_USE_SELECT 876#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 878#endif
636 }
637}
638 879
639void 880 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI);
882 }
883}
884
885static void
640loop_destroy (EV_P) 886loop_destroy (EV_P)
641{ 887{
642#if EV_USE_WIN32 888 int i;
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 889
890#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
644#endif 892#endif
645#if EV_USE_KQUEUE 893#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
647#endif 895#endif
648#if EV_USE_EPOLL 896#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 897 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
650#endif 898#endif
651#if EV_USE_POLL 899#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 900 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
653#endif 901#endif
654#if EV_USE_SELECT 902#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
656#endif 904#endif
657 905
658 method = 0; 906 for (i = NUMPRI; i--; )
659 /*TODO*/ 907 array_free (pending, [i]);
660}
661 908
662void 909 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0);
911 array_free (timer, EMPTY0);
912#if EV_PERIODICS
913 array_free (periodic, EMPTY0);
914#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0);
918
919 backend = 0;
920}
921
922static void
663loop_fork (EV_P) 923loop_fork (EV_P)
664{ 924{
665 /*TODO*/ 925#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif
928#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif
666#if EV_USE_EPOLL 931#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
668#endif 933#endif
669#if EV_USE_KQUEUE 934
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 935 if (ev_is_active (&sigev))
671#endif 936 {
937 /* default loop */
938
939 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A);
948 }
949
950 postfork = 0;
672} 951}
673 952
674#if EV_MULTIPLICITY 953#if EV_MULTIPLICITY
675struct ev_loop * 954struct ev_loop *
676ev_loop_new (int methods) 955ev_loop_new (unsigned int flags)
677{ 956{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
679 958
959 memset (loop, 0, sizeof (struct ev_loop));
960
680 loop_init (EV_A_ methods); 961 loop_init (EV_A_ flags);
681 962
682 if (ev_method (EV_A)) 963 if (ev_backend (EV_A))
683 return loop; 964 return loop;
684 965
685 return 0; 966 return 0;
686} 967}
687 968
688void 969void
689ev_loop_destroy (EV_P) 970ev_loop_destroy (EV_P)
690{ 971{
691 loop_destroy (EV_A); 972 loop_destroy (EV_A);
692 free (loop); 973 ev_free (loop);
693} 974}
694 975
695void 976void
696ev_loop_fork (EV_P) 977ev_loop_fork (EV_P)
697{ 978{
698 loop_fork (EV_A); 979 postfork = 1;
699} 980}
700 981
701#endif 982#endif
702 983
703#if EV_MULTIPLICITY 984#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 985struct ev_loop *
986ev_default_loop_init (unsigned int flags)
708#else 987#else
709static int default_loop;
710
711int 988int
989ev_default_loop (unsigned int flags)
712#endif 990#endif
713ev_default_loop (int methods)
714{ 991{
715 if (sigpipe [0] == sigpipe [1]) 992 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe)) 993 if (pipe (sigpipe))
717 return 0; 994 return 0;
718 995
719 if (!default_loop) 996 if (!ev_default_loop_ptr)
720 { 997 {
721#if EV_MULTIPLICITY 998#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct; 999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
723#else 1000#else
724 default_loop = 1; 1001 ev_default_loop_ptr = 1;
725#endif 1002#endif
726 1003
727 loop_init (EV_A_ methods); 1004 loop_init (EV_A_ flags);
728 1005
729 if (ev_method (EV_A)) 1006 if (ev_backend (EV_A))
730 { 1007 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 1008 siginit (EV_A);
734 1009
735#ifndef WIN32 1010#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 1011 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 1012 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 1013 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 1015#endif
741 } 1016 }
742 else 1017 else
743 default_loop = 0; 1018 ev_default_loop_ptr = 0;
744 } 1019 }
745 1020
746 return default_loop; 1021 return ev_default_loop_ptr;
747} 1022}
748 1023
749void 1024void
750ev_default_destroy (void) 1025ev_default_destroy (void)
751{ 1026{
752#if EV_MULTIPLICITY 1027#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 1028 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 1029#endif
755 1030
1031#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 1032 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 1033 ev_signal_stop (EV_A_ &childev);
1034#endif
758 1035
759 ev_ref (EV_A); /* signal watcher */ 1036 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 1037 ev_io_stop (EV_A_ &sigev);
761 1038
762 close (sigpipe [0]); sigpipe [0] = 0; 1039 close (sigpipe [0]); sigpipe [0] = 0;
767 1044
768void 1045void
769ev_default_fork (void) 1046ev_default_fork (void)
770{ 1047{
771#if EV_MULTIPLICITY 1048#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 1049 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 1050#endif
774 1051
775 loop_fork (EV_A); 1052 if (backend)
776 1053 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 1054}
785 1055
786/*****************************************************************************/ 1056/*****************************************************************************/
787 1057
788static void 1058static int
1059any_pending (EV_P)
1060{
1061 int pri;
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068}
1069
1070inline void
789call_pending (EV_P) 1071call_pending (EV_P)
790{ 1072{
791 int pri; 1073 int pri;
792 1074
793 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 1076 while (pendingcnt [pri])
795 { 1077 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 1079
798 if (p->w) 1080 if (expect_true (p->w))
799 { 1081 {
800 p->w->pending = 0; 1082 p->w->pending = 0;
801 1083 EV_CB_INVOKE (p->w, p->events);
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
803 } 1084 }
804 } 1085 }
805} 1086}
806 1087
807static void 1088inline void
808timers_reify (EV_P) 1089timers_reify (EV_P)
809{ 1090{
810 while (timercnt && ((WT)timers [0])->at <= mn_now) 1091 while (timercnt && ((WT)timers [0])->at <= mn_now)
811 { 1092 {
812 struct ev_timer *w = timers [0]; 1093 struct ev_timer *w = timers [0];
815 1096
816 /* first reschedule or stop timer */ 1097 /* first reschedule or stop timer */
817 if (w->repeat) 1098 if (w->repeat)
818 { 1099 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101
820 ((WT)w)->at = mn_now + w->repeat; 1102 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
821 downheap ((WT *)timers, timercnt, 0); 1106 downheap ((WT *)timers, timercnt, 0);
822 } 1107 }
823 else 1108 else
824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825 1110
826 event (EV_A_ (W)w, EV_TIMEOUT); 1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
827 } 1112 }
828} 1113}
829 1114
830static void 1115#if EV_PERIODICS
1116inline void
831periodics_reify (EV_P) 1117periodics_reify (EV_P)
832{ 1118{
833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
834 { 1120 {
835 struct ev_periodic *w = periodics [0]; 1121 struct ev_periodic *w = periodics [0];
836 1122
837 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1123 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838 1124
839 /* first reschedule or stop timer */ 1125 /* first reschedule or stop timer */
840 if (w->interval) 1126 if (w->reschedule_cb)
841 { 1127 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 }
1132 else if (w->interval)
1133 {
842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
844 downheap ((WT *)periodics, periodiccnt, 0); 1136 downheap ((WT *)periodics, periodiccnt, 0);
845 } 1137 }
846 else 1138 else
847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
848 1140
849 event (EV_A_ (W)w, EV_PERIODIC); 1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
850 } 1142 }
851} 1143}
852 1144
853static void 1145static void
854periodics_reschedule (EV_P) 1146periodics_reschedule (EV_P)
858 /* adjust periodics after time jump */ 1150 /* adjust periodics after time jump */
859 for (i = 0; i < periodiccnt; ++i) 1151 for (i = 0; i < periodiccnt; ++i)
860 { 1152 {
861 struct ev_periodic *w = periodics [i]; 1153 struct ev_periodic *w = periodics [i];
862 1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
863 if (w->interval) 1157 else if (w->interval)
864 {
865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
866
867 if (fabs (diff) >= 1e-4)
868 {
869 ev_periodic_stop (EV_A_ w);
870 ev_periodic_start (EV_A_ w);
871
872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
873 }
874 }
875 } 1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
876} 1164}
1165#endif
877 1166
878inline int 1167inline int
879time_update_monotonic (EV_P) 1168time_update_monotonic (EV_P)
880{ 1169{
881 mn_now = get_clock (); 1170 mn_now = get_clock ();
882 1171
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 { 1173 {
885 rt_now = rtmn_diff + mn_now; 1174 ev_rt_now = rtmn_diff + mn_now;
886 return 0; 1175 return 0;
887 } 1176 }
888 else 1177 else
889 { 1178 {
890 now_floor = mn_now; 1179 now_floor = mn_now;
891 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
892 return 1; 1181 return 1;
893 } 1182 }
894} 1183}
895 1184
896static void 1185inline void
897time_update (EV_P) 1186time_update (EV_P)
898{ 1187{
899 int i; 1188 int i;
900 1189
901#if EV_USE_MONOTONIC 1190#if EV_USE_MONOTONIC
905 { 1194 {
906 ev_tstamp odiff = rtmn_diff; 1195 ev_tstamp odiff = rtmn_diff;
907 1196
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 { 1198 {
910 rtmn_diff = rt_now - mn_now; 1199 rtmn_diff = ev_rt_now - mn_now;
911 1200
912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
913 return; /* all is well */ 1202 return; /* all is well */
914 1203
915 rt_now = ev_time (); 1204 ev_rt_now = ev_time ();
916 mn_now = get_clock (); 1205 mn_now = get_clock ();
917 now_floor = mn_now; 1206 now_floor = mn_now;
918 } 1207 }
919 1208
1209# if EV_PERIODICS
920 periodics_reschedule (EV_A); 1210 periodics_reschedule (EV_A);
1211# endif
921 /* no timer adjustment, as the monotonic clock doesn't jump */ 1212 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
923 } 1214 }
924 } 1215 }
925 else 1216 else
926#endif 1217#endif
927 { 1218 {
928 rt_now = ev_time (); 1219 ev_rt_now = ev_time ();
929 1220
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 { 1222 {
1223#if EV_PERIODICS
932 periodics_reschedule (EV_A); 1224 periodics_reschedule (EV_A);
1225#endif
933 1226
934 /* adjust timers. this is easy, as the offset is the same for all */ 1227 /* adjust timers. this is easy, as the offset is the same for all */
935 for (i = 0; i < timercnt; ++i) 1228 for (i = 0; i < timercnt; ++i)
936 ((WT)timers [i])->at += rt_now - mn_now; 1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
937 } 1230 }
938 1231
939 mn_now = rt_now; 1232 mn_now = ev_rt_now;
940 } 1233 }
941} 1234}
942 1235
943void 1236void
944ev_ref (EV_P) 1237ev_ref (EV_P)
955static int loop_done; 1248static int loop_done;
956 1249
957void 1250void
958ev_loop (EV_P_ int flags) 1251ev_loop (EV_P_ int flags)
959{ 1252{
960 double block;
961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
962 1256
963 do 1257 while (activecnt)
964 { 1258 {
965 /* queue check watchers (and execute them) */ 1259 /* queue check watchers (and execute them) */
966 if (expect_false (preparecnt)) 1260 if (expect_false (preparecnt))
967 { 1261 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A); 1263 call_pending (EV_A);
970 } 1264 }
971 1265
1266 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork))
1268 loop_fork (EV_A);
1269
972 /* update fd-related kernel structures */ 1270 /* update fd-related kernel structures */
973 fd_reify (EV_A); 1271 fd_reify (EV_A);
974 1272
975 /* calculate blocking time */ 1273 /* calculate blocking time */
1274 {
1275 double block;
976 1276
977 /* we only need this for !monotonic clockor timers, but as we basically 1277 if (flags & EVLOOP_NONBLOCK || idlecnt)
978 always have timers, we just calculate it always */ 1278 block = 0.; /* do not block at all */
1279 else
1280 {
1281 /* update time to cancel out callback processing overhead */
979#if EV_USE_MONOTONIC 1282#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic)) 1283 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A); 1284 time_update_monotonic (EV_A);
982 else 1285 else
983#endif 1286#endif
984 { 1287 {
985 rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
986 mn_now = rt_now; 1289 mn_now = ev_rt_now;
987 } 1290 }
988 1291
989 if (flags & EVLOOP_NONBLOCK || idlecnt)
990 block = 0.;
991 else
992 {
993 block = MAX_BLOCKTIME; 1292 block = MAX_BLOCKTIME;
994 1293
995 if (timercnt) 1294 if (timercnt)
996 { 1295 {
997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
998 if (block > to) block = to; 1297 if (block > to) block = to;
999 } 1298 }
1000 1299
1300#if EV_PERIODICS
1001 if (periodiccnt) 1301 if (periodiccnt)
1002 { 1302 {
1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1004 if (block > to) block = to; 1304 if (block > to) block = to;
1005 } 1305 }
1306#endif
1006 1307
1007 if (block < 0.) block = 0.; 1308 if (expect_false (block < 0.)) block = 0.;
1008 } 1309 }
1009 1310
1010 method_poll (EV_A_ block); 1311 backend_poll (EV_A_ block);
1312 }
1011 1313
1012 /* update rt_now, do magic */ 1314 /* update ev_rt_now, do magic */
1013 time_update (EV_A); 1315 time_update (EV_A);
1014 1316
1015 /* queue pending timers and reschedule them */ 1317 /* queue pending timers and reschedule them */
1016 timers_reify (EV_A); /* relative timers called last */ 1318 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS
1017 periodics_reify (EV_A); /* absolute timers called first */ 1320 periodics_reify (EV_A); /* absolute timers called first */
1321#endif
1018 1322
1019 /* queue idle watchers unless io or timers are pending */ 1323 /* queue idle watchers unless io or timers are pending */
1020 if (!pendingcnt) 1324 if (idlecnt && !any_pending (EV_A))
1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1022 1326
1023 /* queue check watchers, to be executed first */ 1327 /* queue check watchers, to be executed first */
1024 if (checkcnt) 1328 if (expect_false (checkcnt))
1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1026 1330
1027 call_pending (EV_A); 1331 call_pending (EV_A);
1028 }
1029 while (activecnt && !loop_done);
1030 1332
1031 if (loop_done != 2) 1333 if (expect_false (loop_done))
1032 loop_done = 0; 1334 break;
1335 }
1336
1337 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL;
1033} 1339}
1034 1340
1035void 1341void
1036ev_unloop (EV_P_ int how) 1342ev_unloop (EV_P_ int how)
1037{ 1343{
1094void 1400void
1095ev_io_start (EV_P_ struct ev_io *w) 1401ev_io_start (EV_P_ struct ev_io *w)
1096{ 1402{
1097 int fd = w->fd; 1403 int fd = w->fd;
1098 1404
1099 if (ev_is_active (w)) 1405 if (expect_false (ev_is_active (w)))
1100 return; 1406 return;
1101 1407
1102 assert (("ev_io_start called with negative fd", fd >= 0)); 1408 assert (("ev_io_start called with negative fd", fd >= 0));
1103 1409
1104 ev_start (EV_A_ (W)w, 1); 1410 ev_start (EV_A_ (W)w, 1);
1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1106 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1412 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1107 1413
1108 fd_change (EV_A_ fd); 1414 fd_change (EV_A_ fd);
1109} 1415}
1110 1416
1111void 1417void
1112ev_io_stop (EV_P_ struct ev_io *w) 1418ev_io_stop (EV_P_ struct ev_io *w)
1113{ 1419{
1114 ev_clear_pending (EV_A_ (W)w); 1420 ev_clear_pending (EV_A_ (W)w);
1115 if (!ev_is_active (w)) 1421 if (expect_false (!ev_is_active (w)))
1116 return; 1422 return;
1423
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1117 1425
1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1119 ev_stop (EV_A_ (W)w); 1427 ev_stop (EV_A_ (W)w);
1120 1428
1121 fd_change (EV_A_ w->fd); 1429 fd_change (EV_A_ w->fd);
1122} 1430}
1123 1431
1124void 1432void
1125ev_timer_start (EV_P_ struct ev_timer *w) 1433ev_timer_start (EV_P_ struct ev_timer *w)
1126{ 1434{
1127 if (ev_is_active (w)) 1435 if (expect_false (ev_is_active (w)))
1128 return; 1436 return;
1129 1437
1130 ((WT)w)->at += mn_now; 1438 ((WT)w)->at += mn_now;
1131 1439
1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133 1441
1134 ev_start (EV_A_ (W)w, ++timercnt); 1442 ev_start (EV_A_ (W)w, ++timercnt);
1135 array_needsize (timers, timermax, timercnt, ); 1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1136 timers [timercnt - 1] = w; 1444 timers [timercnt - 1] = w;
1137 upheap ((WT *)timers, timercnt - 1); 1445 upheap ((WT *)timers, timercnt - 1);
1138 1446
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140} 1448}
1141 1449
1142void 1450void
1143ev_timer_stop (EV_P_ struct ev_timer *w) 1451ev_timer_stop (EV_P_ struct ev_timer *w)
1144{ 1452{
1145 ev_clear_pending (EV_A_ (W)w); 1453 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w)) 1454 if (expect_false (!ev_is_active (w)))
1147 return; 1455 return;
1148 1456
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150 1458
1151 if (((W)w)->active < timercnt--) 1459 if (expect_true (((W)w)->active < timercnt--))
1152 { 1460 {
1153 timers [((W)w)->active - 1] = timers [timercnt]; 1461 timers [((W)w)->active - 1] = timers [timercnt];
1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1155 } 1463 }
1156 1464
1157 ((WT)w)->at = w->repeat; 1465 ((WT)w)->at -= mn_now;
1158 1466
1159 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1160} 1468}
1161 1469
1162void 1470void
1165 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1166 { 1474 {
1167 if (w->repeat) 1475 if (w->repeat)
1168 { 1476 {
1169 ((WT)w)->at = mn_now + w->repeat; 1477 ((WT)w)->at = mn_now + w->repeat;
1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1171 } 1479 }
1172 else 1480 else
1173 ev_timer_stop (EV_A_ w); 1481 ev_timer_stop (EV_A_ w);
1174 } 1482 }
1175 else if (w->repeat) 1483 else if (w->repeat)
1484 {
1485 w->at = w->repeat;
1176 ev_timer_start (EV_A_ w); 1486 ev_timer_start (EV_A_ w);
1487 }
1177} 1488}
1178 1489
1490#if EV_PERIODICS
1179void 1491void
1180ev_periodic_start (EV_P_ struct ev_periodic *w) 1492ev_periodic_start (EV_P_ struct ev_periodic *w)
1181{ 1493{
1182 if (ev_is_active (w)) 1494 if (expect_false (ev_is_active (w)))
1183 return; 1495 return;
1184 1496
1497 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval)
1500 {
1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1186
1187 /* this formula differs from the one in periodic_reify because we do not always round up */ 1502 /* this formula differs from the one in periodic_reify because we do not always round up */
1188 if (w->interval)
1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 }
1190 1505
1191 ev_start (EV_A_ (W)w, ++periodiccnt); 1506 ev_start (EV_A_ (W)w, ++periodiccnt);
1192 array_needsize (periodics, periodicmax, periodiccnt, ); 1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1193 periodics [periodiccnt - 1] = w; 1508 periodics [periodiccnt - 1] = w;
1194 upheap ((WT *)periodics, periodiccnt - 1); 1509 upheap ((WT *)periodics, periodiccnt - 1);
1195 1510
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197} 1512}
1198 1513
1199void 1514void
1200ev_periodic_stop (EV_P_ struct ev_periodic *w) 1515ev_periodic_stop (EV_P_ struct ev_periodic *w)
1201{ 1516{
1202 ev_clear_pending (EV_A_ (W)w); 1517 ev_clear_pending (EV_A_ (W)w);
1203 if (!ev_is_active (w)) 1518 if (expect_false (!ev_is_active (w)))
1204 return; 1519 return;
1205 1520
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207 1522
1208 if (((W)w)->active < periodiccnt--) 1523 if (expect_true (((W)w)->active < periodiccnt--))
1209 { 1524 {
1210 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1525 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1212 } 1527 }
1213 1528
1214 ev_stop (EV_A_ (W)w); 1529 ev_stop (EV_A_ (W)w);
1215} 1530}
1216 1531
1217void 1532void
1533ev_periodic_again (EV_P_ struct ev_periodic *w)
1534{
1535 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w);
1538}
1539#endif
1540
1541void
1218ev_idle_start (EV_P_ struct ev_idle *w) 1542ev_idle_start (EV_P_ struct ev_idle *w)
1219{ 1543{
1220 if (ev_is_active (w)) 1544 if (expect_false (ev_is_active (w)))
1221 return; 1545 return;
1222 1546
1223 ev_start (EV_A_ (W)w, ++idlecnt); 1547 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, ); 1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1225 idles [idlecnt - 1] = w; 1549 idles [idlecnt - 1] = w;
1226} 1550}
1227 1551
1228void 1552void
1229ev_idle_stop (EV_P_ struct ev_idle *w) 1553ev_idle_stop (EV_P_ struct ev_idle *w)
1230{ 1554{
1231 ev_clear_pending (EV_A_ (W)w); 1555 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w)) 1556 if (expect_false (!ev_is_active (w)))
1233 return; 1557 return;
1234 1558
1235 idles [((W)w)->active - 1] = idles [--idlecnt]; 1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w); 1560 ev_stop (EV_A_ (W)w);
1237} 1561}
1238 1562
1239void 1563void
1240ev_prepare_start (EV_P_ struct ev_prepare *w) 1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{ 1565{
1242 if (ev_is_active (w)) 1566 if (expect_false (ev_is_active (w)))
1243 return; 1567 return;
1244 1568
1245 ev_start (EV_A_ (W)w, ++preparecnt); 1569 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, ); 1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1247 prepares [preparecnt - 1] = w; 1571 prepares [preparecnt - 1] = w;
1248} 1572}
1249 1573
1250void 1574void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w) 1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{ 1576{
1253 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w)) 1578 if (expect_false (!ev_is_active (w)))
1255 return; 1579 return;
1256 1580
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1259} 1583}
1260 1584
1261void 1585void
1262ev_check_start (EV_P_ struct ev_check *w) 1586ev_check_start (EV_P_ struct ev_check *w)
1263{ 1587{
1264 if (ev_is_active (w)) 1588 if (expect_false (ev_is_active (w)))
1265 return; 1589 return;
1266 1590
1267 ev_start (EV_A_ (W)w, ++checkcnt); 1591 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, ); 1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1269 checks [checkcnt - 1] = w; 1593 checks [checkcnt - 1] = w;
1270} 1594}
1271 1595
1272void 1596void
1273ev_check_stop (EV_P_ struct ev_check *w) 1597ev_check_stop (EV_P_ struct ev_check *w)
1274{ 1598{
1275 ev_clear_pending (EV_A_ (W)w); 1599 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w)) 1600 if (expect_false (!ev_is_active (w)))
1277 return; 1601 return;
1278 1602
1279 checks [((W)w)->active - 1] = checks [--checkcnt]; 1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w); 1604 ev_stop (EV_A_ (W)w);
1281} 1605}
1286 1610
1287void 1611void
1288ev_signal_start (EV_P_ struct ev_signal *w) 1612ev_signal_start (EV_P_ struct ev_signal *w)
1289{ 1613{
1290#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1292#endif 1616#endif
1293 if (ev_is_active (w)) 1617 if (expect_false (ev_is_active (w)))
1294 return; 1618 return;
1295 1619
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297 1621
1298 ev_start (EV_A_ (W)w, 1); 1622 ev_start (EV_A_ (W)w, 1);
1299 array_needsize (signals, signalmax, w->signum, signals_init); 1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1301 1625
1302 if (!((WL)w)->next) 1626 if (!((WL)w)->next)
1303 { 1627 {
1628#if _WIN32
1629 signal (w->signum, sighandler);
1630#else
1304 struct sigaction sa; 1631 struct sigaction sa;
1305 sa.sa_handler = sighandler; 1632 sa.sa_handler = sighandler;
1306 sigfillset (&sa.sa_mask); 1633 sigfillset (&sa.sa_mask);
1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1308 sigaction (w->signum, &sa, 0); 1635 sigaction (w->signum, &sa, 0);
1636#endif
1309 } 1637 }
1310} 1638}
1311 1639
1312void 1640void
1313ev_signal_stop (EV_P_ struct ev_signal *w) 1641ev_signal_stop (EV_P_ struct ev_signal *w)
1314{ 1642{
1315 ev_clear_pending (EV_A_ (W)w); 1643 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 1644 if (expect_false (!ev_is_active (w)))
1317 return; 1645 return;
1318 1646
1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 1648 ev_stop (EV_A_ (W)w);
1321 1649
1325 1653
1326void 1654void
1327ev_child_start (EV_P_ struct ev_child *w) 1655ev_child_start (EV_P_ struct ev_child *w)
1328{ 1656{
1329#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1331#endif 1659#endif
1332 if (ev_is_active (w)) 1660 if (expect_false (ev_is_active (w)))
1333 return; 1661 return;
1334 1662
1335 ev_start (EV_A_ (W)w, 1); 1663 ev_start (EV_A_ (W)w, 1);
1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1337} 1665}
1338 1666
1339void 1667void
1340ev_child_stop (EV_P_ struct ev_child *w) 1668ev_child_stop (EV_P_ struct ev_child *w)
1341{ 1669{
1342 ev_clear_pending (EV_A_ (W)w); 1670 ev_clear_pending (EV_A_ (W)w);
1343 if (ev_is_active (w)) 1671 if (expect_false (!ev_is_active (w)))
1344 return; 1672 return;
1345 1673
1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1347 ev_stop (EV_A_ (W)w); 1675 ev_stop (EV_A_ (W)w);
1348} 1676}
1677
1678#if EV_MULTIPLICITY
1679static void
1680embed_cb (EV_P_ struct ev_io *io, int revents)
1681{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1683
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686}
1687
1688void
1689ev_embed_start (EV_P_ struct ev_embed *w)
1690{
1691 if (expect_false (ev_is_active (w)))
1692 return;
1693
1694 {
1695 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699
1700 ev_io_start (EV_A_ &w->io);
1701 ev_start (EV_A_ (W)w, 1);
1702}
1703
1704void
1705ev_embed_stop (EV_P_ struct ev_embed *w)
1706{
1707 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w)))
1709 return;
1710
1711 ev_io_stop (EV_A_ &w->io);
1712 ev_stop (EV_A_ (W)w);
1713}
1714#endif
1349 1715
1350/*****************************************************************************/ 1716/*****************************************************************************/
1351 1717
1352struct ev_once 1718struct ev_once
1353{ 1719{
1363 void (*cb)(int revents, void *arg) = once->cb; 1729 void (*cb)(int revents, void *arg) = once->cb;
1364 void *arg = once->arg; 1730 void *arg = once->arg;
1365 1731
1366 ev_io_stop (EV_A_ &once->io); 1732 ev_io_stop (EV_A_ &once->io);
1367 ev_timer_stop (EV_A_ &once->to); 1733 ev_timer_stop (EV_A_ &once->to);
1368 free (once); 1734 ev_free (once);
1369 1735
1370 cb (revents, arg); 1736 cb (revents, arg);
1371} 1737}
1372 1738
1373static void 1739static void
1383} 1749}
1384 1750
1385void 1751void
1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1752ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1387{ 1753{
1388 struct ev_once *once = malloc (sizeof (struct ev_once)); 1754 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1389 1755
1390 if (!once) 1756 if (expect_false (!once))
1757 {
1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1758 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 else 1759 return;
1393 { 1760 }
1761
1394 once->cb = cb; 1762 once->cb = cb;
1395 once->arg = arg; 1763 once->arg = arg;
1396 1764
1397 ev_watcher_init (&once->io, once_cb_io); 1765 ev_init (&once->io, once_cb_io);
1398 if (fd >= 0) 1766 if (fd >= 0)
1399 { 1767 {
1400 ev_io_set (&once->io, fd, events); 1768 ev_io_set (&once->io, fd, events);
1401 ev_io_start (EV_A_ &once->io); 1769 ev_io_start (EV_A_ &once->io);
1402 } 1770 }
1403 1771
1404 ev_watcher_init (&once->to, once_cb_to); 1772 ev_init (&once->to, once_cb_to);
1405 if (timeout >= 0.) 1773 if (timeout >= 0.)
1406 { 1774 {
1407 ev_timer_set (&once->to, timeout, 0.); 1775 ev_timer_set (&once->to, timeout, 0.);
1408 ev_timer_start (EV_A_ &once->to); 1776 ev_timer_start (EV_A_ &once->to);
1409 }
1410 } 1777 }
1411} 1778}
1412 1779
1780#ifdef __cplusplus
1781}
1782#endif
1783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines