ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.19 by root, Wed Oct 31 17:55:55 2007 UTC vs.
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
36 63
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
41#include <sys/time.h> 72#include <sys/time.h>
42#include <time.h> 73#include <time.h>
43 74
75/**/
76
44#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
45# ifdef CLOCK_MONOTONIC
46# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
47# endif 102# endif
48#endif 103#endif
49 104
50#ifndef HAVE_SELECT
51# define HAVE_SELECT 1
52#endif
53
54#ifndef HAVE_EPOLL
55# define HAVE_EPOLL 0
56#endif
57
58#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
60#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
61 122
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
64 127
65#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
66 143
67typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
68typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
70 147
71static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
72ev_tstamp ev_now;
73int ev_method;
74
75static int have_monotonic; /* runtime */
76
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
78static void (*method_modify)(int fd, int oev, int nev);
79static void (*method_poll)(ev_tstamp timeout);
80 149
81/*****************************************************************************/ 150/*****************************************************************************/
82 151
83ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
84ev_time (void) 186ev_time (void)
85{ 187{
86#if HAVE_REALTIME 188#if EV_USE_REALTIME
87 struct timespec ts; 189 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 192#else
91 struct timeval tv; 193 struct timeval tv;
92 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 196#endif
95} 197}
96 198
97static ev_tstamp 199inline ev_tstamp
98get_clock (void) 200get_clock (void)
99{ 201{
100#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
101 if (have_monotonic) 203 if (expect_true (have_monotonic))
102 { 204 {
103 struct timespec ts; 205 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 208 }
107#endif 209#endif
108 210
109 return ev_time (); 211 return ev_time ();
110} 212}
111 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
112#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
113 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
114 { \ 224 { \
115 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
117 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
118 cur = newcnt; \ 234 cur = newcnt; \
119 } 235 }
120 236
121/*****************************************************************************/ 237/*****************************************************************************/
122 238
123typedef struct
124{
125 struct ev_io *head;
126 unsigned char wev, rev; /* want, received event set */
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void 239static void
136anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
137{ 241{
138 while (count--) 242 while (count--)
139 { 243 {
140 base->head = 0; 244 base->head = 0;
141 base->wev = base->rev = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
142 ++base; 248 ++base;
143 } 249 }
144} 250}
145 251
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void 252static void
156event (W w, int events) 253event (EV_P_ W w, int events)
157{ 254{
158 if (w->active) 255 if (w->pending)
159 { 256 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
164 } 259 }
165}
166 260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
167static void 267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
168fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
169{ 278{
170 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
171 struct ev_io *w; 280 struct ev_io *w;
172 281
173 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
174 { 283 {
175 int ev = w->events & events; 284 int ev = w->events & events;
176 285
177 if (ev) 286 if (ev)
178 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
179 } 288 }
180} 289}
181 290
291/*****************************************************************************/
292
182static void 293static void
183queue_events (W *events, int eventcnt, int type) 294fd_reify (EV_P)
184{ 295{
185 int i; 296 int i;
186 297
187 for (i = 0; i < eventcnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
188 event (events [i], type); 299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events;
315 }
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
189} 344}
190 345
191/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
192static void 347static void
193fd_recheck () 348fd_ebadf (EV_P)
194{ 349{
195 int fd; 350 int fd;
196 351
197 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev) 353 if (anfds [fd].events)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
201 evio_stop (anfds [fd].head); 356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
202} 386}
203 387
204/*****************************************************************************/ 388/*****************************************************************************/
205 389
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void 390static void
213upheap (WT *timers, int k) 391upheap (WT *heap, int k)
214{ 392{
215 WT w = timers [k]; 393 WT w = heap [k];
216 394
217 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
218 { 396 {
219 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
220 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
221 k >>= 1; 399 k >>= 1;
222 } 400 }
223 401
224 timers [k] = w; 402 heap [k] = w;
225 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
226 404
227} 405}
228 406
229static void 407static void
230downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
231{ 409{
232 WT w = timers [k]; 410 WT w = heap [k];
233 411
234 while (k < (N >> 1)) 412 while (k < (N >> 1))
235 { 413 {
236 int j = k << 1; 414 int j = k << 1;
237 415
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
239 ++j; 417 ++j;
240 418
241 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
242 break; 420 break;
243 421
244 timers [k] = timers [j]; 422 heap [k] = heap [j];
245 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
246 k = j; 424 k = j;
247 } 425 }
248 426
249 timers [k] = w; 427 heap [k] = w;
250 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
251} 429}
252 430
253/*****************************************************************************/ 431/*****************************************************************************/
254 432
255typedef struct 433typedef struct
256{ 434{
257 struct ev_signal *head; 435 struct ev_watcher_list *head;
258 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
259} ANSIG; 437} ANSIG;
260 438
261static ANSIG *signals; 439static ANSIG *signals;
262static int signalmax; 440static int signalmax;
263 441
264static int sigpipe [2]; 442static int sigpipe [2];
265static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
266static struct ev_io sigev; 444static struct ev_io sigev;
267 445
268static void 446static void
269signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
270{ 448{
271 while (count--) 449 while (count--)
272 { 450 {
273 base->head = 0; 451 base->head = 0;
274 base->gotsig = 0; 452 base->gotsig = 0;
453
275 ++base; 454 ++base;
276 } 455 }
277} 456}
278 457
279static void 458static void
281{ 460{
282 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
283 462
284 if (!gotsig) 463 if (!gotsig)
285 { 464 {
465 int old_errno = errno;
286 gotsig = 1; 466 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
288 } 469 }
289} 470}
290 471
291static void 472static void
292sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
293{ 474{
294 struct ev_signal *w; 475 struct ev_watcher_list *w;
295 int sig; 476 int signum;
296 477
478 read (sigpipe [0], &revents, 1);
297 gotsig = 0; 479 gotsig = 0;
298 read (sigpipe [0], &revents, 1);
299 480
300 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
301 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
302 { 483 {
303 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
304 485
305 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
306 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
307 } 488 }
308} 489}
309 490
310static void 491static void
311siginit (void) 492siginit (EV_P)
312{ 493{
494#ifndef WIN32
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 497
316 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
319 502
320 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
322} 506}
323 507
324/*****************************************************************************/ 508/*****************************************************************************/
325 509
326static struct ev_idle **idles; 510#ifndef WIN32
327static int idlemax, idlecnt;
328 511
329static struct ev_check **checks; 512static struct ev_child *childs [PID_HASHSIZE];
330static int checkmax, checkcnt; 513static struct ev_signal childev;
514
515#ifndef WCONTINUED
516# define WCONTINUED 0
517#endif
518
519static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
331 550
332/*****************************************************************************/ 551/*****************************************************************************/
333 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
334#if HAVE_EPOLL 556#if EV_USE_EPOLL
335# include "ev_epoll.c" 557# include "ev_epoll.c"
336#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
337#if HAVE_SELECT 562#if EV_USE_SELECT
338# include "ev_select.c" 563# include "ev_select.c"
339#endif 564#endif
340 565
341int ev_init (int flags) 566int
567ev_version_major (void)
342{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
343#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
344 { 602 {
345 struct timespec ts; 603 struct timespec ts;
346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
347 have_monotonic = 1; 605 have_monotonic = 1;
348 } 606 }
349#endif 607#endif
350 608
351 ev_now = ev_time (); 609 rt_now = ev_time ();
352 now = get_clock (); 610 mn_now = get_clock ();
353 diff = ev_now - now; 611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
354 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
355 if (pipe (sigpipe)) 716 if (pipe (sigpipe))
356 return 0; 717 return 0;
357 718
358 ev_method = EVMETHOD_NONE; 719 if (!default_loop)
359#if HAVE_EPOLL
360 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
361#endif
362#if HAVE_SELECT
363 if (ev_method == EVMETHOD_NONE) select_init (flags);
364#endif
365
366 if (ev_method)
367 { 720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
729 if (ev_method (EV_A))
730 {
368 evw_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
369 siginit (); 733 siginit (EV_A);
370 }
371 734
372 return ev_method; 735#ifndef WIN32
373} 736 ev_signal_init (&childev, childcb, SIGCHLD);
374 737 ev_set_priority (&childev, EV_MAXPRI);
375/*****************************************************************************/ 738 ev_signal_start (EV_A_ &childev);
376 739 ev_unref (EV_A); /* child watcher should not keep loop alive */
377void ev_prefork (void)
378{
379 /* nop */
380}
381
382void ev_postfork_parent (void)
383{
384 /* nop */
385}
386
387void ev_postfork_child (void)
388{
389#if HAVE_EPOLL
390 if (ev_method == EVMETHOD_EPOLL)
391 epoll_postfork_child ();
392#endif 740#endif
741 }
742 else
743 default_loop = 0;
744 }
393 745
746 return default_loop;
747}
748
749void
750ev_default_destroy (void)
751{
752#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop;
754#endif
755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
394 evio_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
395 close (sigpipe [0]); 778 close (sigpipe [0]);
396 close (sigpipe [1]); 779 close (sigpipe [1]);
397 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
398 siginit (); 783 siginit (EV_A);
399} 784}
400 785
401/*****************************************************************************/ 786/*****************************************************************************/
402 787
403static void 788static void
404fd_reify (void) 789call_pending (EV_P)
405{ 790{
406 int i; 791 int pri;
407 792
408 for (i = 0; i < fdchangecnt; ++i) 793 for (pri = NUMPRI; pri--; )
409 { 794 while (pendingcnt [pri])
410 int fd = fdchanges [i];
411 ANFD *anfd = anfds + fd;
412 struct ev_io *w;
413
414 int wev = 0;
415
416 for (w = anfd->head; w; w = w->next)
417 wev |= w->events;
418
419 if (anfd->wev != wev)
420 { 795 {
421 method_modify (fd, anfd->wev, wev);
422 anfd->wev = wev;
423 }
424 }
425
426 fdchangecnt = 0;
427}
428
429static void
430call_pending ()
431{
432 while (pendingcnt)
433 {
434 ANPENDING *p = pendings + --pendingcnt; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
435 797
436 if (p->w) 798 if (p->w)
437 { 799 {
438 p->w->pending = 0; 800 p->w->pending = 0;
439 p->w->cb (p->w, p->events); 801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
440 } 803 }
441 } 804 }
442} 805}
443 806
444static void 807static void
445timers_reify () 808timers_reify (EV_P)
446{ 809{
447 while (timercnt && timers [0]->at <= now) 810 while (timercnt && ((WT)timers [0])->at <= mn_now)
448 { 811 {
449 struct ev_timer *w = timers [0]; 812 struct ev_timer *w = timers [0];
450 813
451 event ((W)w, EV_TIMEOUT); 814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
452 815
453 /* first reschedule or stop timer */ 816 /* first reschedule or stop timer */
454 if (w->repeat) 817 if (w->repeat)
455 { 818 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
456 w->at = now + w->repeat; 820 ((WT)w)->at = mn_now + w->repeat;
457 assert (("timer timeout in the past, negative repeat?", w->at > now));
458 downheap ((WT *)timers, timercnt, 0); 821 downheap ((WT *)timers, timercnt, 0);
459 } 822 }
460 else 823 else
461 evtimer_stop (w); /* nonrepeating: stop timer */ 824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
462 }
463}
464 825
826 event (EV_A_ (W)w, EV_TIMEOUT);
827 }
828}
829
465static void 830static void
466periodics_reify () 831periodics_reify (EV_P)
467{ 832{
468 while (periodiccnt && periodics [0]->at <= ev_now) 833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
469 { 834 {
470 struct ev_periodic *w = periodics [0]; 835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
471 838
472 /* first reschedule or stop timer */ 839 /* first reschedule or stop timer */
473 if (w->interval) 840 if (w->interval)
474 { 841 {
475 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
476 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
477 downheap ((WT *)periodics, periodiccnt, 0); 844 downheap ((WT *)periodics, periodiccnt, 0);
478 } 845 }
479 else 846 else
480 evperiodic_stop (w); /* nonrepeating: stop timer */ 847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
481 848
482 event ((W)w, EV_TIMEOUT); 849 event (EV_A_ (W)w, EV_PERIODIC);
483 } 850 }
484} 851}
485 852
486static void 853static void
487periodics_reschedule (ev_tstamp diff) 854periodics_reschedule (EV_P)
488{ 855{
489 int i; 856 int i;
490 857
491 /* adjust periodics after time jump */ 858 /* adjust periodics after time jump */
492 for (i = 0; i < periodiccnt; ++i) 859 for (i = 0; i < periodiccnt; ++i)
493 { 860 {
494 struct ev_periodic *w = periodics [i]; 861 struct ev_periodic *w = periodics [i];
495 862
496 if (w->interval) 863 if (w->interval)
497 { 864 {
498 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
499 866
500 if (fabs (diff) >= 1e-4) 867 if (fabs (diff) >= 1e-4)
501 { 868 {
502 evperiodic_stop (w); 869 ev_periodic_stop (EV_A_ w);
503 evperiodic_start (w); 870 ev_periodic_start (EV_A_ w);
504 871
505 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
506 } 873 }
507 } 874 }
508 } 875 }
509} 876}
510 877
878inline int
879time_update_monotonic (EV_P)
880{
881 mn_now = get_clock ();
882
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 {
885 rt_now = rtmn_diff + mn_now;
886 return 0;
887 }
888 else
889 {
890 now_floor = mn_now;
891 rt_now = ev_time ();
892 return 1;
893 }
894}
895
511static void 896static void
512time_update () 897time_update (EV_P)
513{ 898{
514 int i; 899 int i;
515 900
516 ev_now = ev_time (); 901#if EV_USE_MONOTONIC
517
518 if (have_monotonic) 902 if (expect_true (have_monotonic))
519 { 903 {
520 ev_tstamp odiff = diff; 904 if (time_update_monotonic (EV_A))
521
522 for (i = 4; --i; ) /* loop a few times, before making important decisions */
523 { 905 {
524 now = get_clock (); 906 ev_tstamp odiff = rtmn_diff;
907
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 {
525 diff = ev_now - now; 910 rtmn_diff = rt_now - mn_now;
526 911
527 if (fabs (odiff - diff) < MIN_TIMEJUMP) 912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
528 return; /* all is well */ 913 return; /* all is well */
529 914
530 ev_now = ev_time (); 915 rt_now = ev_time ();
916 mn_now = get_clock ();
917 now_floor = mn_now;
918 }
919
920 periodics_reschedule (EV_A);
921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
531 } 923 }
532
533 periodics_reschedule (diff - odiff);
534 /* no timer adjustment, as the monotonic clock doesn't jump */
535 } 924 }
536 else 925 else
926#endif
537 { 927 {
538 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 928 rt_now = ev_time ();
929
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
539 { 931 {
540 periodics_reschedule (ev_now - now); 932 periodics_reschedule (EV_A);
541 933
542 /* adjust timers. this is easy, as the offset is the same for all */ 934 /* adjust timers. this is easy, as the offset is the same for all */
543 for (i = 0; i < timercnt; ++i) 935 for (i = 0; i < timercnt; ++i)
544 timers [i]->at += diff; 936 ((WT)timers [i])->at += rt_now - mn_now;
545 } 937 }
546 938
547 now = ev_now; 939 mn_now = rt_now;
548 } 940 }
549} 941}
550 942
551int ev_loop_done; 943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
552 948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
553void ev_loop (int flags) 958ev_loop (EV_P_ int flags)
554{ 959{
555 double block; 960 double block;
556 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
557
558 if (checkcnt)
559 {
560 queue_events ((W *)checks, checkcnt, EV_CHECK);
561 call_pending ();
562 }
563 962
564 do 963 do
565 { 964 {
965 /* queue check watchers (and execute them) */
966 if (expect_false (preparecnt))
967 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A);
970 }
971
566 /* update fd-related kernel structures */ 972 /* update fd-related kernel structures */
567 fd_reify (); 973 fd_reify (EV_A);
568 974
569 /* calculate blocking time */ 975 /* calculate blocking time */
570 976
571 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 977 /* we only need this for !monotonic clockor timers, but as we basically
978 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A);
982 else
983#endif
984 {
572 ev_now = ev_time (); 985 rt_now = ev_time ();
986 mn_now = rt_now;
987 }
573 988
574 if (flags & EVLOOP_NONBLOCK || idlecnt) 989 if (flags & EVLOOP_NONBLOCK || idlecnt)
575 block = 0.; 990 block = 0.;
576 else 991 else
577 { 992 {
578 block = MAX_BLOCKTIME; 993 block = MAX_BLOCKTIME;
579 994
580 if (timercnt) 995 if (timercnt)
581 { 996 {
582 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
583 if (block > to) block = to; 998 if (block > to) block = to;
584 } 999 }
585 1000
586 if (periodiccnt) 1001 if (periodiccnt)
587 { 1002 {
588 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
589 if (block > to) block = to; 1004 if (block > to) block = to;
590 } 1005 }
591 1006
592 if (block < 0.) block = 0.; 1007 if (block < 0.) block = 0.;
593 } 1008 }
594 1009
595 method_poll (block); 1010 method_poll (EV_A_ block);
596 1011
597 /* update ev_now, do magic */ 1012 /* update rt_now, do magic */
598 time_update (); 1013 time_update (EV_A);
599 1014
600 /* queue pending timers and reschedule them */ 1015 /* queue pending timers and reschedule them */
1016 timers_reify (EV_A); /* relative timers called last */
601 periodics_reify (); /* absolute timers first */ 1017 periodics_reify (EV_A); /* absolute timers called first */
602 timers_reify (); /* relative timers second */
603 1018
604 /* queue idle watchers unless io or timers are pending */ 1019 /* queue idle watchers unless io or timers are pending */
605 if (!pendingcnt) 1020 if (!pendingcnt)
606 queue_events ((W *)idles, idlecnt, EV_IDLE); 1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
607 1022
608 /* queue check and possibly idle watchers */ 1023 /* queue check watchers, to be executed first */
1024 if (checkcnt)
609 queue_events ((W *)checks, checkcnt, EV_CHECK); 1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
610 1026
611 call_pending (); 1027 call_pending (EV_A);
612 } 1028 }
613 while (!ev_loop_done); 1029 while (activecnt && !loop_done);
614 1030
615 if (ev_loop_done != 2) 1031 if (loop_done != 2)
616 ev_loop_done = 0; 1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
617} 1039}
618 1040
619/*****************************************************************************/ 1041/*****************************************************************************/
620 1042
621static void 1043inline void
622wlist_add (WL *head, WL elem) 1044wlist_add (WL *head, WL elem)
623{ 1045{
624 elem->next = *head; 1046 elem->next = *head;
625 *head = elem; 1047 *head = elem;
626} 1048}
627 1049
628static void 1050inline void
629wlist_del (WL *head, WL elem) 1051wlist_del (WL *head, WL elem)
630{ 1052{
631 while (*head) 1053 while (*head)
632 { 1054 {
633 if (*head == elem) 1055 if (*head == elem)
638 1060
639 head = &(*head)->next; 1061 head = &(*head)->next;
640 } 1062 }
641} 1063}
642 1064
643static void 1065inline void
644ev_clear (W w) 1066ev_clear_pending (EV_P_ W w)
645{ 1067{
646 if (w->pending) 1068 if (w->pending)
647 { 1069 {
648 pendings [w->pending - 1].w = 0; 1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
649 w->pending = 0; 1071 w->pending = 0;
650 } 1072 }
651} 1073}
652 1074
653static void 1075inline void
654ev_start (W w, int active) 1076ev_start (EV_P_ W w, int active)
655{ 1077{
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
656 w->active = active; 1081 w->active = active;
1082 ev_ref (EV_A);
657} 1083}
658 1084
659static void 1085inline void
660ev_stop (W w) 1086ev_stop (EV_P_ W w)
661{ 1087{
1088 ev_unref (EV_A);
662 w->active = 0; 1089 w->active = 0;
663} 1090}
664 1091
665/*****************************************************************************/ 1092/*****************************************************************************/
666 1093
667void 1094void
668evio_start (struct ev_io *w) 1095ev_io_start (EV_P_ struct ev_io *w)
669{ 1096{
1097 int fd = w->fd;
1098
670 if (ev_is_active (w)) 1099 if (ev_is_active (w))
671 return; 1100 return;
672 1101
673 int fd = w->fd; 1102 assert (("ev_io_start called with negative fd", fd >= 0));
674 1103
675 ev_start ((W)w, 1); 1104 ev_start (EV_A_ (W)w, 1);
676 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
677 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
678 1107
679 ++fdchangecnt; 1108 fd_change (EV_A_ fd);
680 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
681 fdchanges [fdchangecnt - 1] = fd;
682} 1109}
683 1110
684void 1111void
685evio_stop (struct ev_io *w) 1112ev_io_stop (EV_P_ struct ev_io *w)
686{ 1113{
687 ev_clear ((W)w); 1114 ev_clear_pending (EV_A_ (W)w);
688 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
689 return; 1116 return;
690 1117
691 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
692 ev_stop ((W)w); 1119 ev_stop (EV_A_ (W)w);
693 1120
694 ++fdchangecnt; 1121 fd_change (EV_A_ w->fd);
695 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
696 fdchanges [fdchangecnt - 1] = w->fd;
697} 1122}
698 1123
699void 1124void
700evtimer_start (struct ev_timer *w) 1125ev_timer_start (EV_P_ struct ev_timer *w)
701{ 1126{
702 if (ev_is_active (w)) 1127 if (ev_is_active (w))
703 return; 1128 return;
704 1129
705 w->at += now; 1130 ((WT)w)->at += mn_now;
706 1131
707 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
708 1133
709 ev_start ((W)w, ++timercnt); 1134 ev_start (EV_A_ (W)w, ++timercnt);
710 array_needsize (timers, timermax, timercnt, ); 1135 array_needsize (timers, timermax, timercnt, );
711 timers [timercnt - 1] = w; 1136 timers [timercnt - 1] = w;
712 upheap ((WT *)timers, timercnt - 1); 1137 upheap ((WT *)timers, timercnt - 1);
713}
714 1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
715void 1142void
716evtimer_stop (struct ev_timer *w) 1143ev_timer_stop (EV_P_ struct ev_timer *w)
717{ 1144{
718 ev_clear ((W)w); 1145 ev_clear_pending (EV_A_ (W)w);
719 if (!ev_is_active (w)) 1146 if (!ev_is_active (w))
720 return; 1147 return;
721 1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
722 if (w->active < timercnt--) 1151 if (((W)w)->active < timercnt--)
723 { 1152 {
724 timers [w->active - 1] = timers [timercnt]; 1153 timers [((W)w)->active - 1] = timers [timercnt];
725 downheap ((WT *)timers, timercnt, w->active - 1); 1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
726 } 1155 }
727 1156
728 w->at = w->repeat; 1157 ((WT)w)->at = w->repeat;
729 1158
730 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
731} 1160}
732 1161
733void 1162void
734evtimer_again (struct ev_timer *w) 1163ev_timer_again (EV_P_ struct ev_timer *w)
735{ 1164{
736 if (ev_is_active (w)) 1165 if (ev_is_active (w))
737 { 1166 {
738 if (w->repeat) 1167 if (w->repeat)
739 { 1168 {
740 w->at = now + w->repeat; 1169 ((WT)w)->at = mn_now + w->repeat;
741 downheap ((WT *)timers, timercnt, w->active - 1); 1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
742 } 1171 }
743 else 1172 else
744 evtimer_stop (w); 1173 ev_timer_stop (EV_A_ w);
745 } 1174 }
746 else if (w->repeat) 1175 else if (w->repeat)
747 evtimer_start (w); 1176 ev_timer_start (EV_A_ w);
748} 1177}
749 1178
750void 1179void
751evperiodic_start (struct ev_periodic *w) 1180ev_periodic_start (EV_P_ struct ev_periodic *w)
752{ 1181{
753 if (ev_is_active (w)) 1182 if (ev_is_active (w))
754 return; 1183 return;
755 1184
756 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
757 1186
758 /* this formula differs from the one in periodic_reify because we do not always round up */ 1187 /* this formula differs from the one in periodic_reify because we do not always round up */
759 if (w->interval) 1188 if (w->interval)
760 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
761 1190
762 ev_start ((W)w, ++periodiccnt); 1191 ev_start (EV_A_ (W)w, ++periodiccnt);
763 array_needsize (periodics, periodicmax, periodiccnt, ); 1192 array_needsize (periodics, periodicmax, periodiccnt, );
764 periodics [periodiccnt - 1] = w; 1193 periodics [periodiccnt - 1] = w;
765 upheap ((WT *)periodics, periodiccnt - 1); 1194 upheap ((WT *)periodics, periodiccnt - 1);
766}
767 1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197}
1198
768void 1199void
769evperiodic_stop (struct ev_periodic *w) 1200ev_periodic_stop (EV_P_ struct ev_periodic *w)
770{ 1201{
771 ev_clear ((W)w); 1202 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1203 if (!ev_is_active (w))
773 return; 1204 return;
774 1205
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207
775 if (w->active < periodiccnt--) 1208 if (((W)w)->active < periodiccnt--)
776 { 1209 {
777 periodics [w->active - 1] = periodics [periodiccnt]; 1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
778 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
779 } 1212 }
780 1213
781 ev_stop ((W)w); 1214 ev_stop (EV_A_ (W)w);
782} 1215}
783 1216
784void 1217void
785evsignal_start (struct ev_signal *w) 1218ev_idle_start (EV_P_ struct ev_idle *w)
786{ 1219{
787 if (ev_is_active (w)) 1220 if (ev_is_active (w))
788 return; 1221 return;
789 1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237}
1238
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282
1283#ifndef SA_RESTART
1284# define SA_RESTART 0
1285#endif
1286
1287void
1288ev_signal_start (EV_P_ struct ev_signal *w)
1289{
1290#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292#endif
1293 if (ev_is_active (w))
1294 return;
1295
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297
790 ev_start ((W)w, 1); 1298 ev_start (EV_A_ (W)w, 1);
791 array_needsize (signals, signalmax, w->signum, signals_init); 1299 array_needsize (signals, signalmax, w->signum, signals_init);
792 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
793 1301
794 if (!w->next) 1302 if (!((WL)w)->next)
795 { 1303 {
796 struct sigaction sa; 1304 struct sigaction sa;
797 sa.sa_handler = sighandler; 1305 sa.sa_handler = sighandler;
798 sigfillset (&sa.sa_mask); 1306 sigfillset (&sa.sa_mask);
799 sa.sa_flags = 0; 1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
800 sigaction (w->signum, &sa, 0); 1308 sigaction (w->signum, &sa, 0);
801 } 1309 }
802} 1310}
803 1311
804void 1312void
805evsignal_stop (struct ev_signal *w) 1313ev_signal_stop (EV_P_ struct ev_signal *w)
806{ 1314{
807 ev_clear ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
808 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
809 return; 1317 return;
810 1318
811 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
812 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
813 1321
814 if (!signals [w->signum - 1].head) 1322 if (!signals [w->signum - 1].head)
815 signal (w->signum, SIG_DFL); 1323 signal (w->signum, SIG_DFL);
816} 1324}
817 1325
818void evidle_start (struct ev_idle *w) 1326void
1327ev_child_start (EV_P_ struct ev_child *w)
819{ 1328{
1329#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331#endif
820 if (ev_is_active (w)) 1332 if (ev_is_active (w))
821 return; 1333 return;
822 1334
823 ev_start ((W)w, ++idlecnt); 1335 ev_start (EV_A_ (W)w, 1);
824 array_needsize (idles, idlemax, idlecnt, ); 1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
825 idles [idlecnt - 1] = w;
826} 1337}
827 1338
828void evidle_stop (struct ev_idle *w) 1339void
1340ev_child_stop (EV_P_ struct ev_child *w)
829{ 1341{
830 ev_clear ((W)w); 1342 ev_clear_pending (EV_A_ (W)w);
831 if (ev_is_active (w)) 1343 if (ev_is_active (w))
832 return; 1344 return;
833 1345
834 idles [w->active - 1] = idles [--idlecnt]; 1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
835 ev_stop ((W)w); 1347 ev_stop (EV_A_ (W)w);
836}
837
838void evcheck_start (struct ev_check *w)
839{
840 if (ev_is_active (w))
841 return;
842
843 ev_start ((W)w, ++checkcnt);
844 array_needsize (checks, checkmax, checkcnt, );
845 checks [checkcnt - 1] = w;
846}
847
848void evcheck_stop (struct ev_check *w)
849{
850 ev_clear ((W)w);
851 if (ev_is_active (w))
852 return;
853
854 checks [w->active - 1] = checks [--checkcnt];
855 ev_stop ((W)w);
856} 1348}
857 1349
858/*****************************************************************************/ 1350/*****************************************************************************/
859 1351
860struct ev_once 1352struct ev_once
864 void (*cb)(int revents, void *arg); 1356 void (*cb)(int revents, void *arg);
865 void *arg; 1357 void *arg;
866}; 1358};
867 1359
868static void 1360static void
869once_cb (struct ev_once *once, int revents) 1361once_cb (EV_P_ struct ev_once *once, int revents)
870{ 1362{
871 void (*cb)(int revents, void *arg) = once->cb; 1363 void (*cb)(int revents, void *arg) = once->cb;
872 void *arg = once->arg; 1364 void *arg = once->arg;
873 1365
874 evio_stop (&once->io); 1366 ev_io_stop (EV_A_ &once->io);
875 evtimer_stop (&once->to); 1367 ev_timer_stop (EV_A_ &once->to);
876 free (once); 1368 free (once);
877 1369
878 cb (revents, arg); 1370 cb (revents, arg);
879} 1371}
880 1372
881static void 1373static void
882once_cb_io (struct ev_io *w, int revents) 1374once_cb_io (EV_P_ struct ev_io *w, int revents)
883{ 1375{
884 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
885} 1377}
886 1378
887static void 1379static void
888once_cb_to (struct ev_timer *w, int revents) 1380once_cb_to (EV_P_ struct ev_timer *w, int revents)
889{ 1381{
890 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
891} 1383}
892 1384
893void 1385void
894ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
895{ 1387{
896 struct ev_once *once = malloc (sizeof (struct ev_once)); 1388 struct ev_once *once = malloc (sizeof (struct ev_once));
897 1389
898 if (!once) 1390 if (!once)
899 cb (EV_ERROR, arg); 1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
900 else 1392 else
901 { 1393 {
902 once->cb = cb; 1394 once->cb = cb;
903 once->arg = arg; 1395 once->arg = arg;
904 1396
905 evw_init (&once->io, once_cb_io); 1397 ev_watcher_init (&once->io, once_cb_io);
906
907 if (fd >= 0) 1398 if (fd >= 0)
908 { 1399 {
909 evio_set (&once->io, fd, events); 1400 ev_io_set (&once->io, fd, events);
910 evio_start (&once->io); 1401 ev_io_start (EV_A_ &once->io);
911 } 1402 }
912 1403
913 evw_init (&once->to, once_cb_to); 1404 ev_watcher_init (&once->to, once_cb_to);
914
915 if (timeout >= 0.) 1405 if (timeout >= 0.)
916 { 1406 {
917 evtimer_set (&once->to, timeout, 0.); 1407 ev_timer_set (&once->to, timeout, 0.);
918 evtimer_start (&once->to); 1408 ev_timer_start (EV_A_ &once->to);
919 } 1409 }
920 } 1410 }
921} 1411}
922 1412
923/*****************************************************************************/
924
925#if 0
926
927struct ev_io wio;
928
929static void
930sin_cb (struct ev_io *w, int revents)
931{
932 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
933}
934
935static void
936ocb (struct ev_timer *w, int revents)
937{
938 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
939 evtimer_stop (w);
940 evtimer_start (w);
941}
942
943static void
944scb (struct ev_signal *w, int revents)
945{
946 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
947 evio_stop (&wio);
948 evio_start (&wio);
949}
950
951static void
952gcb (struct ev_signal *w, int revents)
953{
954 fprintf (stderr, "generic %x\n", revents);
955
956}
957
958int main (void)
959{
960 ev_init (0);
961
962 evio_init (&wio, sin_cb, 0, EV_READ);
963 evio_start (&wio);
964
965 struct ev_timer t[10000];
966
967#if 0
968 int i;
969 for (i = 0; i < 10000; ++i)
970 {
971 struct ev_timer *w = t + i;
972 evw_init (w, ocb, i);
973 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
974 evtimer_start (w);
975 if (drand48 () < 0.5)
976 evtimer_stop (w);
977 }
978#endif
979
980 struct ev_timer t1;
981 evtimer_init (&t1, ocb, 5, 10);
982 evtimer_start (&t1);
983
984 struct ev_signal sig;
985 evsignal_init (&sig, scb, SIGQUIT);
986 evsignal_start (&sig);
987
988 struct ev_check cw;
989 evcheck_init (&cw, gcb);
990 evcheck_start (&cw);
991
992 struct ev_idle iw;
993 evidle_init (&iw, gcb);
994 evidle_start (&iw);
995
996 ev_loop (0);
997
998 return 0;
999}
1000
1001#endif
1002
1003
1004
1005

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines