ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.43 by root, Fri Nov 2 20:21:33 2007 UTC vs.
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
107 143
108typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
109typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
111 147
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
113ev_tstamp ev_now;
114int ev_method;
115
116static int have_monotonic; /* runtime */
117
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
119static void (*method_modify)(int fd, int oev, int nev);
120static void (*method_poll)(ev_tstamp timeout);
121 149
122/*****************************************************************************/ 150/*****************************************************************************/
123 151
124ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
125ev_time (void) 186ev_time (void)
126{ 187{
127#if EV_USE_REALTIME 188#if EV_USE_REALTIME
128 struct timespec ts; 189 struct timespec ts;
129 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
133 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif 196#endif
136} 197}
137 198
138static ev_tstamp 199inline ev_tstamp
139get_clock (void) 200get_clock (void)
140{ 201{
141#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
143 { 204 {
146 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
147 } 208 }
148#endif 209#endif
149 210
150 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
151} 218}
152 219
153#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
154 221
155#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
167 cur = newcnt; \ 234 cur = newcnt; \
168 } 235 }
169 236
170/*****************************************************************************/ 237/*****************************************************************************/
171 238
172typedef struct
173{
174 struct ev_io *head;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178
179static ANFD *anfds;
180static int anfdmax;
181
182static void 239static void
183anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
184{ 241{
185 while (count--) 242 while (count--)
186 { 243 {
190 247
191 ++base; 248 ++base;
192 } 249 }
193} 250}
194 251
195typedef struct
196{
197 W w;
198 int events;
199} ANPENDING;
200
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void 252static void
205event (W w, int events) 253event (EV_P_ W w, int events)
206{ 254{
207 if (w->pending) 255 if (w->pending)
208 { 256 {
209 pendings [ABSPRI (w)][w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
210 return; 258 return;
215 pendings [ABSPRI (w)][w->pending - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
216 pendings [ABSPRI (w)][w->pending - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
217} 265}
218 266
219static void 267static void
220queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
221{ 269{
222 int i; 270 int i;
223 271
224 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type); 273 event (EV_A_ events [i], type);
226} 274}
227 275
228static void 276static void
229fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
230{ 278{
231 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 280 struct ev_io *w;
233 281
234 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
235 { 283 {
236 int ev = w->events & events; 284 int ev = w->events & events;
237 285
238 if (ev) 286 if (ev)
239 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
240 } 288 }
241} 289}
242 290
243/*****************************************************************************/ 291/*****************************************************************************/
244 292
245static int *fdchanges;
246static int fdchangemax, fdchangecnt;
247
248static void 293static void
249fd_reify (void) 294fd_reify (EV_P)
250{ 295{
251 int i; 296 int i;
252 297
253 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
254 { 299 {
256 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 302 struct ev_io *w;
258 303
259 int events = 0; 304 int events = 0;
260 305
261 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
262 events |= w->events; 307 events |= w->events;
263 308
264 anfd->reify = 0; 309 anfd->reify = 0;
265 310
266 if (anfd->events != events) 311 if (anfd->events != events)
267 { 312 {
268 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
269 anfd->events = events; 314 anfd->events = events;
270 } 315 }
271 } 316 }
272 317
273 fdchangecnt = 0; 318 fdchangecnt = 0;
274} 319}
275 320
276static void 321static void
277fd_change (int fd) 322fd_change (EV_P_ int fd)
278{ 323{
279 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
280 return; 325 return;
281 326
282 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
286 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
287} 332}
288 333
289static void 334static void
290fd_kill (int fd) 335fd_kill (EV_P_ int fd)
291{ 336{
292 struct ev_io *w; 337 struct ev_io *w;
293 338
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
296 { 340 {
297 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 343 }
300} 344}
301 345
302/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
303static void 347static void
304fd_ebadf (void) 348fd_ebadf (EV_P)
305{ 349{
306 int fd; 350 int fd;
307 351
308 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 353 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
311 fd_kill (fd); 355 fd_kill (EV_A_ fd);
312} 356}
313 357
314/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 359static void
316fd_enomem (void) 360fd_enomem (EV_P)
317{ 361{
318 int fd = anfdmax; 362 int fd;
319 363
320 while (fd--) 364 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 365 if (anfds [fd].events)
322 { 366 {
323 close (fd); 367 close (fd);
324 fd_kill (fd); 368 fd_kill (EV_A_ fd);
325 return; 369 return;
326 } 370 }
327} 371}
328 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
329/*****************************************************************************/ 388/*****************************************************************************/
330 389
331static struct ev_timer **timers;
332static int timermax, timercnt;
333
334static struct ev_periodic **periodics;
335static int periodicmax, periodiccnt;
336
337static void 390static void
338upheap (WT *timers, int k) 391upheap (WT *heap, int k)
339{ 392{
340 WT w = timers [k]; 393 WT w = heap [k];
341 394
342 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
343 { 396 {
344 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
346 k >>= 1; 399 k >>= 1;
347 } 400 }
348 401
349 timers [k] = w; 402 heap [k] = w;
350 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
351 404
352} 405}
353 406
354static void 407static void
355downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
356{ 409{
357 WT w = timers [k]; 410 WT w = heap [k];
358 411
359 while (k < (N >> 1)) 412 while (k < (N >> 1))
360 { 413 {
361 int j = k << 1; 414 int j = k << 1;
362 415
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 417 ++j;
365 418
366 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
367 break; 420 break;
368 421
369 timers [k] = timers [j]; 422 heap [k] = heap [j];
370 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
371 k = j; 424 k = j;
372 } 425 }
373 426
374 timers [k] = w; 427 heap [k] = w;
375 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
376} 429}
377 430
378/*****************************************************************************/ 431/*****************************************************************************/
379 432
380typedef struct 433typedef struct
381{ 434{
382 struct ev_signal *head; 435 struct ev_watcher_list *head;
383 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
384} ANSIG; 437} ANSIG;
385 438
386static ANSIG *signals; 439static ANSIG *signals;
387static int signalmax; 440static int signalmax;
407{ 460{
408 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
409 462
410 if (!gotsig) 463 if (!gotsig)
411 { 464 {
465 int old_errno = errno;
412 gotsig = 1; 466 gotsig = 1;
413 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
414 } 469 }
415} 470}
416 471
417static void 472static void
418sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
419{ 474{
420 struct ev_signal *w; 475 struct ev_watcher_list *w;
421 int signum; 476 int signum;
422 477
423 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
424 gotsig = 0; 479 gotsig = 0;
425 480
427 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
428 { 483 {
429 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
430 485
431 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
433 } 488 }
434} 489}
435 490
436static void 491static void
437siginit (void) 492siginit (EV_P)
438{ 493{
494#ifndef WIN32
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441 497
442 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
445 502
446 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
448} 506}
449 507
450/*****************************************************************************/ 508/*****************************************************************************/
451 509
452static struct ev_idle **idles; 510#ifndef WIN32
453static int idlemax, idlecnt;
454
455static struct ev_prepare **prepares;
456static int preparemax, preparecnt;
457
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462 511
463static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
464static struct ev_signal childev; 513static struct ev_signal childev;
465 514
466#ifndef WCONTINUED 515#ifndef WCONTINUED
467# define WCONTINUED 0 516# define WCONTINUED 0
468#endif 517#endif
469 518
470static void 519static void
471childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{ 521{
473 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
474 int pid, status; 537 int pid, status;
475 538
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
478 if (w->pid == pid || !w->pid) 541 /* make sure we are called again until all childs have been reaped */
479 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
480 w->status = status; 543
481 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
482 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
483} 547}
548
549#endif
484 550
485/*****************************************************************************/ 551/*****************************************************************************/
486 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
487#if EV_USE_EPOLL 556#if EV_USE_EPOLL
488# include "ev_epoll.c" 557# include "ev_epoll.c"
489#endif 558#endif
490#if EV_USE_POLL 559#if EV_USE_POLL
491# include "ev_poll.c" 560# include "ev_poll.c"
504ev_version_minor (void) 573ev_version_minor (void)
505{ 574{
506 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
507} 576}
508 577
509/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
510static int 579static int
511enable_secure () 580enable_secure (void)
512{ 581{
582#ifdef WIN32
583 return 0;
584#else
513 return getuid () != geteuid () 585 return getuid () != geteuid ()
514 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
515} 588}
516 589
517int ev_init (int methods) 590int
591ev_method (EV_P)
518{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
519 if (!ev_method) 599 if (!method)
520 { 600 {
521#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
522 { 602 {
523 struct timespec ts; 603 struct timespec ts;
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
525 have_monotonic = 1; 605 have_monotonic = 1;
526 } 606 }
527#endif 607#endif
528 608
529 ev_now = ev_time (); 609 rt_now = ev_time ();
530 now = get_clock (); 610 mn_now = get_clock ();
531 now_floor = now; 611 now_floor = mn_now;
532 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
533
534 if (pipe (sigpipe))
535 return 0;
536 613
537 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
538 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
539 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
540 else 617 else
541 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
542 619
543 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
544#if EV_USE_EPOLL 627#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
546#endif 629#endif
547#if EV_USE_POLL 630#if EV_USE_POLL
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
549#endif 632#endif
550#if EV_USE_SELECT 633#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
552#endif 635#endif
636 }
637}
553 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
554 if (ev_method) 729 if (ev_method (EV_A))
555 { 730 {
556 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
557 siginit (); 733 siginit (EV_A);
558 734
735#ifndef WIN32
559 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif
561 } 741 }
742 else
743 default_loop = 0;
562 } 744 }
563 745
564 return ev_method; 746 return default_loop;
565} 747}
566 748
567/*****************************************************************************/
568
569void 749void
570ev_fork_prepare (void) 750ev_default_destroy (void)
571{ 751{
572 /* nop */ 752#if EV_MULTIPLICITY
573} 753 struct ev_loop *loop = default_loop;
574
575void
576ev_fork_parent (void)
577{
578 /* nop */
579}
580
581void
582ev_fork_child (void)
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif 754#endif
588 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
589 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
590 close (sigpipe [0]); 778 close (sigpipe [0]);
591 close (sigpipe [1]); 779 close (sigpipe [1]);
592 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
593 siginit (); 783 siginit (EV_A);
594} 784}
595 785
596/*****************************************************************************/ 786/*****************************************************************************/
597 787
598static void 788static void
599call_pending (void) 789call_pending (EV_P)
600{ 790{
601 int pri; 791 int pri;
602 792
603 for (pri = NUMPRI; pri--; ) 793 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 794 while (pendingcnt [pri])
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 797
608 if (p->w) 798 if (p->w)
609 { 799 {
610 p->w->pending = 0; 800 p->w->pending = 0;
611 p->w->cb (p->w, p->events); 801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
612 } 803 }
613 } 804 }
614} 805}
615 806
616static void 807static void
617timers_reify (void) 808timers_reify (EV_P)
618{ 809{
619 while (timercnt && timers [0]->at <= now) 810 while (timercnt && ((WT)timers [0])->at <= mn_now)
620 { 811 {
621 struct ev_timer *w = timers [0]; 812 struct ev_timer *w = timers [0];
813
814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
622 815
623 /* first reschedule or stop timer */ 816 /* first reschedule or stop timer */
624 if (w->repeat) 817 if (w->repeat)
625 { 818 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
627 w->at = now + w->repeat; 820 ((WT)w)->at = mn_now + w->repeat;
628 downheap ((WT *)timers, timercnt, 0); 821 downheap ((WT *)timers, timercnt, 0);
629 } 822 }
630 else 823 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */ 824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
632 825
633 event ((W)w, EV_TIMEOUT); 826 event (EV_A_ (W)w, EV_TIMEOUT);
634 } 827 }
635} 828}
636 829
637static void 830static void
638periodics_reify (void) 831periodics_reify (EV_P)
639{ 832{
640 while (periodiccnt && periodics [0]->at <= ev_now) 833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
641 { 834 {
642 struct ev_periodic *w = periodics [0]; 835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
643 838
644 /* first reschedule or stop timer */ 839 /* first reschedule or stop timer */
645 if (w->interval) 840 if (w->interval)
646 { 841 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
649 downheap ((WT *)periodics, periodiccnt, 0); 844 downheap ((WT *)periodics, periodiccnt, 0);
650 } 845 }
651 else 846 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */ 847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
653 848
654 event ((W)w, EV_PERIODIC); 849 event (EV_A_ (W)w, EV_PERIODIC);
655 } 850 }
656} 851}
657 852
658static void 853static void
659periodics_reschedule (ev_tstamp diff) 854periodics_reschedule (EV_P)
660{ 855{
661 int i; 856 int i;
662 857
663 /* adjust periodics after time jump */ 858 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i) 859 for (i = 0; i < periodiccnt; ++i)
665 { 860 {
666 struct ev_periodic *w = periodics [i]; 861 struct ev_periodic *w = periodics [i];
667 862
668 if (w->interval) 863 if (w->interval)
669 { 864 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
671 866
672 if (fabs (diff) >= 1e-4) 867 if (fabs (diff) >= 1e-4)
673 { 868 {
674 ev_periodic_stop (w); 869 ev_periodic_stop (EV_A_ w);
675 ev_periodic_start (w); 870 ev_periodic_start (EV_A_ w);
676 871
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
678 } 873 }
679 } 874 }
680 } 875 }
681} 876}
682 877
683static int 878inline int
684time_update_monotonic (void) 879time_update_monotonic (EV_P)
685{ 880{
686 now = get_clock (); 881 mn_now = get_clock ();
687 882
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
689 { 884 {
690 ev_now = now + diff; 885 rt_now = rtmn_diff + mn_now;
691 return 0; 886 return 0;
692 } 887 }
693 else 888 else
694 { 889 {
695 now_floor = now; 890 now_floor = mn_now;
696 ev_now = ev_time (); 891 rt_now = ev_time ();
697 return 1; 892 return 1;
698 } 893 }
699} 894}
700 895
701static void 896static void
702time_update (void) 897time_update (EV_P)
703{ 898{
704 int i; 899 int i;
705 900
706#if EV_USE_MONOTONIC 901#if EV_USE_MONOTONIC
707 if (expect_true (have_monotonic)) 902 if (expect_true (have_monotonic))
708 { 903 {
709 if (time_update_monotonic ()) 904 if (time_update_monotonic (EV_A))
710 { 905 {
711 ev_tstamp odiff = diff; 906 ev_tstamp odiff = rtmn_diff;
712 907
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 { 909 {
715 diff = ev_now - now; 910 rtmn_diff = rt_now - mn_now;
716 911
717 if (fabs (odiff - diff) < MIN_TIMEJUMP) 912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
718 return; /* all is well */ 913 return; /* all is well */
719 914
720 ev_now = ev_time (); 915 rt_now = ev_time ();
721 now = get_clock (); 916 mn_now = get_clock ();
722 now_floor = now; 917 now_floor = mn_now;
723 } 918 }
724 919
725 periodics_reschedule (diff - odiff); 920 periodics_reschedule (EV_A);
726 /* no timer adjustment, as the monotonic clock doesn't jump */ 921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
727 } 923 }
728 } 924 }
729 else 925 else
730#endif 926#endif
731 { 927 {
732 ev_now = ev_time (); 928 rt_now = ev_time ();
733 929
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
735 { 931 {
736 periodics_reschedule (ev_now - now); 932 periodics_reschedule (EV_A);
737 933
738 /* adjust timers. this is easy, as the offset is the same for all */ 934 /* adjust timers. this is easy, as the offset is the same for all */
739 for (i = 0; i < timercnt; ++i) 935 for (i = 0; i < timercnt; ++i)
740 timers [i]->at += diff; 936 ((WT)timers [i])->at += rt_now - mn_now;
741 } 937 }
742 938
743 now = ev_now; 939 mn_now = rt_now;
744 } 940 }
745} 941}
746 942
747int ev_loop_done; 943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
748 948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
749void ev_loop (int flags) 958ev_loop (EV_P_ int flags)
750{ 959{
751 double block; 960 double block;
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
753 962
754 do 963 do
755 { 964 {
756 /* queue check watchers (and execute them) */ 965 /* queue check watchers (and execute them) */
757 if (expect_false (preparecnt)) 966 if (expect_false (preparecnt))
758 { 967 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
760 call_pending (); 969 call_pending (EV_A);
761 } 970 }
762 971
763 /* update fd-related kernel structures */ 972 /* update fd-related kernel structures */
764 fd_reify (); 973 fd_reify (EV_A);
765 974
766 /* calculate blocking time */ 975 /* calculate blocking time */
767 976
768 /* we only need this for !monotonic clockor timers, but as we basically 977 /* we only need this for !monotonic clockor timers, but as we basically
769 always have timers, we just calculate it always */ 978 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC 979#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic)) 980 if (expect_true (have_monotonic))
772 time_update_monotonic (); 981 time_update_monotonic (EV_A);
773 else 982 else
774#endif 983#endif
775 { 984 {
776 ev_now = ev_time (); 985 rt_now = ev_time ();
777 now = ev_now; 986 mn_now = rt_now;
778 } 987 }
779 988
780 if (flags & EVLOOP_NONBLOCK || idlecnt) 989 if (flags & EVLOOP_NONBLOCK || idlecnt)
781 block = 0.; 990 block = 0.;
782 else 991 else
783 { 992 {
784 block = MAX_BLOCKTIME; 993 block = MAX_BLOCKTIME;
785 994
786 if (timercnt) 995 if (timercnt)
787 { 996 {
788 ev_tstamp to = timers [0]->at - now + method_fudge; 997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
789 if (block > to) block = to; 998 if (block > to) block = to;
790 } 999 }
791 1000
792 if (periodiccnt) 1001 if (periodiccnt)
793 { 1002 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
795 if (block > to) block = to; 1004 if (block > to) block = to;
796 } 1005 }
797 1006
798 if (block < 0.) block = 0.; 1007 if (block < 0.) block = 0.;
799 } 1008 }
800 1009
801 method_poll (block); 1010 method_poll (EV_A_ block);
802 1011
803 /* update ev_now, do magic */ 1012 /* update rt_now, do magic */
804 time_update (); 1013 time_update (EV_A);
805 1014
806 /* queue pending timers and reschedule them */ 1015 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */ 1016 timers_reify (EV_A); /* relative timers called last */
808 periodics_reify (); /* absolute timers called first */ 1017 periodics_reify (EV_A); /* absolute timers called first */
809 1018
810 /* queue idle watchers unless io or timers are pending */ 1019 /* queue idle watchers unless io or timers are pending */
811 if (!pendingcnt) 1020 if (!pendingcnt)
812 queue_events ((W *)idles, idlecnt, EV_IDLE); 1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
813 1022
814 /* queue check watchers, to be executed first */ 1023 /* queue check watchers, to be executed first */
815 if (checkcnt) 1024 if (checkcnt)
816 queue_events ((W *)checks, checkcnt, EV_CHECK); 1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
817 1026
818 call_pending (); 1027 call_pending (EV_A);
819 } 1028 }
820 while (!ev_loop_done); 1029 while (activecnt && !loop_done);
821 1030
822 if (ev_loop_done != 2) 1031 if (loop_done != 2)
823 ev_loop_done = 0; 1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
824} 1039}
825 1040
826/*****************************************************************************/ 1041/*****************************************************************************/
827 1042
828static void 1043inline void
829wlist_add (WL *head, WL elem) 1044wlist_add (WL *head, WL elem)
830{ 1045{
831 elem->next = *head; 1046 elem->next = *head;
832 *head = elem; 1047 *head = elem;
833} 1048}
834 1049
835static void 1050inline void
836wlist_del (WL *head, WL elem) 1051wlist_del (WL *head, WL elem)
837{ 1052{
838 while (*head) 1053 while (*head)
839 { 1054 {
840 if (*head == elem) 1055 if (*head == elem)
845 1060
846 head = &(*head)->next; 1061 head = &(*head)->next;
847 } 1062 }
848} 1063}
849 1064
850static void 1065inline void
851ev_clear_pending (W w) 1066ev_clear_pending (EV_P_ W w)
852{ 1067{
853 if (w->pending) 1068 if (w->pending)
854 { 1069 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
856 w->pending = 0; 1071 w->pending = 0;
857 } 1072 }
858} 1073}
859 1074
860static void 1075inline void
861ev_start (W w, int active) 1076ev_start (EV_P_ W w, int active)
862{ 1077{
863 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
864 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
865 1080
866 w->active = active; 1081 w->active = active;
1082 ev_ref (EV_A);
867} 1083}
868 1084
869static void 1085inline void
870ev_stop (W w) 1086ev_stop (EV_P_ W w)
871{ 1087{
1088 ev_unref (EV_A);
872 w->active = 0; 1089 w->active = 0;
873} 1090}
874 1091
875/*****************************************************************************/ 1092/*****************************************************************************/
876 1093
877void 1094void
878ev_io_start (struct ev_io *w) 1095ev_io_start (EV_P_ struct ev_io *w)
879{ 1096{
880 int fd = w->fd; 1097 int fd = w->fd;
881 1098
882 if (ev_is_active (w)) 1099 if (ev_is_active (w))
883 return; 1100 return;
884 1101
885 assert (("ev_io_start called with negative fd", fd >= 0)); 1102 assert (("ev_io_start called with negative fd", fd >= 0));
886 1103
887 ev_start ((W)w, 1); 1104 ev_start (EV_A_ (W)w, 1);
888 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
889 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
890 1107
891 fd_change (fd); 1108 fd_change (EV_A_ fd);
892} 1109}
893 1110
894void 1111void
895ev_io_stop (struct ev_io *w) 1112ev_io_stop (EV_P_ struct ev_io *w)
896{ 1113{
897 ev_clear_pending ((W)w); 1114 ev_clear_pending (EV_A_ (W)w);
898 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
899 return; 1116 return;
900 1117
901 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
902 ev_stop ((W)w); 1119 ev_stop (EV_A_ (W)w);
903 1120
904 fd_change (w->fd); 1121 fd_change (EV_A_ w->fd);
905} 1122}
906 1123
907void 1124void
908ev_timer_start (struct ev_timer *w) 1125ev_timer_start (EV_P_ struct ev_timer *w)
909{ 1126{
910 if (ev_is_active (w)) 1127 if (ev_is_active (w))
911 return; 1128 return;
912 1129
913 w->at += now; 1130 ((WT)w)->at += mn_now;
914 1131
915 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
916 1133
917 ev_start ((W)w, ++timercnt); 1134 ev_start (EV_A_ (W)w, ++timercnt);
918 array_needsize (timers, timermax, timercnt, ); 1135 array_needsize (timers, timermax, timercnt, );
919 timers [timercnt - 1] = w; 1136 timers [timercnt - 1] = w;
920 upheap ((WT *)timers, timercnt - 1); 1137 upheap ((WT *)timers, timercnt - 1);
921}
922 1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
923void 1142void
924ev_timer_stop (struct ev_timer *w) 1143ev_timer_stop (EV_P_ struct ev_timer *w)
925{ 1144{
926 ev_clear_pending ((W)w); 1145 ev_clear_pending (EV_A_ (W)w);
927 if (!ev_is_active (w)) 1146 if (!ev_is_active (w))
928 return; 1147 return;
929 1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
930 if (w->active < timercnt--) 1151 if (((W)w)->active < timercnt--)
931 { 1152 {
932 timers [w->active - 1] = timers [timercnt]; 1153 timers [((W)w)->active - 1] = timers [timercnt];
933 downheap ((WT *)timers, timercnt, w->active - 1); 1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
934 } 1155 }
935 1156
936 w->at = w->repeat; 1157 ((WT)w)->at = w->repeat;
937 1158
938 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
939} 1160}
940 1161
941void 1162void
942ev_timer_again (struct ev_timer *w) 1163ev_timer_again (EV_P_ struct ev_timer *w)
943{ 1164{
944 if (ev_is_active (w)) 1165 if (ev_is_active (w))
945 { 1166 {
946 if (w->repeat) 1167 if (w->repeat)
947 { 1168 {
948 w->at = now + w->repeat; 1169 ((WT)w)->at = mn_now + w->repeat;
949 downheap ((WT *)timers, timercnt, w->active - 1); 1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
950 } 1171 }
951 else 1172 else
952 ev_timer_stop (w); 1173 ev_timer_stop (EV_A_ w);
953 } 1174 }
954 else if (w->repeat) 1175 else if (w->repeat)
955 ev_timer_start (w); 1176 ev_timer_start (EV_A_ w);
956} 1177}
957 1178
958void 1179void
959ev_periodic_start (struct ev_periodic *w) 1180ev_periodic_start (EV_P_ struct ev_periodic *w)
960{ 1181{
961 if (ev_is_active (w)) 1182 if (ev_is_active (w))
962 return; 1183 return;
963 1184
964 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
965 1186
966 /* this formula differs from the one in periodic_reify because we do not always round up */ 1187 /* this formula differs from the one in periodic_reify because we do not always round up */
967 if (w->interval) 1188 if (w->interval)
968 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
969 1190
970 ev_start ((W)w, ++periodiccnt); 1191 ev_start (EV_A_ (W)w, ++periodiccnt);
971 array_needsize (periodics, periodicmax, periodiccnt, ); 1192 array_needsize (periodics, periodicmax, periodiccnt, );
972 periodics [periodiccnt - 1] = w; 1193 periodics [periodiccnt - 1] = w;
973 upheap ((WT *)periodics, periodiccnt - 1); 1194 upheap ((WT *)periodics, periodiccnt - 1);
974}
975 1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197}
1198
976void 1199void
977ev_periodic_stop (struct ev_periodic *w) 1200ev_periodic_stop (EV_P_ struct ev_periodic *w)
978{ 1201{
979 ev_clear_pending ((W)w); 1202 ev_clear_pending (EV_A_ (W)w);
980 if (!ev_is_active (w)) 1203 if (!ev_is_active (w))
981 return; 1204 return;
982 1205
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207
983 if (w->active < periodiccnt--) 1208 if (((W)w)->active < periodiccnt--)
984 { 1209 {
985 periodics [w->active - 1] = periodics [periodiccnt]; 1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
986 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
987 } 1212 }
988 1213
989 ev_stop ((W)w); 1214 ev_stop (EV_A_ (W)w);
990} 1215}
991 1216
992void 1217void
993ev_signal_start (struct ev_signal *w) 1218ev_idle_start (EV_P_ struct ev_idle *w)
994{ 1219{
995 if (ev_is_active (w)) 1220 if (ev_is_active (w))
996 return; 1221 return;
997 1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237}
1238
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282
1283#ifndef SA_RESTART
1284# define SA_RESTART 0
1285#endif
1286
1287void
1288ev_signal_start (EV_P_ struct ev_signal *w)
1289{
1290#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292#endif
1293 if (ev_is_active (w))
1294 return;
1295
998 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
999 1297
1000 ev_start ((W)w, 1); 1298 ev_start (EV_A_ (W)w, 1);
1001 array_needsize (signals, signalmax, w->signum, signals_init); 1299 array_needsize (signals, signalmax, w->signum, signals_init);
1002 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1003 1301
1004 if (!w->next) 1302 if (!((WL)w)->next)
1005 { 1303 {
1006 struct sigaction sa; 1304 struct sigaction sa;
1007 sa.sa_handler = sighandler; 1305 sa.sa_handler = sighandler;
1008 sigfillset (&sa.sa_mask); 1306 sigfillset (&sa.sa_mask);
1009 sa.sa_flags = 0; 1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1010 sigaction (w->signum, &sa, 0); 1308 sigaction (w->signum, &sa, 0);
1011 } 1309 }
1012} 1310}
1013 1311
1014void 1312void
1015ev_signal_stop (struct ev_signal *w) 1313ev_signal_stop (EV_P_ struct ev_signal *w)
1016{ 1314{
1017 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1018 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1019 return; 1317 return;
1020 1318
1021 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1022 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
1023 1321
1024 if (!signals [w->signum - 1].head) 1322 if (!signals [w->signum - 1].head)
1025 signal (w->signum, SIG_DFL); 1323 signal (w->signum, SIG_DFL);
1026} 1324}
1027 1325
1028void 1326void
1029ev_idle_start (struct ev_idle *w) 1327ev_child_start (EV_P_ struct ev_child *w)
1030{ 1328{
1329#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331#endif
1031 if (ev_is_active (w)) 1332 if (ev_is_active (w))
1032 return; 1333 return;
1033 1334
1034 ev_start ((W)w, ++idlecnt); 1335 ev_start (EV_A_ (W)w, 1);
1035 array_needsize (idles, idlemax, idlecnt, ); 1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1036 idles [idlecnt - 1] = w;
1037} 1337}
1038 1338
1039void 1339void
1040ev_idle_stop (struct ev_idle *w) 1340ev_child_stop (EV_P_ struct ev_child *w)
1041{ 1341{
1042 ev_clear_pending ((W)w); 1342 ev_clear_pending (EV_A_ (W)w);
1043 if (ev_is_active (w)) 1343 if (ev_is_active (w))
1044 return; 1344 return;
1045 1345
1046 idles [w->active - 1] = idles [--idlecnt];
1047 ev_stop ((W)w);
1048}
1049
1050void
1051ev_prepare_start (struct ev_prepare *w)
1052{
1053 if (ev_is_active (w))
1054 return;
1055
1056 ev_start ((W)w, ++preparecnt);
1057 array_needsize (prepares, preparemax, preparecnt, );
1058 prepares [preparecnt - 1] = w;
1059}
1060
1061void
1062ev_prepare_stop (struct ev_prepare *w)
1063{
1064 ev_clear_pending ((W)w);
1065 if (ev_is_active (w))
1066 return;
1067
1068 prepares [w->active - 1] = prepares [--preparecnt];
1069 ev_stop ((W)w);
1070}
1071
1072void
1073ev_check_start (struct ev_check *w)
1074{
1075 if (ev_is_active (w))
1076 return;
1077
1078 ev_start ((W)w, ++checkcnt);
1079 array_needsize (checks, checkmax, checkcnt, );
1080 checks [checkcnt - 1] = w;
1081}
1082
1083void
1084ev_check_stop (struct ev_check *w)
1085{
1086 ev_clear_pending ((W)w);
1087 if (ev_is_active (w))
1088 return;
1089
1090 checks [w->active - 1] = checks [--checkcnt];
1091 ev_stop ((W)w);
1092}
1093
1094void
1095ev_child_start (struct ev_child *w)
1096{
1097 if (ev_is_active (w))
1098 return;
1099
1100 ev_start ((W)w, 1);
1101 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1102}
1103
1104void
1105ev_child_stop (struct ev_child *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112 ev_stop ((W)w); 1347 ev_stop (EV_A_ (W)w);
1113} 1348}
1114 1349
1115/*****************************************************************************/ 1350/*****************************************************************************/
1116 1351
1117struct ev_once 1352struct ev_once
1121 void (*cb)(int revents, void *arg); 1356 void (*cb)(int revents, void *arg);
1122 void *arg; 1357 void *arg;
1123}; 1358};
1124 1359
1125static void 1360static void
1126once_cb (struct ev_once *once, int revents) 1361once_cb (EV_P_ struct ev_once *once, int revents)
1127{ 1362{
1128 void (*cb)(int revents, void *arg) = once->cb; 1363 void (*cb)(int revents, void *arg) = once->cb;
1129 void *arg = once->arg; 1364 void *arg = once->arg;
1130 1365
1131 ev_io_stop (&once->io); 1366 ev_io_stop (EV_A_ &once->io);
1132 ev_timer_stop (&once->to); 1367 ev_timer_stop (EV_A_ &once->to);
1133 free (once); 1368 free (once);
1134 1369
1135 cb (revents, arg); 1370 cb (revents, arg);
1136} 1371}
1137 1372
1138static void 1373static void
1139once_cb_io (struct ev_io *w, int revents) 1374once_cb_io (EV_P_ struct ev_io *w, int revents)
1140{ 1375{
1141 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1142} 1377}
1143 1378
1144static void 1379static void
1145once_cb_to (struct ev_timer *w, int revents) 1380once_cb_to (EV_P_ struct ev_timer *w, int revents)
1146{ 1381{
1147 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1148} 1383}
1149 1384
1150void 1385void
1151ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1152{ 1387{
1153 struct ev_once *once = malloc (sizeof (struct ev_once)); 1388 struct ev_once *once = malloc (sizeof (struct ev_once));
1154 1389
1155 if (!once) 1390 if (!once)
1156 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1161 1396
1162 ev_watcher_init (&once->io, once_cb_io); 1397 ev_watcher_init (&once->io, once_cb_io);
1163 if (fd >= 0) 1398 if (fd >= 0)
1164 { 1399 {
1165 ev_io_set (&once->io, fd, events); 1400 ev_io_set (&once->io, fd, events);
1166 ev_io_start (&once->io); 1401 ev_io_start (EV_A_ &once->io);
1167 } 1402 }
1168 1403
1169 ev_watcher_init (&once->to, once_cb_to); 1404 ev_watcher_init (&once->to, once_cb_to);
1170 if (timeout >= 0.) 1405 if (timeout >= 0.)
1171 { 1406 {
1172 ev_timer_set (&once->to, timeout, 0.); 1407 ev_timer_set (&once->to, timeout, 0.);
1173 ev_timer_start (&once->to); 1408 ev_timer_start (EV_A_ &once->to);
1174 } 1409 }
1175 } 1410 }
1176} 1411}
1177 1412
1178/*****************************************************************************/
1179
1180#if 0
1181
1182struct ev_io wio;
1183
1184static void
1185sin_cb (struct ev_io *w, int revents)
1186{
1187 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1188}
1189
1190static void
1191ocb (struct ev_timer *w, int revents)
1192{
1193 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1194 ev_timer_stop (w);
1195 ev_timer_start (w);
1196}
1197
1198static void
1199scb (struct ev_signal *w, int revents)
1200{
1201 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1202 ev_io_stop (&wio);
1203 ev_io_start (&wio);
1204}
1205
1206static void
1207gcb (struct ev_signal *w, int revents)
1208{
1209 fprintf (stderr, "generic %x\n", revents);
1210
1211}
1212
1213int main (void)
1214{
1215 ev_init (0);
1216
1217 ev_io_init (&wio, sin_cb, 0, EV_READ);
1218 ev_io_start (&wio);
1219
1220 struct ev_timer t[10000];
1221
1222#if 0
1223 int i;
1224 for (i = 0; i < 10000; ++i)
1225 {
1226 struct ev_timer *w = t + i;
1227 ev_watcher_init (w, ocb, i);
1228 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1229 ev_timer_start (w);
1230 if (drand48 () < 0.5)
1231 ev_timer_stop (w);
1232 }
1233#endif
1234
1235 struct ev_timer t1;
1236 ev_timer_init (&t1, ocb, 5, 10);
1237 ev_timer_start (&t1);
1238
1239 struct ev_signal sig;
1240 ev_signal_init (&sig, scb, SIGQUIT);
1241 ev_signal_start (&sig);
1242
1243 struct ev_check cw;
1244 ev_check_init (&cw, gcb);
1245 ev_check_start (&cw);
1246
1247 struct ev_idle iw;
1248 ev_idle_init (&iw, gcb);
1249 ev_idle_start (&iw);
1250
1251 ev_loop (0);
1252
1253 return 0;
1254}
1255
1256#endif
1257
1258
1259
1260

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines