ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.17 by root, Wed Oct 31 14:44:15 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
36 63
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
41#include <sys/time.h> 72#include <sys/time.h>
42#include <time.h> 73#include <time.h>
43 74
44#define HAVE_EPOLL 1 75/**/
45 76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
66 127
67#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
68 143
69typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
70typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
71typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
72 147
73static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
74ev_tstamp ev_now;
75int ev_method;
76
77static int have_monotonic; /* runtime */
78
79static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
80static void (*method_modify)(int fd, int oev, int nev);
81static void (*method_poll)(ev_tstamp timeout);
82 149
83/*****************************************************************************/ 150/*****************************************************************************/
84 151
85ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
86ev_time (void) 186ev_time (void)
87{ 187{
88#if HAVE_REALTIME 188#if EV_USE_REALTIME
89 struct timespec ts; 189 struct timespec ts;
90 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
91 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
92#else 192#else
93 struct timeval tv; 193 struct timeval tv;
94 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
95 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
96#endif 196#endif
97} 197}
98 198
99static ev_tstamp 199inline ev_tstamp
100get_clock (void) 200get_clock (void)
101{ 201{
102#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
103 if (have_monotonic) 203 if (expect_true (have_monotonic))
104 { 204 {
105 struct timespec ts; 205 struct timespec ts;
106 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
107 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
108 } 208 }
109#endif 209#endif
110 210
111 return ev_time (); 211 return ev_time ();
112} 212}
113 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
114#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
115 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
116 { \ 224 { \
117 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
118 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
119 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
120 cur = newcnt; \ 234 cur = newcnt; \
121 } 235 }
122 236
123/*****************************************************************************/ 237/*****************************************************************************/
124 238
125typedef struct
126{
127 struct ev_io *head;
128 unsigned char wev, rev; /* want, received event set */
129} ANFD;
130
131static ANFD *anfds;
132static int anfdmax;
133
134static int *fdchanges;
135static int fdchangemax, fdchangecnt;
136
137static void 239static void
138anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
139{ 241{
140 while (count--) 242 while (count--)
141 { 243 {
142 base->head = 0; 244 base->head = 0;
143 base->wev = base->rev = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
144 ++base; 248 ++base;
145 } 249 }
146} 250}
147 251
148typedef struct
149{
150 W w;
151 int events;
152} ANPENDING;
153
154static ANPENDING *pendings;
155static int pendingmax, pendingcnt;
156
157static void 252static void
158event (W w, int events) 253event (EV_P_ W w, int events)
159{ 254{
160 if (w->active) 255 if (w->pending)
161 { 256 {
162 w->pending = ++pendingcnt;
163 array_needsize (pendings, pendingmax, pendingcnt, );
164 pendings [pendingcnt - 1].w = w;
165 pendings [pendingcnt - 1].events = events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
166 } 259 }
167}
168 260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
169static void 267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
170fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
171{ 278{
172 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
173 struct ev_io *w; 280 struct ev_io *w;
174 281
175 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
176 { 283 {
177 int ev = w->events & events; 284 int ev = w->events & events;
178 285
179 if (ev) 286 if (ev)
180 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
181 } 288 }
182} 289}
183 290
291/*****************************************************************************/
292
184static void 293static void
185queue_events (W *events, int eventcnt, int type) 294fd_reify (EV_P)
186{ 295{
187 int i; 296 int i;
188 297
189 for (i = 0; i < eventcnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
190 event (events [i], type); 299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events;
313 }
314
315 fdchangecnt = 0;
316}
317
318static void
319fd_change (EV_P_ int fd)
320{
321 if (anfds [fd].reify || fdchangecnt < 0)
322 return;
323
324 anfds [fd].reify = 1;
325
326 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
328 fdchanges [fdchangecnt - 1] = fd;
329}
330
331static void
332fd_kill (EV_P_ int fd)
333{
334 struct ev_io *w;
335
336 while ((w = (struct ev_io *)anfds [fd].head))
337 {
338 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 }
341}
342
343/* called on EBADF to verify fds */
344static void
345fd_ebadf (EV_P)
346{
347 int fd;
348
349 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd);
353}
354
355/* called on ENOMEM in select/poll to kill some fds and retry */
356static void
357fd_enomem (EV_P)
358{
359 int fd;
360
361 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events)
363 {
364 close (fd);
365 fd_kill (EV_A_ fd);
366 return;
367 }
368}
369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
191} 383}
192 384
193/*****************************************************************************/ 385/*****************************************************************************/
194 386
195static struct ev_timer **timers;
196static int timermax, timercnt;
197
198static struct ev_periodic **periodics;
199static int periodicmax, periodiccnt;
200
201static void 387static void
202upheap (WT *timers, int k) 388upheap (WT *heap, int k)
203{ 389{
204 WT w = timers [k]; 390 WT w = heap [k];
205 391
206 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
207 { 393 {
208 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
209 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
210 k >>= 1; 396 k >>= 1;
211 } 397 }
212 398
213 timers [k] = w; 399 heap [k] = w;
214 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
215 401
216} 402}
217 403
218static void 404static void
219downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
220{ 406{
221 WT w = timers [k]; 407 WT w = heap [k];
222 408
223 while (k < (N >> 1)) 409 while (k < (N >> 1))
224 { 410 {
225 int j = k << 1; 411 int j = k << 1;
226 412
227 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
228 ++j; 414 ++j;
229 415
230 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
231 break; 417 break;
232 418
233 timers [k] = timers [j]; 419 heap [k] = heap [j];
234 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
235 k = j; 421 k = j;
236 } 422 }
237 423
238 timers [k] = w; 424 heap [k] = w;
239 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
240} 426}
241 427
242/*****************************************************************************/ 428/*****************************************************************************/
243 429
244typedef struct 430typedef struct
245{ 431{
246 struct ev_signal *head; 432 struct ev_watcher_list *head;
247 sig_atomic_t gotsig; 433 sig_atomic_t volatile gotsig;
248} ANSIG; 434} ANSIG;
249 435
250static ANSIG *signals; 436static ANSIG *signals;
251static int signalmax; 437static int signalmax;
252 438
253static int sigpipe [2]; 439static int sigpipe [2];
254static sig_atomic_t gotsig; 440static sig_atomic_t volatile gotsig;
255static struct ev_io sigev; 441static struct ev_io sigev;
256 442
257static void 443static void
258signals_init (ANSIG *base, int count) 444signals_init (ANSIG *base, int count)
259{ 445{
260 while (count--) 446 while (count--)
261 { 447 {
262 base->head = 0; 448 base->head = 0;
263 base->gotsig = 0; 449 base->gotsig = 0;
450
264 ++base; 451 ++base;
265 } 452 }
266} 453}
267 454
268static void 455static void
270{ 457{
271 signals [signum - 1].gotsig = 1; 458 signals [signum - 1].gotsig = 1;
272 459
273 if (!gotsig) 460 if (!gotsig)
274 { 461 {
462 int old_errno = errno;
275 gotsig = 1; 463 gotsig = 1;
276 write (sigpipe [1], &gotsig, 1); 464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
277 } 466 }
278} 467}
279 468
280static void 469static void
281sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
282{ 471{
283 struct ev_signal *w; 472 struct ev_watcher_list *w;
284 int sig; 473 int signum;
285 474
475 read (sigpipe [0], &revents, 1);
286 gotsig = 0; 476 gotsig = 0;
287 read (sigpipe [0], &revents, 1);
288 477
289 for (sig = signalmax; sig--; ) 478 for (signum = signalmax; signum--; )
290 if (signals [sig].gotsig) 479 if (signals [signum].gotsig)
291 { 480 {
292 signals [sig].gotsig = 0; 481 signals [signum].gotsig = 0;
293 482
294 for (w = signals [sig].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
295 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
296 } 485 }
297} 486}
298 487
299static void 488static void
300siginit (void) 489siginit (EV_P)
301{ 490{
491#ifndef WIN32
302 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
303 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
304 494
305 /* rather than sort out wether we really need nb, set it */ 495 /* rather than sort out wether we really need nb, set it */
306 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
307 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
308 499
309 evio_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
310 evio_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
311} 503}
312 504
313/*****************************************************************************/ 505/*****************************************************************************/
314 506
315static struct ev_idle **idles; 507#ifndef WIN32
316static int idlemax, idlecnt;
317 508
318static struct ev_check **checks; 509static struct ev_child *childs [PID_HASHSIZE];
319static int checkmax, checkcnt; 510static struct ev_signal childev;
511
512#ifndef WCONTINUED
513# define WCONTINUED 0
514#endif
515
516static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents)
533{
534 int pid, status;
535
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 {
538 /* make sure we are called again until all childs have been reaped */
539 event (EV_A_ (W)sw, EV_SIGNAL);
540
541 child_reap (EV_A_ sw, pid, pid, status);
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
544}
545
546#endif
320 547
321/*****************************************************************************/ 548/*****************************************************************************/
322 549
550#if EV_USE_KQUEUE
551# include "ev_kqueue.c"
552#endif
323#if HAVE_EPOLL 553#if EV_USE_EPOLL
324# include "ev_epoll.c" 554# include "ev_epoll.c"
325#endif 555#endif
556#if EV_USE_POLL
557# include "ev_poll.c"
558#endif
326#if HAVE_SELECT 559#if EV_USE_SELECT
327# include "ev_select.c" 560# include "ev_select.c"
328#endif 561#endif
329 562
330int ev_init (int flags) 563int
564ev_version_major (void)
331{ 565{
566 return EV_VERSION_MAJOR;
567}
568
569int
570ev_version_minor (void)
571{
572 return EV_VERSION_MINOR;
573}
574
575/* return true if we are running with elevated privileges and should ignore env variables */
576static int
577enable_secure (void)
578{
579#ifdef WIN32
580 return 0;
581#else
582 return getuid () != geteuid ()
583 || getgid () != getegid ();
584#endif
585}
586
587int
588ev_method (EV_P)
589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
596 if (!method)
597 {
332#if HAVE_MONOTONIC 598#if EV_USE_MONOTONIC
333 { 599 {
334 struct timespec ts; 600 struct timespec ts;
335 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
336 have_monotonic = 1; 602 have_monotonic = 1;
337 } 603 }
338#endif 604#endif
339 605
340 ev_now = ev_time (); 606 rt_now = ev_time ();
341 now = get_clock (); 607 mn_now = get_clock ();
342 diff = ev_now - now; 608 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now;
343 610
611 if (methods == EVMETHOD_AUTO)
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633 }
634}
635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
344 if (pipe (sigpipe)) 713 if (pipe (sigpipe))
345 return 0; 714 return 0;
346 715
347 ev_method = EVMETHOD_NONE; 716 if (!default_loop)
348#if HAVE_EPOLL
349 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
350#endif
351#if HAVE_SELECT
352 if (ev_method == EVMETHOD_NONE) select_init (flags);
353#endif
354
355 if (ev_method)
356 { 717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
722#endif
723
724 loop_init (EV_A_ methods);
725
726 if (ev_method (EV_A))
727 {
357 evw_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
358 siginit (); 730 siginit (EV_A);
359 }
360 731
361 return ev_method; 732#ifndef WIN32
362} 733 ev_signal_init (&childev, childcb, SIGCHLD);
363 734 ev_set_priority (&childev, EV_MAXPRI);
364/*****************************************************************************/ 735 ev_signal_start (EV_A_ &childev);
365 736 ev_unref (EV_A); /* child watcher should not keep loop alive */
366void ev_prefork (void)
367{
368 /* nop */
369}
370
371void ev_postfork_parent (void)
372{
373 /* nop */
374}
375
376void ev_postfork_child (void)
377{
378#if HAVE_EPOLL
379 if (ev_method == EVMETHOD_EPOLL)
380 epoll_postfork_child ();
381#endif 737#endif
738 }
739 else
740 default_loop = 0;
741 }
382 742
743 return default_loop;
744}
745
746void
747ev_default_destroy (void)
748{
749#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop;
751#endif
752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
383 evio_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
384 close (sigpipe [0]); 775 close (sigpipe [0]);
385 close (sigpipe [1]); 776 close (sigpipe [1]);
386 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
387 siginit (); 780 siginit (EV_A);
388} 781}
389 782
390/*****************************************************************************/ 783/*****************************************************************************/
391 784
392static void 785static void
393fd_reify (void) 786call_pending (EV_P)
394{ 787{
395 int i; 788 int pri;
396 789
397 for (i = 0; i < fdchangecnt; ++i) 790 for (pri = NUMPRI; pri--; )
398 { 791 while (pendingcnt [pri])
399 int fd = fdchanges [i];
400 ANFD *anfd = anfds + fd;
401 struct ev_io *w;
402
403 int wev = 0;
404
405 for (w = anfd->head; w; w = w->next)
406 wev |= w->events;
407
408 if (anfd->wev != wev)
409 { 792 {
410 method_modify (fd, anfd->wev, wev); 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
411 anfd->wev = wev;
412 }
413 }
414 794
415 fdchangecnt = 0;
416}
417
418static void
419call_pending ()
420{
421 int i;
422
423 for (i = 0; i < pendingcnt; ++i)
424 {
425 ANPENDING *p = pendings + i;
426
427 if (p->w) 795 if (p->w)
428 { 796 {
429 p->w->pending = 0; 797 p->w->pending = 0;
430 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
431 } 800 }
432 } 801 }
433
434 pendingcnt = 0;
435} 802}
436 803
437static void 804static void
438timers_reify () 805timers_reify (EV_P)
439{ 806{
440 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
441 { 808 {
442 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
443 810
444 event ((W)w, EV_TIMEOUT); 811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
445 812
446 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
447 if (w->repeat) 814 if (w->repeat)
448 { 815 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
449 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
450 assert (("timer timeout in the past, negative repeat?", w->at > now));
451 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
452 } 819 }
453 else 820 else
454 evtimer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
455 }
456}
457 822
823 event (EV_A_ (W)w, EV_TIMEOUT);
824 }
825}
826
458static void 827static void
459periodics_reify () 828periodics_reify (EV_P)
460{ 829{
461 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
462 { 831 {
463 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
464 835
465 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
466 if (w->interval) 837 if (w->interval)
467 { 838 {
468 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
469 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
470 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
471 } 842 }
472 else 843 else
473 evperiodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
474 845
475 event ((W)w, EV_TIMEOUT); 846 event (EV_A_ (W)w, EV_PERIODIC);
476 } 847 }
477} 848}
478 849
479static void 850static void
480periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
481{ 852{
482 int i; 853 int i;
483 854
484 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
485 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
486 { 857 {
487 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
488 859
489 if (w->interval) 860 if (w->interval)
490 { 861 {
491 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
492 863
493 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
494 { 865 {
495 evperiodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
496 evperiodic_start (w); 867 ev_periodic_start (EV_A_ w);
497 868
498 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
499 } 870 }
500 } 871 }
501 } 872 }
502} 873}
503 874
875inline int
876time_update_monotonic (EV_P)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
504static void 893static void
505time_update () 894time_update (EV_P)
506{ 895{
507 int i; 896 int i;
508 897
509 ev_now = ev_time (); 898#if EV_USE_MONOTONIC
510
511 if (have_monotonic) 899 if (expect_true (have_monotonic))
512 { 900 {
513 ev_tstamp odiff = diff; 901 if (time_update_monotonic (EV_A))
514
515 for (i = 4; --i; ) /* loop a few times, before making important decisions */
516 { 902 {
517 now = get_clock (); 903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
518 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
519 908
520 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
521 return; /* all is well */ 910 return; /* all is well */
522 911
523 ev_now = ev_time (); 912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
524 } 920 }
525
526 periodics_reschedule (diff - odiff);
527 /* no timer adjustment, as the monotonic clock doesn't jump */
528 } 921 }
529 else 922 else
923#endif
530 { 924 {
531 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
532 { 928 {
533 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
534 930
535 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
536 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
537 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
538 } 934 }
539 935
540 now = ev_now; 936 mn_now = rt_now;
541 } 937 }
542} 938}
543 939
544int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
545 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
546void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
547{ 956{
548 double block; 957 double block;
549 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
550
551 if (checkcnt)
552 {
553 queue_events ((W *)checks, checkcnt, EV_CHECK);
554 call_pending ();
555 }
556 959
557 do 960 do
558 { 961 {
962 /* queue check watchers (and execute them) */
963 if (expect_false (preparecnt))
964 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A);
967 }
968
559 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
560 fd_reify (); 970 fd_reify (EV_A);
561 971
562 /* calculate blocking time */ 972 /* calculate blocking time */
563 973
564 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 974 /* we only need this for !monotonic clockor timers, but as we basically
975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 {
565 ev_now = ev_time (); 982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
566 985
567 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
568 block = 0.; 987 block = 0.;
569 else 988 else
570 { 989 {
571 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
572 991
573 if (timercnt) 992 if (timercnt)
574 { 993 {
575 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
576 if (block > to) block = to; 995 if (block > to) block = to;
577 } 996 }
578 997
579 if (periodiccnt) 998 if (periodiccnt)
580 { 999 {
581 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
582 if (block > to) block = to; 1001 if (block > to) block = to;
583 } 1002 }
584 1003
585 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
586 } 1005 }
587 1006
588 method_poll (block); 1007 method_poll (EV_A_ block);
589 1008
590 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
591 time_update (); 1010 time_update (EV_A);
592 1011
593 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */
594 periodics_reify (); /* absolute timers first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
595 timers_reify (); /* relative timers second */
596 1015
597 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
598 if (!pendingcnt) 1017 if (!pendingcnt)
599 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
600 1019
601 /* queue check and possibly idle watchers */ 1020 /* queue check watchers, to be executed first */
1021 if (checkcnt)
602 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
603 1023
604 call_pending (); 1024 call_pending (EV_A);
605 } 1025 }
606 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
607 1027
608 if (ev_loop_done != 2) 1028 if (loop_done != 2)
609 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
610} 1036}
611 1037
612/*****************************************************************************/ 1038/*****************************************************************************/
613 1039
614static void 1040inline void
615wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
616{ 1042{
617 elem->next = *head; 1043 elem->next = *head;
618 *head = elem; 1044 *head = elem;
619} 1045}
620 1046
621static void 1047inline void
622wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
623{ 1049{
624 while (*head) 1050 while (*head)
625 { 1051 {
626 if (*head == elem) 1052 if (*head == elem)
631 1057
632 head = &(*head)->next; 1058 head = &(*head)->next;
633 } 1059 }
634} 1060}
635 1061
636static void 1062inline void
637ev_clear (W w) 1063ev_clear_pending (EV_P_ W w)
638{ 1064{
639 if (w->pending) 1065 if (w->pending)
640 { 1066 {
641 pendings [w->pending - 1].w = 0; 1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
642 w->pending = 0; 1068 w->pending = 0;
643 } 1069 }
644} 1070}
645 1071
646static void 1072inline void
647ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
648{ 1074{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
649 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
650} 1080}
651 1081
652static void 1082inline void
653ev_stop (W w) 1083ev_stop (EV_P_ W w)
654{ 1084{
1085 ev_unref (EV_A);
655 w->active = 0; 1086 w->active = 0;
656} 1087}
657 1088
658/*****************************************************************************/ 1089/*****************************************************************************/
659 1090
660void 1091void
661evio_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
662{ 1093{
1094 int fd = w->fd;
1095
663 if (ev_is_active (w)) 1096 if (ev_is_active (w))
664 return; 1097 return;
665 1098
666 int fd = w->fd; 1099 assert (("ev_io_start called with negative fd", fd >= 0));
667 1100
668 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
669 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
670 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
671 1104
672 ++fdchangecnt; 1105 fd_change (EV_A_ fd);
673 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
674 fdchanges [fdchangecnt - 1] = fd;
675} 1106}
676 1107
677void 1108void
678evio_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
679{ 1110{
680 ev_clear ((W)w); 1111 ev_clear_pending (EV_A_ (W)w);
681 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
682 return; 1113 return;
683 1114
684 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
685 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
686 1117
687 ++fdchangecnt; 1118 fd_change (EV_A_ w->fd);
688 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
689 fdchanges [fdchangecnt - 1] = w->fd;
690} 1119}
691 1120
692void 1121void
693evtimer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
694{ 1123{
695 if (ev_is_active (w)) 1124 if (ev_is_active (w))
696 return; 1125 return;
697 1126
698 w->at += now; 1127 ((WT)w)->at += mn_now;
699 1128
700 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
701 1130
702 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
703 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
704 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
705 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
706}
707 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
708void 1139void
709evtimer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
710{ 1141{
711 ev_clear ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
712 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
713 return; 1144 return;
714 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
715 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
716 { 1149 {
717 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
718 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
719 } 1152 }
720 1153
721 w->at = w->repeat; 1154 ((WT)w)->at = w->repeat;
722 1155
723 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
724} 1157}
725 1158
726void 1159void
727evtimer_again (struct ev_timer *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
728{ 1161{
729 if (ev_is_active (w)) 1162 if (ev_is_active (w))
730 { 1163 {
731 if (w->repeat) 1164 if (w->repeat)
732 { 1165 {
733 w->at = now + w->repeat; 1166 ((WT)w)->at = mn_now + w->repeat;
734 downheap ((WT *)timers, timercnt, w->active - 1); 1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
735 } 1168 }
736 else 1169 else
737 evtimer_stop (w); 1170 ev_timer_stop (EV_A_ w);
738 } 1171 }
739 else if (w->repeat) 1172 else if (w->repeat)
740 evtimer_start (w); 1173 ev_timer_start (EV_A_ w);
741} 1174}
742 1175
743void 1176void
744evperiodic_start (struct ev_periodic *w) 1177ev_periodic_start (EV_P_ struct ev_periodic *w)
745{ 1178{
746 if (ev_is_active (w)) 1179 if (ev_is_active (w))
747 return; 1180 return;
748 1181
749 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
750 1183
751 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
752 if (w->interval) 1185 if (w->interval)
753 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
754 1187
755 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
756 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
757 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
758 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
759}
760 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
761void 1196void
762evperiodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
763{ 1198{
764 ev_clear ((W)w); 1199 ev_clear_pending (EV_A_ (W)w);
765 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
766 return; 1201 return;
767 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
768 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
769 { 1206 {
770 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
771 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
772 } 1209 }
773 1210
774 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
775} 1212}
776 1213
777void 1214void
778evsignal_start (struct ev_signal *w) 1215ev_idle_start (EV_P_ struct ev_idle *w)
779{ 1216{
780 if (ev_is_active (w)) 1217 if (ev_is_active (w))
781 return; 1218 return;
782 1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279
1280#ifndef SA_RESTART
1281# define SA_RESTART 0
1282#endif
1283
1284void
1285ev_signal_start (EV_P_ struct ev_signal *w)
1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1290 if (ev_is_active (w))
1291 return;
1292
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294
783 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
784 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
785 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
786 1298
787 if (!w->next) 1299 if (!((WL)w)->next)
788 { 1300 {
789 struct sigaction sa; 1301 struct sigaction sa;
790 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
791 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
792 sa.sa_flags = 0; 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
793 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
794 } 1306 }
795} 1307}
796 1308
797void 1309void
798evsignal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
799{ 1311{
800 ev_clear ((W)w); 1312 ev_clear_pending (EV_A_ (W)w);
801 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
802 return; 1314 return;
803 1315
804 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
805 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
806 1318
807 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
808 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
809} 1321}
810 1322
811void evidle_start (struct ev_idle *w) 1323void
1324ev_child_start (EV_P_ struct ev_child *w)
812{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
813 if (ev_is_active (w)) 1329 if (ev_is_active (w))
814 return; 1330 return;
815 1331
816 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
817 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
818 idles [idlecnt - 1] = w;
819} 1334}
820 1335
821void evidle_stop (struct ev_idle *w) 1336void
1337ev_child_stop (EV_P_ struct ev_child *w)
822{ 1338{
823 ev_clear ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
824 if (ev_is_active (w)) 1340 if (ev_is_active (w))
825 return; 1341 return;
826 1342
827 idles [w->active - 1] = idles [--idlecnt]; 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
828 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
829}
830
831void evcheck_start (struct ev_check *w)
832{
833 if (ev_is_active (w))
834 return;
835
836 ev_start ((W)w, ++checkcnt);
837 array_needsize (checks, checkmax, checkcnt, );
838 checks [checkcnt - 1] = w;
839}
840
841void evcheck_stop (struct ev_check *w)
842{
843 ev_clear ((W)w);
844 if (ev_is_active (w))
845 return;
846
847 checks [w->active - 1] = checks [--checkcnt];
848 ev_stop ((W)w);
849} 1345}
850 1346
851/*****************************************************************************/ 1347/*****************************************************************************/
852 1348
853struct ev_once 1349struct ev_once
857 void (*cb)(int revents, void *arg); 1353 void (*cb)(int revents, void *arg);
858 void *arg; 1354 void *arg;
859}; 1355};
860 1356
861static void 1357static void
862once_cb (struct ev_once *once, int revents) 1358once_cb (EV_P_ struct ev_once *once, int revents)
863{ 1359{
864 void (*cb)(int revents, void *arg) = once->cb; 1360 void (*cb)(int revents, void *arg) = once->cb;
865 void *arg = once->arg; 1361 void *arg = once->arg;
866 1362
867 evio_stop (&once->io); 1363 ev_io_stop (EV_A_ &once->io);
868 evtimer_stop (&once->to); 1364 ev_timer_stop (EV_A_ &once->to);
869 free (once); 1365 free (once);
870 1366
871 cb (revents, arg); 1367 cb (revents, arg);
872} 1368}
873 1369
874static void 1370static void
875once_cb_io (struct ev_io *w, int revents) 1371once_cb_io (EV_P_ struct ev_io *w, int revents)
876{ 1372{
877 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
878} 1374}
879 1375
880static void 1376static void
881once_cb_to (struct ev_timer *w, int revents) 1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
882{ 1378{
883 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
884} 1380}
885 1381
886void 1382void
887ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
888{ 1384{
889 struct ev_once *once = malloc (sizeof (struct ev_once)); 1385 struct ev_once *once = malloc (sizeof (struct ev_once));
890 1386
891 if (!once) 1387 if (!once)
892 cb (EV_ERROR, arg); 1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
893 else 1389 else
894 { 1390 {
895 once->cb = cb; 1391 once->cb = cb;
896 once->arg = arg; 1392 once->arg = arg;
897 1393
898 evw_init (&once->io, once_cb_io); 1394 ev_watcher_init (&once->io, once_cb_io);
899
900 if (fd >= 0) 1395 if (fd >= 0)
901 { 1396 {
902 evio_set (&once->io, fd, events); 1397 ev_io_set (&once->io, fd, events);
903 evio_start (&once->io); 1398 ev_io_start (EV_A_ &once->io);
904 } 1399 }
905 1400
906 evw_init (&once->to, once_cb_to); 1401 ev_watcher_init (&once->to, once_cb_to);
907
908 if (timeout >= 0.) 1402 if (timeout >= 0.)
909 { 1403 {
910 evtimer_set (&once->to, timeout, 0.); 1404 ev_timer_set (&once->to, timeout, 0.);
911 evtimer_start (&once->to); 1405 ev_timer_start (EV_A_ &once->to);
912 } 1406 }
913 } 1407 }
914} 1408}
915 1409
916/*****************************************************************************/
917
918#if 0
919
920struct ev_io wio;
921
922static void
923sin_cb (struct ev_io *w, int revents)
924{
925 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
926}
927
928static void
929ocb (struct ev_timer *w, int revents)
930{
931 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
932 evtimer_stop (w);
933 evtimer_start (w);
934}
935
936static void
937scb (struct ev_signal *w, int revents)
938{
939 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
940 evio_stop (&wio);
941 evio_start (&wio);
942}
943
944static void
945gcb (struct ev_signal *w, int revents)
946{
947 fprintf (stderr, "generic %x\n", revents);
948
949}
950
951int main (void)
952{
953 ev_init (0);
954
955 evio_init (&wio, sin_cb, 0, EV_READ);
956 evio_start (&wio);
957
958 struct ev_timer t[10000];
959
960#if 0
961 int i;
962 for (i = 0; i < 10000; ++i)
963 {
964 struct ev_timer *w = t + i;
965 evw_init (w, ocb, i);
966 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
967 evtimer_start (w);
968 if (drand48 () < 0.5)
969 evtimer_stop (w);
970 }
971#endif
972
973 struct ev_timer t1;
974 evtimer_init (&t1, ocb, 5, 10);
975 evtimer_start (&t1);
976
977 struct ev_signal sig;
978 evsignal_init (&sig, scb, SIGQUIT);
979 evsignal_start (&sig);
980
981 struct ev_check cw;
982 evcheck_init (&cw, gcb);
983 evcheck_start (&cw);
984
985 struct ev_idle iw;
986 evidle_init (&iw, gcb);
987 evidle_start (&iw);
988
989 ev_loop (0);
990
991 return 0;
992}
993
994#endif
995
996
997
998

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines