ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.28 by root, Thu Nov 1 06:48:49 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 149
84/*****************************************************************************/ 150/*****************************************************************************/
85 151
86ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
87ev_time (void) 186ev_time (void)
88{ 187{
89#if HAVE_REALTIME 188#if EV_USE_REALTIME
90 struct timespec ts; 189 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 192#else
94 struct timeval tv; 193 struct timeval tv;
95 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 196#endif
98} 197}
99 198
100static ev_tstamp 199inline ev_tstamp
101get_clock (void) 200get_clock (void)
102{ 201{
103#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
104 if (have_monotonic) 203 if (expect_true (have_monotonic))
105 { 204 {
106 struct timespec ts; 205 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 208 }
110#endif 209#endif
111 210
112 return ev_time (); 211 return ev_time ();
113} 212}
114 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
115#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
117 { \ 224 { \
118 int newcnt = cur; \ 225 int newcnt = cur; \
119 do \ 226 do \
120 { \ 227 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 228 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 229 } \
123 while ((cnt) > newcnt); \ 230 while ((cnt) > newcnt); \
124 \ 231 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 234 cur = newcnt; \
128 } 235 }
129 236
130/*****************************************************************************/ 237/*****************************************************************************/
131 238
132typedef struct
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static void 239static void
142anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
143{ 241{
144 while (count--) 242 while (count--)
145 { 243 {
146 base->head = 0; 244 base->head = 0;
147 base->events = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
148 ++base; 248 ++base;
149 } 249 }
150} 250}
151 251
152typedef struct
153{
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void 252static void
162event (W w, int events) 253event (EV_P_ W w, int events)
163{ 254{
164 if (w->active) 255 if (w->pending)
165 { 256 {
166 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
170 } 259 }
171}
172 260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
173static void 267static void
174queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
175{ 269{
176 int i; 270 int i;
177 271
178 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type); 273 event (EV_A_ events [i], type);
180} 274}
181 275
182static void 276static void
183fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
184{ 278{
185 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 280 struct ev_io *w;
187 281
188 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
189 { 283 {
190 int ev = w->events & events; 284 int ev = w->events & events;
191 285
192 if (ev) 286 if (ev)
193 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
194 } 288 }
195} 289}
196 290
197/*****************************************************************************/ 291/*****************************************************************************/
198 292
199static int *fdchanges;
200static int fdchangemax, fdchangecnt;
201
202static void 293static void
203fd_reify (void) 294fd_reify (EV_P)
204{ 295{
205 int i; 296 int i;
206 297
207 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
208 { 299 {
210 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 302 struct ev_io *w;
212 303
213 int events = 0; 304 int events = 0;
214 305
215 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
216 events |= w->events; 307 events |= w->events;
217 308
218 anfd->events &= ~EV_REIFY; 309 anfd->reify = 0;
219 310
220 if (anfd->events != events)
221 {
222 method_modify (fd, anfd->events, events); 311 method_modify (EV_A_ fd, anfd->events, events);
223 anfd->events = events; 312 anfd->events = events;
224 }
225 } 313 }
226 314
227 fdchangecnt = 0; 315 fdchangecnt = 0;
228} 316}
229 317
230static void 318static void
231fd_change (int fd) 319fd_change (EV_P_ int fd)
232{ 320{
233 if (anfds [fd].events & EV_REIFY) 321 if (anfds [fd].reify || fdchangecnt < 0)
234 return; 322 return;
235 323
236 anfds [fd].events |= EV_REIFY; 324 anfds [fd].reify = 1;
237 325
238 ++fdchangecnt; 326 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
240 fdchanges [fdchangecnt - 1] = fd; 328 fdchanges [fdchangecnt - 1] = fd;
241} 329}
242 330
331static void
332fd_kill (EV_P_ int fd)
333{
334 struct ev_io *w;
335
336 while ((w = (struct ev_io *)anfds [fd].head))
337 {
338 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 }
341}
342
243/* called on EBADF to verify fds */ 343/* called on EBADF to verify fds */
244static void 344static void
245fd_recheck (void) 345fd_ebadf (EV_P)
246{ 346{
247 int fd; 347 int fd;
248 348
249 for (fd = 0; fd < anfdmax; ++fd) 349 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 350 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
252 while (anfds [fd].head) 352 fd_kill (EV_A_ fd);
353}
354
355/* called on ENOMEM in select/poll to kill some fds and retry */
356static void
357fd_enomem (EV_P)
358{
359 int fd;
360
361 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events)
253 { 363 {
254 event ((W)anfds [fd].head, EV_ERROR); 364 close (fd);
255 ev_io_stop (anfds [fd].head); 365 fd_kill (EV_A_ fd);
366 return;
256 } 367 }
368}
369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
257} 383}
258 384
259/*****************************************************************************/ 385/*****************************************************************************/
260 386
261static struct ev_timer **timers;
262static int timermax, timercnt;
263
264static struct ev_periodic **periodics;
265static int periodicmax, periodiccnt;
266
267static void 387static void
268upheap (WT *timers, int k) 388upheap (WT *heap, int k)
269{ 389{
270 WT w = timers [k]; 390 WT w = heap [k];
271 391
272 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
273 { 393 {
274 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
275 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
276 k >>= 1; 396 k >>= 1;
277 } 397 }
278 398
279 timers [k] = w; 399 heap [k] = w;
280 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
281 401
282} 402}
283 403
284static void 404static void
285downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
286{ 406{
287 WT w = timers [k]; 407 WT w = heap [k];
288 408
289 while (k < (N >> 1)) 409 while (k < (N >> 1))
290 { 410 {
291 int j = k << 1; 411 int j = k << 1;
292 412
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
294 ++j; 414 ++j;
295 415
296 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
297 break; 417 break;
298 418
299 timers [k] = timers [j]; 419 heap [k] = heap [j];
300 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
301 k = j; 421 k = j;
302 } 422 }
303 423
304 timers [k] = w; 424 heap [k] = w;
305 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
306} 426}
307 427
308/*****************************************************************************/ 428/*****************************************************************************/
309 429
310typedef struct 430typedef struct
311{ 431{
312 struct ev_signal *head; 432 struct ev_watcher_list *head;
313 sig_atomic_t gotsig; 433 sig_atomic_t volatile gotsig;
314} ANSIG; 434} ANSIG;
315 435
316static ANSIG *signals; 436static ANSIG *signals;
317static int signalmax; 437static int signalmax;
318 438
319static int sigpipe [2]; 439static int sigpipe [2];
320static sig_atomic_t gotsig; 440static sig_atomic_t volatile gotsig;
321static struct ev_io sigev; 441static struct ev_io sigev;
322 442
323static void 443static void
324signals_init (ANSIG *base, int count) 444signals_init (ANSIG *base, int count)
325{ 445{
326 while (count--) 446 while (count--)
327 { 447 {
328 base->head = 0; 448 base->head = 0;
329 base->gotsig = 0; 449 base->gotsig = 0;
450
330 ++base; 451 ++base;
331 } 452 }
332} 453}
333 454
334static void 455static void
336{ 457{
337 signals [signum - 1].gotsig = 1; 458 signals [signum - 1].gotsig = 1;
338 459
339 if (!gotsig) 460 if (!gotsig)
340 { 461 {
462 int old_errno = errno;
341 gotsig = 1; 463 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1); 464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
343 } 466 }
344} 467}
345 468
346static void 469static void
347sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
348{ 471{
349 struct ev_signal *w; 472 struct ev_watcher_list *w;
350 int sig; 473 int signum;
351 474
475 read (sigpipe [0], &revents, 1);
352 gotsig = 0; 476 gotsig = 0;
353 read (sigpipe [0], &revents, 1);
354 477
355 for (sig = signalmax; sig--; ) 478 for (signum = signalmax; signum--; )
356 if (signals [sig].gotsig) 479 if (signals [signum].gotsig)
357 { 480 {
358 signals [sig].gotsig = 0; 481 signals [signum].gotsig = 0;
359 482
360 for (w = signals [sig].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
362 } 485 }
363} 486}
364 487
365static void 488static void
366siginit (void) 489siginit (EV_P)
367{ 490{
491#ifndef WIN32
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370 494
371 /* rather than sort out wether we really need nb, set it */ 495 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
374 499
375 ev_io_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 ev_io_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
377} 503}
378 504
379/*****************************************************************************/ 505/*****************************************************************************/
380 506
381static struct ev_idle **idles; 507#ifndef WIN32
382static int idlemax, idlecnt;
383
384static struct ev_prepare **prepares;
385static int preparemax, preparecnt;
386
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391 508
392static struct ev_child *childs [PID_HASHSIZE]; 509static struct ev_child *childs [PID_HASHSIZE];
393static struct ev_signal childev; 510static struct ev_signal childev;
394 511
395#ifndef WCONTINUED 512#ifndef WCONTINUED
396# define WCONTINUED 0 513# define WCONTINUED 0
397#endif 514#endif
398 515
399static void 516static void
400childcb (struct ev_signal *sw, int revents) 517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
401{ 518{
402 struct ev_child *w; 519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents)
533{
403 int pid, status; 534 int pid, status;
404 535
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 537 {
407 if (w->pid == pid || w->pid == -1) 538 /* make sure we are called again until all childs have been reaped */
408 { 539 event (EV_A_ (W)sw, EV_SIGNAL);
409 w->status = status; 540
410 event ((W)w, EV_CHILD); 541 child_reap (EV_A_ sw, pid, pid, status);
411 } 542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
412} 544}
545
546#endif
413 547
414/*****************************************************************************/ 548/*****************************************************************************/
415 549
550#if EV_USE_KQUEUE
551# include "ev_kqueue.c"
552#endif
416#if HAVE_EPOLL 553#if EV_USE_EPOLL
417# include "ev_epoll.c" 554# include "ev_epoll.c"
418#endif 555#endif
556#if EV_USE_POLL
557# include "ev_poll.c"
558#endif
419#if HAVE_SELECT 559#if EV_USE_SELECT
420# include "ev_select.c" 560# include "ev_select.c"
421#endif 561#endif
422 562
423int 563int
424ev_version_major (void) 564ev_version_major (void)
430ev_version_minor (void) 570ev_version_minor (void)
431{ 571{
432 return EV_VERSION_MINOR; 572 return EV_VERSION_MINOR;
433} 573}
434 574
435int ev_init (int flags) 575/* return true if we are running with elevated privileges and should ignore env variables */
576static int
577enable_secure (void)
436{ 578{
579#ifdef WIN32
580 return 0;
581#else
582 return getuid () != geteuid ()
583 || getgid () != getegid ();
584#endif
585}
586
587int
588ev_method (EV_P)
589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
437 if (!ev_method) 596 if (!method)
438 { 597 {
439#if HAVE_MONOTONIC 598#if EV_USE_MONOTONIC
440 { 599 {
441 struct timespec ts; 600 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 602 have_monotonic = 1;
444 } 603 }
445#endif 604#endif
446 605
447 ev_now = ev_time (); 606 rt_now = ev_time ();
448 now = get_clock (); 607 mn_now = get_clock ();
608 now_floor = mn_now;
449 diff = ev_now - now; 609 rtmn_diff = rt_now - mn_now;
450 610
611 if (methods == EVMETHOD_AUTO)
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633 }
634}
635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
451 if (pipe (sigpipe)) 713 if (pipe (sigpipe))
452 return 0; 714 return 0;
453 715
454 ev_method = EVMETHOD_NONE; 716 if (!default_loop)
455#if HAVE_EPOLL 717 {
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
457#endif 722#endif
458#if HAVE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif
461 723
724 loop_init (EV_A_ methods);
725
462 if (ev_method) 726 if (ev_method (EV_A))
463 { 727 {
464 ev_watcher_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
465 siginit (); 730 siginit (EV_A);
466 731
732#ifndef WIN32
467 ev_signal_init (&childev, childcb, SIGCHLD); 733 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI);
468 ev_signal_start (&childev); 735 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif
469 } 738 }
739 else
740 default_loop = 0;
470 } 741 }
471 742
472 return ev_method; 743 return default_loop;
473} 744}
474 745
475/*****************************************************************************/
476
477void 746void
478ev_prefork (void) 747ev_default_destroy (void)
479{ 748{
480 /* nop */ 749#if EV_MULTIPLICITY
481} 750 struct ev_loop *loop = default_loop;
482
483void
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif 751#endif
496 752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
497 ev_io_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
498 close (sigpipe [0]); 775 close (sigpipe [0]);
499 close (sigpipe [1]); 776 close (sigpipe [1]);
500 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
501 siginit (); 780 siginit (EV_A);
502} 781}
503 782
504/*****************************************************************************/ 783/*****************************************************************************/
505 784
506static void 785static void
507call_pending (void) 786call_pending (EV_P)
508{ 787{
788 int pri;
789
790 for (pri = NUMPRI; pri--; )
509 while (pendingcnt) 791 while (pendingcnt [pri])
510 { 792 {
511 ANPENDING *p = pendings + --pendingcnt; 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
512 794
513 if (p->w) 795 if (p->w)
514 { 796 {
515 p->w->pending = 0; 797 p->w->pending = 0;
516 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
517 } 800 }
518 } 801 }
519} 802}
520 803
521static void 804static void
522timers_reify (void) 805timers_reify (EV_P)
523{ 806{
524 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
525 { 808 {
526 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
527 810
528 event ((W)w, EV_TIMEOUT); 811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
529 812
530 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
531 if (w->repeat) 814 if (w->repeat)
532 { 815 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
536 } 819 }
537 else 820 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 }
540}
541 822
823 event (EV_A_ (W)w, EV_TIMEOUT);
824 }
825}
826
542static void 827static void
543periodics_reify (void) 828periodics_reify (EV_P)
544{ 829{
545 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
546 { 831 {
547 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
548 835
549 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
550 if (w->interval) 837 if (w->interval)
551 { 838 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
555 } 842 }
556 else 843 else
557 ev_periodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
558 845
559 event ((W)w, EV_TIMEOUT); 846 event (EV_A_ (W)w, EV_PERIODIC);
560 } 847 }
561} 848}
562 849
563static void 850static void
564periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
565{ 852{
566 int i; 853 int i;
567 854
568 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
570 { 857 {
571 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
572 859
573 if (w->interval) 860 if (w->interval)
574 { 861 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
576 863
577 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
578 { 865 {
579 ev_periodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
580 ev_periodic_start (w); 867 ev_periodic_start (EV_A_ w);
581 868
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 870 }
584 } 871 }
585 } 872 }
586} 873}
587 874
875inline int
876time_update_monotonic (EV_P)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
588static void 893static void
589time_update (void) 894time_update (EV_P)
590{ 895{
591 int i; 896 int i;
592 897
593 ev_now = ev_time (); 898#if EV_USE_MONOTONIC
594
595 if (have_monotonic) 899 if (expect_true (have_monotonic))
596 { 900 {
597 ev_tstamp odiff = diff; 901 if (time_update_monotonic (EV_A))
598
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */
600 { 902 {
601 now = get_clock (); 903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
602 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
603 908
604 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
605 return; /* all is well */ 910 return; /* all is well */
606 911
607 ev_now = ev_time (); 912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
608 } 920 }
609
610 periodics_reschedule (diff - odiff);
611 /* no timer adjustment, as the monotonic clock doesn't jump */
612 } 921 }
613 else 922 else
923#endif
614 { 924 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
616 { 928 {
617 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
618 930
619 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
620 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
621 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
622 } 934 }
623 935
624 now = ev_now; 936 mn_now = rt_now;
625 } 937 }
626} 938}
627 939
628int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
629 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
630void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
631{ 956{
632 double block; 957 double block;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
634 959
635 do 960 do
636 { 961 {
637 /* queue check watchers (and execute them) */ 962 /* queue check watchers (and execute them) */
638 if (preparecnt) 963 if (expect_false (preparecnt))
639 { 964 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
641 call_pending (); 966 call_pending (EV_A);
642 } 967 }
643 968
644 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
645 fd_reify (); 970 fd_reify (EV_A);
646 971
647 /* calculate blocking time */ 972 /* calculate blocking time */
648 973
649 /* we only need this for !monotonic clockor timers, but as we basically 974 /* we only need this for !monotonic clockor timers, but as we basically
650 always have timers, we just calculate it always */ 975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 {
651 ev_now = ev_time (); 982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
652 985
653 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.; 987 block = 0.;
655 else 988 else
656 { 989 {
657 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
658 991
659 if (timercnt) 992 if (timercnt)
660 { 993 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
662 if (block > to) block = to; 995 if (block > to) block = to;
663 } 996 }
664 997
665 if (periodiccnt) 998 if (periodiccnt)
666 { 999 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
668 if (block > to) block = to; 1001 if (block > to) block = to;
669 } 1002 }
670 1003
671 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
672 } 1005 }
673 1006
674 method_poll (block); 1007 method_poll (EV_A_ block);
675 1008
676 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
677 time_update (); 1010 time_update (EV_A);
678 1011
679 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 1013 timers_reify (EV_A); /* relative timers called last */
681 periodics_reify (); /* absolute timers called first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
682 1015
683 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
684 if (!pendingcnt) 1017 if (!pendingcnt)
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
686 1019
687 /* queue check watchers, to be executed first */ 1020 /* queue check watchers, to be executed first */
688 if (checkcnt) 1021 if (checkcnt)
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 1023
691 call_pending (); 1024 call_pending (EV_A);
692 } 1025 }
693 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
694 1027
695 if (ev_loop_done != 2) 1028 if (loop_done != 2)
696 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
697} 1036}
698 1037
699/*****************************************************************************/ 1038/*****************************************************************************/
700 1039
701static void 1040inline void
702wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
703{ 1042{
704 elem->next = *head; 1043 elem->next = *head;
705 *head = elem; 1044 *head = elem;
706} 1045}
707 1046
708static void 1047inline void
709wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
710{ 1049{
711 while (*head) 1050 while (*head)
712 { 1051 {
713 if (*head == elem) 1052 if (*head == elem)
718 1057
719 head = &(*head)->next; 1058 head = &(*head)->next;
720 } 1059 }
721} 1060}
722 1061
723static void 1062inline void
724ev_clear (W w) 1063ev_clear_pending (EV_P_ W w)
725{ 1064{
726 if (w->pending) 1065 if (w->pending)
727 { 1066 {
728 pendings [w->pending - 1].w = 0; 1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
729 w->pending = 0; 1068 w->pending = 0;
730 } 1069 }
731} 1070}
732 1071
733static void 1072inline void
734ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
735{ 1074{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
736 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
737} 1080}
738 1081
739static void 1082inline void
740ev_stop (W w) 1083ev_stop (EV_P_ W w)
741{ 1084{
1085 ev_unref (EV_A);
742 w->active = 0; 1086 w->active = 0;
743} 1087}
744 1088
745/*****************************************************************************/ 1089/*****************************************************************************/
746 1090
747void 1091void
748ev_io_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
749{ 1093{
1094 int fd = w->fd;
1095
750 if (ev_is_active (w)) 1096 if (ev_is_active (w))
751 return; 1097 return;
752 1098
753 int fd = w->fd; 1099 assert (("ev_io_start called with negative fd", fd >= 0));
754 1100
755 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
758 1104
759 fd_change (fd); 1105 fd_change (EV_A_ fd);
760} 1106}
761 1107
762void 1108void
763ev_io_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
764{ 1110{
765 ev_clear ((W)w); 1111 ev_clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
767 return; 1113 return;
768 1114
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
771 1117
772 fd_change (w->fd); 1118 fd_change (EV_A_ w->fd);
773} 1119}
774 1120
775void 1121void
776ev_timer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
777{ 1123{
778 if (ev_is_active (w)) 1124 if (ev_is_active (w))
779 return; 1125 return;
780 1126
781 w->at += now; 1127 ((WT)w)->at += mn_now;
782 1128
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 1130
785 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
786 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
787 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
789}
790 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
791void 1139void
792ev_timer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
793{ 1141{
794 ev_clear ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
796 return; 1144 return;
797 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
798 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
799 { 1149 {
800 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
801 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
802 } 1152 }
803 1153
804 w->at = w->repeat; 1154 ((WT)w)->at = w->repeat;
805 1155
806 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
807} 1157}
808 1158
809void 1159void
810ev_timer_again (struct ev_timer *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
811{ 1161{
812 if (ev_is_active (w)) 1162 if (ev_is_active (w))
813 { 1163 {
814 if (w->repeat) 1164 if (w->repeat)
815 { 1165 {
816 w->at = now + w->repeat; 1166 ((WT)w)->at = mn_now + w->repeat;
817 downheap ((WT *)timers, timercnt, w->active - 1); 1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
818 } 1168 }
819 else 1169 else
820 ev_timer_stop (w); 1170 ev_timer_stop (EV_A_ w);
821 } 1171 }
822 else if (w->repeat) 1172 else if (w->repeat)
823 ev_timer_start (w); 1173 ev_timer_start (EV_A_ w);
824} 1174}
825 1175
826void 1176void
827ev_periodic_start (struct ev_periodic *w) 1177ev_periodic_start (EV_P_ struct ev_periodic *w)
828{ 1178{
829 if (ev_is_active (w)) 1179 if (ev_is_active (w))
830 return; 1180 return;
831 1181
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
833 1183
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval) 1185 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
837 1187
838 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
840 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
841 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
842}
843 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
844void 1196void
845ev_periodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
846{ 1198{
847 ev_clear ((W)w); 1199 ev_clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
849 return; 1201 return;
850 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
851 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
852 { 1206 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
855 } 1209 }
856 1210
857 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
858} 1212}
859 1213
860void 1214void
861ev_signal_start (struct ev_signal *w) 1215ev_idle_start (EV_P_ struct ev_idle *w)
862{ 1216{
863 if (ev_is_active (w)) 1217 if (ev_is_active (w))
864 return; 1218 return;
865 1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279
1280#ifndef SA_RESTART
1281# define SA_RESTART 0
1282#endif
1283
1284void
1285ev_signal_start (EV_P_ struct ev_signal *w)
1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1290 if (ev_is_active (w))
1291 return;
1292
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294
866 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
867 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
869 1298
870 if (!w->next) 1299 if (!((WL)w)->next)
871 { 1300 {
872 struct sigaction sa; 1301 struct sigaction sa;
873 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
874 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
877 } 1306 }
878} 1307}
879 1308
880void 1309void
881ev_signal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
882{ 1311{
883 ev_clear ((W)w); 1312 ev_clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
885 return; 1314 return;
886 1315
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
889 1318
890 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
892} 1321}
893 1322
894void 1323void
895ev_idle_start (struct ev_idle *w) 1324ev_child_start (EV_P_ struct ev_child *w)
896{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
897 if (ev_is_active (w)) 1329 if (ev_is_active (w))
898 return; 1330 return;
899 1331
900 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
901 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
902 idles [idlecnt - 1] = w;
903} 1334}
904 1335
905void 1336void
906ev_idle_stop (struct ev_idle *w) 1337ev_child_stop (EV_P_ struct ev_child *w)
907{ 1338{
908 ev_clear ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
909 if (ev_is_active (w)) 1340 if (ev_is_active (w))
910 return; 1341 return;
911 1342
912 idles [w->active - 1] = idles [--idlecnt];
913 ev_stop ((W)w);
914}
915
916void
917ev_prepare_start (struct ev_prepare *w)
918{
919 if (ev_is_active (w))
920 return;
921
922 ev_start ((W)w, ++preparecnt);
923 array_needsize (prepares, preparemax, preparecnt, );
924 prepares [preparecnt - 1] = w;
925}
926
927void
928ev_prepare_stop (struct ev_prepare *w)
929{
930 ev_clear ((W)w);
931 if (ev_is_active (w))
932 return;
933
934 prepares [w->active - 1] = prepares [--preparecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_check_start (struct ev_check *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++checkcnt);
945 array_needsize (checks, checkmax, checkcnt, );
946 checks [checkcnt - 1] = w;
947}
948
949void
950ev_check_stop (struct ev_check *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 checks [w->active - 1] = checks [--checkcnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_child_start (struct ev_child *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, 1);
967 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
968}
969
970void
971ev_child_stop (struct ev_child *w)
972{
973 ev_clear ((W)w);
974 if (ev_is_active (w))
975 return;
976
977 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
978 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
979} 1345}
980 1346
981/*****************************************************************************/ 1347/*****************************************************************************/
982 1348
983struct ev_once 1349struct ev_once
987 void (*cb)(int revents, void *arg); 1353 void (*cb)(int revents, void *arg);
988 void *arg; 1354 void *arg;
989}; 1355};
990 1356
991static void 1357static void
992once_cb (struct ev_once *once, int revents) 1358once_cb (EV_P_ struct ev_once *once, int revents)
993{ 1359{
994 void (*cb)(int revents, void *arg) = once->cb; 1360 void (*cb)(int revents, void *arg) = once->cb;
995 void *arg = once->arg; 1361 void *arg = once->arg;
996 1362
997 ev_io_stop (&once->io); 1363 ev_io_stop (EV_A_ &once->io);
998 ev_timer_stop (&once->to); 1364 ev_timer_stop (EV_A_ &once->to);
999 free (once); 1365 free (once);
1000 1366
1001 cb (revents, arg); 1367 cb (revents, arg);
1002} 1368}
1003 1369
1004static void 1370static void
1005once_cb_io (struct ev_io *w, int revents) 1371once_cb_io (EV_P_ struct ev_io *w, int revents)
1006{ 1372{
1007 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1008} 1374}
1009 1375
1010static void 1376static void
1011once_cb_to (struct ev_timer *w, int revents) 1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
1012{ 1378{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1014} 1380}
1015 1381
1016void 1382void
1017ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1018{ 1384{
1019 struct ev_once *once = malloc (sizeof (struct ev_once)); 1385 struct ev_once *once = malloc (sizeof (struct ev_once));
1020 1386
1021 if (!once) 1387 if (!once)
1022 cb (EV_ERROR, arg); 1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1023 else 1389 else
1024 { 1390 {
1025 once->cb = cb; 1391 once->cb = cb;
1026 once->arg = arg; 1392 once->arg = arg;
1027 1393
1028 ev_watcher_init (&once->io, once_cb_io); 1394 ev_watcher_init (&once->io, once_cb_io);
1029
1030 if (fd >= 0) 1395 if (fd >= 0)
1031 { 1396 {
1032 ev_io_set (&once->io, fd, events); 1397 ev_io_set (&once->io, fd, events);
1033 ev_io_start (&once->io); 1398 ev_io_start (EV_A_ &once->io);
1034 } 1399 }
1035 1400
1036 ev_watcher_init (&once->to, once_cb_to); 1401 ev_watcher_init (&once->to, once_cb_to);
1037
1038 if (timeout >= 0.) 1402 if (timeout >= 0.)
1039 { 1403 {
1040 ev_timer_set (&once->to, timeout, 0.); 1404 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1405 ev_timer_start (EV_A_ &once->to);
1042 } 1406 }
1043 } 1407 }
1044} 1408}
1045 1409
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines