ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif 117#endif
96 118
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
108 122
109/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
110 130
111#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
114#endif 134#endif
115 135
116#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
119#endif 143#endif
120 144
121/**/ 145/**/
122 146
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 151
152#ifdef EV_H
153# include EV_H
154#else
128#include "ev.h" 155# include "ev.h"
156#endif
129 157
130#if __GNUC__ >= 3 158#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 160# define inline inline
133#else 161#else
139#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
140 168
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
144typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
147 178
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 180
181#ifdef _WIN32
182# include "ev_win32.c"
183#endif
184
150/*****************************************************************************/ 185/*****************************************************************************/
151 186
187static void (*syserr_cb)(const char *msg);
188
189void ev_set_syserr_cb (void (*cb)(const char *msg))
190{
191 syserr_cb = cb;
192}
193
194static void
195syserr (const char *msg)
196{
197 if (!msg)
198 msg = "(libev) system error";
199
200 if (syserr_cb)
201 syserr_cb (msg);
202 else
203 {
204 perror (msg);
205 abort ();
206 }
207}
208
209static void *(*alloc)(void *ptr, long size);
210
211void ev_set_allocator (void *(*cb)(void *ptr, long size))
212{
213 alloc = cb;
214}
215
216static void *
217ev_realloc (void *ptr, long size)
218{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220
221 if (!ptr && size)
222 {
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
224 abort ();
225 }
226
227 return ptr;
228}
229
230#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0)
232
233/*****************************************************************************/
234
152typedef struct 235typedef struct
153{ 236{
154 struct ev_watcher_list *head; 237 WL head;
155 unsigned char events; 238 unsigned char events;
156 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
157} ANFD; 243} ANFD;
158 244
159typedef struct 245typedef struct
160{ 246{
161 W w; 247 W w;
162 int events; 248 int events;
163} ANPENDING; 249} ANPENDING;
164 250
165#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
166 252
167struct ev_loop 253 struct ev_loop
168{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
170# include "ev_vars.h" 258 #include "ev_vars.h"
171};
172# undef VAR 259 #undef VAR
260 };
173# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 static struct ev_loop default_loop_struct;
264 struct ev_loop *ev_default_loop_ptr;
174 265
175#else 266#else
176 267
268 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 270 #include "ev_vars.h"
179# undef VAR 271 #undef VAR
272
273 static int ev_default_loop_ptr;
180 274
181#endif 275#endif
182 276
183/*****************************************************************************/ 277/*****************************************************************************/
184 278
185inline ev_tstamp 279ev_tstamp
186ev_time (void) 280ev_time (void)
187{ 281{
188#if EV_USE_REALTIME 282#if EV_USE_REALTIME
189 struct timespec ts; 283 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 303#endif
210 304
211 return ev_time (); 305 return ev_time ();
212} 306}
213 307
308#if EV_MULTIPLICITY
214ev_tstamp 309ev_tstamp
215ev_now (EV_P) 310ev_now (EV_P)
216{ 311{
217 return rt_now; 312 return ev_rt_now;
218} 313}
314#endif
219 315
220#define array_roundsize(base,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
221 317
222#define array_needsize(base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
224 { \ 320 { \
225 int newcnt = cur; \ 321 int newcnt = cur; \
226 do \ 322 do \
227 { \ 323 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 324 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 325 } \
230 while ((cnt) > newcnt); \ 326 while ((cnt) > newcnt); \
231 \ 327 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 329 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 330 cur = newcnt; \
331 }
332
333#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 339 }
236 340
237#define array_free(stem, idx) \ 341#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 343
240/*****************************************************************************/ 344/*****************************************************************************/
241 345
242static void 346static void
243anfds_init (ANFD *base, int count) 347anfds_init (ANFD *base, int count)
250 354
251 ++base; 355 ++base;
252 } 356 }
253} 357}
254 358
255static void 359void
256event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
257{ 361{
362 W w_ = (W)w;
363
258 if (w->pending) 364 if (w_->pending)
259 { 365 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 367 return;
262 } 368 }
263 369
264 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 374}
269 375
270static void 376static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 378{
273 int i; 379 int i;
274 380
275 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
277} 383}
278 384
279static void 385inline void
280fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
281{ 387{
282 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 389 struct ev_io *w;
284 390
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 { 392 {
287 int ev = w->events & events; 393 int ev = w->events & revents;
288 394
289 if (ev) 395 if (ev)
290 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
291 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
292} 404}
293 405
294/*****************************************************************************/ 406/*****************************************************************************/
295 407
296static void 408static void
307 int events = 0; 419 int events = 0;
308 420
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events; 422 events |= w->events;
311 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
312 anfd->reify = 0; 433 anfd->reify = 0;
313 434
314 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events; 436 anfd->events = events;
316 } 437 }
319} 440}
320 441
321static void 442static void
322fd_change (EV_P_ int fd) 443fd_change (EV_P_ int fd)
323{ 444{
324 if (anfds [fd].reify || fdchangecnt < 0) 445 if (anfds [fd].reify)
325 return; 446 return;
326 447
327 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
328 449
329 ++fdchangecnt; 450 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
332} 453}
333 454
334static void 455static void
335fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
337 struct ev_io *w; 458 struct ev_io *w;
338 459
339 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
340 { 461 {
341 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 464 }
465}
466
467static int
468fd_valid (int fd)
469{
470#ifdef _WIN32
471 return _get_osfhandle (fd) != -1;
472#else
473 return fcntl (fd, F_GETFD) != -1;
474#endif
344} 475}
345 476
346/* called on EBADF to verify fds */ 477/* called on EBADF to verify fds */
347static void 478static void
348fd_ebadf (EV_P) 479fd_ebadf (EV_P)
349{ 480{
350 int fd; 481 int fd;
351 482
352 for (fd = 0; fd < anfdmax; ++fd) 483 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 484 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 485 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
356} 487}
357 488
358/* called on ENOMEM in select/poll to kill some fds and retry */ 489/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 490static void
362 int fd; 493 int fd;
363 494
364 for (fd = anfdmax; fd--; ) 495 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 496 if (anfds [fd].events)
366 { 497 {
367 close (fd);
368 fd_kill (EV_A_ fd); 498 fd_kill (EV_A_ fd);
369 return; 499 return;
370 } 500 }
371} 501}
372 502
373/* susually called after fork if method needs to re-arm all fds from scratch */ 503/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 504static void
375fd_rearm_all (EV_P) 505fd_rearm_all (EV_P)
376{ 506{
377 int fd; 507 int fd;
378 508
426 556
427 heap [k] = w; 557 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 558 ((W)heap [k])->active = k + 1;
429} 559}
430 560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
431/*****************************************************************************/ 568/*****************************************************************************/
432 569
433typedef struct 570typedef struct
434{ 571{
435 struct ev_watcher_list *head; 572 WL head;
436 sig_atomic_t volatile gotsig; 573 sig_atomic_t volatile gotsig;
437} ANSIG; 574} ANSIG;
438 575
439static ANSIG *signals; 576static ANSIG *signals;
440static int signalmax; 577static int signalmax;
456} 593}
457 594
458static void 595static void
459sighandler (int signum) 596sighandler (int signum)
460{ 597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601
461 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
462 603
463 if (!gotsig) 604 if (!gotsig)
464 { 605 {
465 int old_errno = errno; 606 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 609 errno = old_errno;
469 } 610 }
470} 611}
471 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
472static void 633static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 635{
475 struct ev_watcher_list *w;
476 int signum; 636 int signum;
477 637
478 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 639 gotsig = 0;
480 640
481 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
483 { 643 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 644}
485 645
486 for (w = signals [signum].head; w; w = w->next) 646inline void
487 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
488 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
489} 656}
490 657
491static void 658static void
492siginit (EV_P) 659siginit (EV_P)
493{ 660{
494#ifndef WIN32 661 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 663
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 667}
507 668
508/*****************************************************************************/ 669/*****************************************************************************/
509 670
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
672
673#ifndef _WIN32
674
513static struct ev_signal childev; 675static struct ev_signal childev;
514 676
515#ifndef WCONTINUED 677#ifndef WCONTINUED
516# define WCONTINUED 0 678# define WCONTINUED 0
517#endif 679#endif
525 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
526 { 688 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 690 w->rpid = pid;
529 w->rstatus = status; 691 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 693 }
532} 694}
533 695
534static void 696static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 699 int pid, status;
538 700
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 702 {
541 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 705
544 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 708 }
547} 709}
577 739
578/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
579static int 741static int
580enable_secure (void) 742enable_secure (void)
581{ 743{
582#ifdef WIN32 744#ifdef _WIN32
583 return 0; 745 return 0;
584#else 746#else
585 return getuid () != geteuid () 747 return getuid () != geteuid ()
586 || getgid () != getegid (); 748 || getgid () != getegid ();
587#endif 749#endif
588} 750}
589 751
590int 752unsigned int
591ev_method (EV_P) 753ev_method (EV_P)
592{ 754{
593 return method; 755 return method;
594} 756}
595 757
596static void 758static void
597loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
598{ 760{
599 if (!method) 761 if (!method)
600 { 762 {
601#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
602 { 764 {
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 767 have_monotonic = 1;
606 } 768 }
607#endif 769#endif
608 770
609 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 772 mn_now = get_clock ();
611 now_floor = mn_now; 773 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
613 775
614 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else 778
618 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
619 781
620 method = 0; 782 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
626#endif 785#endif
627#if EV_USE_EPOLL 786#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
629#endif 788#endif
630#if EV_USE_POLL 789#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
632#endif 791#endif
633#if EV_USE_SELECT 792#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
635#endif 794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
636 } 798 }
637} 799}
638 800
639void 801void
640loop_destroy (EV_P) 802loop_destroy (EV_P)
641{ 803{
642 int i; 804 int i;
643 805
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif 808#endif
650#if EV_USE_EPOLL 809#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
658#endif 817#endif
659 818
660 for (i = NUMPRI; i--; ) 819 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 820 array_free (pending, [i]);
662 821
822 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 823 array_free (fdchange, EMPTY0);
664 array_free (timer, ); 824 array_free (timer, EMPTY0);
825#if EV_PERIODICS
665 array_free (periodic, ); 826 array_free (periodic, EMPTY0);
827#endif
666 array_free (idle, ); 828 array_free (idle, EMPTY0);
667 array_free (prepare, ); 829 array_free (prepare, EMPTY0);
668 array_free (check, ); 830 array_free (check, EMPTY0);
669 831
670 method = 0; 832 method = 0;
671 /*TODO*/
672} 833}
673 834
674void 835static void
675loop_fork (EV_P) 836loop_fork (EV_P)
676{ 837{
677 /*TODO*/
678#if EV_USE_EPOLL 838#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif 840#endif
681#if EV_USE_KQUEUE 841#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
684} 861}
685 862
686#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
687struct ev_loop * 864struct ev_loop *
688ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
689{ 866{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
691 868
869 memset (loop, 0, sizeof (struct ev_loop));
870
692 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
693 872
694 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
695 return loop; 874 return loop;
696 875
697 return 0; 876 return 0;
699 878
700void 879void
701ev_loop_destroy (EV_P) 880ev_loop_destroy (EV_P)
702{ 881{
703 loop_destroy (EV_A); 882 loop_destroy (EV_A);
704 free (loop); 883 ev_free (loop);
705} 884}
706 885
707void 886void
708ev_loop_fork (EV_P) 887ev_loop_fork (EV_P)
709{ 888{
710 loop_fork (EV_A); 889 postfork = 1;
711} 890}
712 891
713#endif 892#endif
714 893
715#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 895struct ev_loop *
896ev_default_loop_ (unsigned int flags)
720#else 897#else
721static int default_loop;
722
723int 898int
899ev_default_loop (unsigned int flags)
724#endif 900#endif
725ev_default_loop (int methods)
726{ 901{
727 if (sigpipe [0] == sigpipe [1]) 902 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe)) 903 if (pipe (sigpipe))
729 return 0; 904 return 0;
730 905
731 if (!default_loop) 906 if (!ev_default_loop_ptr)
732 { 907 {
733#if EV_MULTIPLICITY 908#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct; 909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
735#else 910#else
736 default_loop = 1; 911 ev_default_loop_ptr = 1;
737#endif 912#endif
738 913
739 loop_init (EV_A_ methods); 914 loop_init (EV_A_ flags);
740 915
741 if (ev_method (EV_A)) 916 if (ev_method (EV_A))
742 { 917 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 918 siginit (EV_A);
746 919
747#ifndef WIN32 920#ifndef _WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 921 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 922 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 923 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 924 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 925#endif
753 } 926 }
754 else 927 else
755 default_loop = 0; 928 ev_default_loop_ptr = 0;
756 } 929 }
757 930
758 return default_loop; 931 return ev_default_loop_ptr;
759} 932}
760 933
761void 934void
762ev_default_destroy (void) 935ev_default_destroy (void)
763{ 936{
764#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 938 struct ev_loop *loop = ev_default_loop_ptr;
766#endif 939#endif
767 940
941#ifndef _WIN32
768 ev_ref (EV_A); /* child watcher */ 942 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 943 ev_signal_stop (EV_A_ &childev);
944#endif
770 945
771 ev_ref (EV_A); /* signal watcher */ 946 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 947 ev_io_stop (EV_A_ &sigev);
773 948
774 close (sigpipe [0]); sigpipe [0] = 0; 949 close (sigpipe [0]); sigpipe [0] = 0;
779 954
780void 955void
781ev_default_fork (void) 956ev_default_fork (void)
782{ 957{
783#if EV_MULTIPLICITY 958#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 959 struct ev_loop *loop = ev_default_loop_ptr;
785#endif 960#endif
786 961
787 loop_fork (EV_A); 962 if (method)
788 963 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 964}
797 965
798/*****************************************************************************/ 966/*****************************************************************************/
967
968static int
969any_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
799 979
800static void 980static void
801call_pending (EV_P) 981call_pending (EV_P)
802{ 982{
803 int pri; 983 int pri;
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 988 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 989
810 if (p->w) 990 if (p->w)
811 { 991 {
812 p->w->pending = 0; 992 p->w->pending = 0;
813 993 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
815 } 994 }
816 } 995 }
817} 996}
818 997
819static void 998static void
827 1006
828 /* first reschedule or stop timer */ 1007 /* first reschedule or stop timer */
829 if (w->repeat) 1008 if (w->repeat)
830 { 1009 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011
832 ((WT)w)->at = mn_now + w->repeat; 1012 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
833 downheap ((WT *)timers, timercnt, 0); 1016 downheap ((WT *)timers, timercnt, 0);
834 } 1017 }
835 else 1018 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 1020
838 event (EV_A_ (W)w, EV_TIMEOUT); 1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
839 } 1022 }
840} 1023}
841 1024
1025#if EV_PERIODICS
842static void 1026static void
843periodics_reify (EV_P) 1027periodics_reify (EV_P)
844{ 1028{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
846 { 1030 {
847 struct ev_periodic *w = periodics [0]; 1031 struct ev_periodic *w = periodics [0];
848 1032
849 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1033 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850 1034
851 /* first reschedule or stop timer */ 1035 /* first reschedule or stop timer */
852 if (w->interval) 1036 if (w->reschedule_cb)
853 { 1037 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 }
1042 else if (w->interval)
1043 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0); 1046 downheap ((WT *)periodics, periodiccnt, 0);
857 } 1047 }
858 else 1048 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860 1050
861 event (EV_A_ (W)w, EV_PERIODIC); 1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
862 } 1052 }
863} 1053}
864 1054
865static void 1055static void
866periodics_reschedule (EV_P) 1056periodics_reschedule (EV_P)
870 /* adjust periodics after time jump */ 1060 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i) 1061 for (i = 0; i < periodiccnt; ++i)
872 { 1062 {
873 struct ev_periodic *w = periodics [i]; 1063 struct ev_periodic *w = periodics [i];
874 1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
875 if (w->interval) 1067 else if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 {
881 ev_periodic_stop (EV_A_ w);
882 ev_periodic_start (EV_A_ w);
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 }
886 }
887 } 1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
888} 1074}
1075#endif
889 1076
890inline int 1077inline int
891time_update_monotonic (EV_P) 1078time_update_monotonic (EV_P)
892{ 1079{
893 mn_now = get_clock (); 1080 mn_now = get_clock ();
894 1081
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 { 1083 {
897 rt_now = rtmn_diff + mn_now; 1084 ev_rt_now = rtmn_diff + mn_now;
898 return 0; 1085 return 0;
899 } 1086 }
900 else 1087 else
901 { 1088 {
902 now_floor = mn_now; 1089 now_floor = mn_now;
903 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
904 return 1; 1091 return 1;
905 } 1092 }
906} 1093}
907 1094
908static void 1095static void
917 { 1104 {
918 ev_tstamp odiff = rtmn_diff; 1105 ev_tstamp odiff = rtmn_diff;
919 1106
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 { 1108 {
922 rtmn_diff = rt_now - mn_now; 1109 rtmn_diff = ev_rt_now - mn_now;
923 1110
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 return; /* all is well */ 1112 return; /* all is well */
926 1113
927 rt_now = ev_time (); 1114 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 1115 mn_now = get_clock ();
929 now_floor = mn_now; 1116 now_floor = mn_now;
930 } 1117 }
931 1118
1119# if EV_PERIODICS
932 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121# endif
933 /* no timer adjustment, as the monotonic clock doesn't jump */ 1122 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 } 1124 }
936 } 1125 }
937 else 1126 else
938#endif 1127#endif
939 { 1128 {
940 rt_now = ev_time (); 1129 ev_rt_now = ev_time ();
941 1130
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 { 1132 {
1133#if EV_PERIODICS
944 periodics_reschedule (EV_A); 1134 periodics_reschedule (EV_A);
1135#endif
945 1136
946 /* adjust timers. this is easy, as the offset is the same for all */ 1137 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i) 1138 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now; 1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
949 } 1140 }
950 1141
951 mn_now = rt_now; 1142 mn_now = ev_rt_now;
952 } 1143 }
953} 1144}
954 1145
955void 1146void
956ev_ref (EV_P) 1147ev_ref (EV_P)
970ev_loop (EV_P_ int flags) 1161ev_loop (EV_P_ int flags)
971{ 1162{
972 double block; 1163 double block;
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
974 1165
975 do 1166 while (activecnt)
976 { 1167 {
977 /* queue check watchers (and execute them) */ 1168 /* queue check watchers (and execute them) */
978 if (expect_false (preparecnt)) 1169 if (expect_false (preparecnt))
979 { 1170 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 1172 call_pending (EV_A);
982 } 1173 }
983 1174
1175 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork))
1177 loop_fork (EV_A);
1178
984 /* update fd-related kernel structures */ 1179 /* update fd-related kernel structures */
985 fd_reify (EV_A); 1180 fd_reify (EV_A);
986 1181
987 /* calculate blocking time */ 1182 /* calculate blocking time */
988 1183
989 /* we only need this for !monotonic clockor timers, but as we basically 1184 /* we only need this for !monotonic clock or timers, but as we basically
990 always have timers, we just calculate it always */ 1185 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC 1186#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic)) 1187 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A); 1188 time_update_monotonic (EV_A);
994 else 1189 else
995#endif 1190#endif
996 { 1191 {
997 rt_now = ev_time (); 1192 ev_rt_now = ev_time ();
998 mn_now = rt_now; 1193 mn_now = ev_rt_now;
999 } 1194 }
1000 1195
1001 if (flags & EVLOOP_NONBLOCK || idlecnt) 1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.; 1197 block = 0.;
1003 else 1198 else
1008 { 1203 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1010 if (block > to) block = to; 1205 if (block > to) block = to;
1011 } 1206 }
1012 1207
1208#if EV_PERIODICS
1013 if (periodiccnt) 1209 if (periodiccnt)
1014 { 1210 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1016 if (block > to) block = to; 1212 if (block > to) block = to;
1017 } 1213 }
1214#endif
1018 1215
1019 if (block < 0.) block = 0.; 1216 if (block < 0.) block = 0.;
1020 } 1217 }
1021 1218
1022 method_poll (EV_A_ block); 1219 method_poll (EV_A_ block);
1023 1220
1024 /* update rt_now, do magic */ 1221 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 1222 time_update (EV_A);
1026 1223
1027 /* queue pending timers and reschedule them */ 1224 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 1225 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS
1029 periodics_reify (EV_A); /* absolute timers called first */ 1227 periodics_reify (EV_A); /* absolute timers called first */
1228#endif
1030 1229
1031 /* queue idle watchers unless io or timers are pending */ 1230 /* queue idle watchers unless io or timers are pending */
1032 if (!pendingcnt) 1231 if (idlecnt && !any_pending (EV_A))
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1034 1233
1035 /* queue check watchers, to be executed first */ 1234 /* queue check watchers, to be executed first */
1036 if (checkcnt) 1235 if (checkcnt)
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1038 1237
1039 call_pending (EV_A); 1238 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1040 } 1242 }
1041 while (activecnt && !loop_done);
1042 1243
1043 if (loop_done != 2) 1244 if (loop_done != 2)
1044 loop_done = 0; 1245 loop_done = 0;
1045} 1246}
1046 1247
1112 return; 1313 return;
1113 1314
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 1315 assert (("ev_io_start called with negative fd", fd >= 0));
1115 1316
1116 ev_start (EV_A_ (W)w, 1); 1317 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1319 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1119 1320
1120 fd_change (EV_A_ fd); 1321 fd_change (EV_A_ fd);
1121} 1322}
1122 1323
1125{ 1326{
1126 ev_clear_pending (EV_A_ (W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1128 return; 1329 return;
1129 1330
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 1334 ev_stop (EV_A_ (W)w);
1132 1335
1133 fd_change (EV_A_ w->fd); 1336 fd_change (EV_A_ w->fd);
1134} 1337}
1142 ((WT)w)->at += mn_now; 1345 ((WT)w)->at += mn_now;
1143 1346
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 1348
1146 ev_start (EV_A_ (W)w, ++timercnt); 1349 ev_start (EV_A_ (W)w, ++timercnt);
1147 array_needsize (timers, timermax, timercnt, ); 1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1148 timers [timercnt - 1] = w; 1351 timers [timercnt - 1] = w;
1149 upheap ((WT *)timers, timercnt - 1); 1352 upheap ((WT *)timers, timercnt - 1);
1150 1353
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152} 1355}
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162 1365
1163 if (((W)w)->active < timercnt--) 1366 if (((W)w)->active < timercnt--)
1164 { 1367 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 1368 timers [((W)w)->active - 1] = timers [timercnt];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1167 } 1370 }
1168 1371
1169 ((WT)w)->at = w->repeat; 1372 ((WT)w)->at -= mn_now;
1170 1373
1171 ev_stop (EV_A_ (W)w); 1374 ev_stop (EV_A_ (W)w);
1172} 1375}
1173 1376
1174void 1377void
1177 if (ev_is_active (w)) 1380 if (ev_is_active (w))
1178 { 1381 {
1179 if (w->repeat) 1382 if (w->repeat)
1180 { 1383 {
1181 ((WT)w)->at = mn_now + w->repeat; 1384 ((WT)w)->at = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1386 }
1184 else 1387 else
1185 ev_timer_stop (EV_A_ w); 1388 ev_timer_stop (EV_A_ w);
1186 } 1389 }
1187 else if (w->repeat) 1390 else if (w->repeat)
1391 {
1392 w->at = w->repeat;
1188 ev_timer_start (EV_A_ w); 1393 ev_timer_start (EV_A_ w);
1394 }
1189} 1395}
1190 1396
1397#if EV_PERIODICS
1191void 1398void
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 1399ev_periodic_start (EV_P_ struct ev_periodic *w)
1193{ 1400{
1194 if (ev_is_active (w)) 1401 if (ev_is_active (w))
1195 return; 1402 return;
1196 1403
1404 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval)
1407 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 1409 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1411 }
1202 1412
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 1413 ev_start (EV_A_ (W)w, ++periodiccnt);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 1415 periodics [periodiccnt - 1] = w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 1416 upheap ((WT *)periodics, periodiccnt - 1);
1207 1417
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209} 1419}
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219 1429
1220 if (((W)w)->active < periodiccnt--) 1430 if (((W)w)->active < periodiccnt--)
1221 { 1431 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1432 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1224 } 1434 }
1225 1435
1226 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1227} 1437}
1228 1438
1229void 1439void
1440ev_periodic_again (EV_P_ struct ev_periodic *w)
1441{
1442 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w);
1445}
1446#endif
1447
1448void
1230ev_idle_start (EV_P_ struct ev_idle *w) 1449ev_idle_start (EV_P_ struct ev_idle *w)
1231{ 1450{
1232 if (ev_is_active (w)) 1451 if (ev_is_active (w))
1233 return; 1452 return;
1234 1453
1235 ev_start (EV_A_ (W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, ); 1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1237 idles [idlecnt - 1] = w; 1456 idles [idlecnt - 1] = w;
1238} 1457}
1239 1458
1240void 1459void
1241ev_idle_stop (EV_P_ struct ev_idle *w) 1460ev_idle_stop (EV_P_ struct ev_idle *w)
1242{ 1461{
1243 ev_clear_pending (EV_A_ (W)w); 1462 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w)) 1463 if (!ev_is_active (w))
1245 return; 1464 return;
1246 1465
1247 idles [((W)w)->active - 1] = idles [--idlecnt]; 1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1249} 1468}
1253{ 1472{
1254 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1255 return; 1474 return;
1256 1475
1257 ev_start (EV_A_ (W)w, ++preparecnt); 1476 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, ); 1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1259 prepares [preparecnt - 1] = w; 1478 prepares [preparecnt - 1] = w;
1260} 1479}
1261 1480
1262void 1481void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w) 1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{ 1483{
1265 ev_clear_pending (EV_A_ (W)w); 1484 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w)) 1485 if (!ev_is_active (w))
1267 return; 1486 return;
1268 1487
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1271} 1490}
1275{ 1494{
1276 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1277 return; 1496 return;
1278 1497
1279 ev_start (EV_A_ (W)w, ++checkcnt); 1498 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, ); 1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1281 checks [checkcnt - 1] = w; 1500 checks [checkcnt - 1] = w;
1282} 1501}
1283 1502
1284void 1503void
1285ev_check_stop (EV_P_ struct ev_check *w) 1504ev_check_stop (EV_P_ struct ev_check *w)
1286{ 1505{
1287 ev_clear_pending (EV_A_ (W)w); 1506 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 1507 if (!ev_is_active (w))
1289 return; 1508 return;
1290 1509
1291 checks [((W)w)->active - 1] = checks [--checkcnt]; 1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1293} 1512}
1298 1517
1299void 1518void
1300ev_signal_start (EV_P_ struct ev_signal *w) 1519ev_signal_start (EV_P_ struct ev_signal *w)
1301{ 1520{
1302#if EV_MULTIPLICITY 1521#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 1523#endif
1305 if (ev_is_active (w)) 1524 if (ev_is_active (w))
1306 return; 1525 return;
1307 1526
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309 1528
1310 ev_start (EV_A_ (W)w, 1); 1529 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 1532
1314 if (!((WL)w)->next) 1533 if (!((WL)w)->next)
1315 { 1534 {
1535#if _WIN32
1536 signal (w->signum, sighandler);
1537#else
1316 struct sigaction sa; 1538 struct sigaction sa;
1317 sa.sa_handler = sighandler; 1539 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask); 1540 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1541 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0); 1542 sigaction (w->signum, &sa, 0);
1543#endif
1321 } 1544 }
1322} 1545}
1323 1546
1324void 1547void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 1548ev_signal_stop (EV_P_ struct ev_signal *w)
1337 1560
1338void 1561void
1339ev_child_start (EV_P_ struct ev_child *w) 1562ev_child_start (EV_P_ struct ev_child *w)
1340{ 1563{
1341#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1343#endif 1566#endif
1344 if (ev_is_active (w)) 1567 if (ev_is_active (w))
1345 return; 1568 return;
1346 1569
1347 ev_start (EV_A_ (W)w, 1); 1570 ev_start (EV_A_ (W)w, 1);
1350 1573
1351void 1574void
1352ev_child_stop (EV_P_ struct ev_child *w) 1575ev_child_stop (EV_P_ struct ev_child *w)
1353{ 1576{
1354 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 1578 if (!ev_is_active (w))
1356 return; 1579 return;
1357 1580
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1359 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1360} 1583}
1375 void (*cb)(int revents, void *arg) = once->cb; 1598 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 1599 void *arg = once->arg;
1377 1600
1378 ev_io_stop (EV_A_ &once->io); 1601 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 1602 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 1603 ev_free (once);
1381 1604
1382 cb (revents, arg); 1605 cb (revents, arg);
1383} 1606}
1384 1607
1385static void 1608static void
1395} 1618}
1396 1619
1397void 1620void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 1622{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 1624
1402 if (!once) 1625 if (!once)
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 else 1627 else
1405 { 1628 {
1406 once->cb = cb; 1629 once->cb = cb;
1407 once->arg = arg; 1630 once->arg = arg;
1408 1631
1409 ev_watcher_init (&once->io, once_cb_io); 1632 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 1633 if (fd >= 0)
1411 { 1634 {
1412 ev_io_set (&once->io, fd, events); 1635 ev_io_set (&once->io, fd, events);
1413 ev_io_start (EV_A_ &once->io); 1636 ev_io_start (EV_A_ &once->io);
1414 } 1637 }
1415 1638
1416 ev_watcher_init (&once->to, once_cb_to); 1639 ev_init (&once->to, once_cb_to);
1417 if (timeout >= 0.) 1640 if (timeout >= 0.)
1418 { 1641 {
1419 ev_timer_set (&once->to, timeout, 0.); 1642 ev_timer_set (&once->to, timeout, 0.);
1420 ev_timer_start (EV_A_ &once->to); 1643 ev_timer_start (EV_A_ &once->to);
1421 } 1644 }
1422 } 1645 }
1423} 1646}
1424 1647
1648#ifdef __cplusplus
1649}
1650#endif
1651

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines