ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
55# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 56# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif
41# endif 61# endif
42 62
63# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 64# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif
45# endif 69# endif
46 70
71# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 73# define EV_USE_EPOLL 1
74# else
75# define EV_USE_EPOLL 0
76# endif
49# endif 77# endif
50 78
79# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif
85# endif
86
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1
90# else
91# define EV_USE_PORT 0
92# endif
53# endif 93# endif
54 94
55#endif 95#endif
56 96
57#include <math.h> 97#include <math.h>
58#include <stdlib.h> 98#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 99#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 100#include <stddef.h>
63 101
64#include <stdio.h> 102#include <stdio.h>
65 103
66#include <assert.h> 104#include <assert.h>
67#include <errno.h> 105#include <errno.h>
68#include <sys/types.h> 106#include <sys/types.h>
107#include <time.h>
108
109#include <signal.h>
110
69#ifndef WIN32 111#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h>
70# include <sys/wait.h> 114# include <sys/wait.h>
115#else
116# define WIN32_LEAN_AND_MEAN
117# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1
71#endif 120# endif
72#include <sys/time.h> 121#endif
73#include <time.h>
74 122
75/**/ 123/**/
76 124
77#ifndef EV_USE_MONOTONIC 125#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 126# define EV_USE_MONOTONIC 0
127#endif
128
129#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
79#endif 131#endif
80 132
81#ifndef EV_USE_SELECT 133#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 134# define EV_USE_SELECT 1
83#endif 135#endif
84 136
85#ifndef EV_USE_POLL 137#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 138# ifdef _WIN32
139# define EV_USE_POLL 0
140# else
141# define EV_USE_POLL 1
142# endif
87#endif 143#endif
88 144
89#ifndef EV_USE_EPOLL 145#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 146# define EV_USE_EPOLL 0
91#endif 147#endif
92 148
93#ifndef EV_USE_KQUEUE 149#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 150# define EV_USE_KQUEUE 0
95#endif 151#endif
96 152
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 153#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 154# define EV_USE_PORT 0
107#endif 155#endif
108 156
109/**/ 157/**/
110 158
111#ifndef CLOCK_MONOTONIC 159#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 164#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 165# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 166# define EV_USE_REALTIME 0
119#endif 167#endif
120 168
169#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h>
171#endif
172
121/**/ 173/**/
122 174
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 179
180#ifdef EV_H
181# include EV_H
182#else
128#include "ev.h" 183# include "ev.h"
184#endif
129 185
130#if __GNUC__ >= 3 186#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 187# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 188# define inline static inline
133#else 189#else
134# define expect(expr,value) (expr) 190# define expect(expr,value) (expr)
135# define inline static 191# define inline static
136#endif 192#endif
137 193
139#define expect_true(expr) expect ((expr) != 0, 1) 195#define expect_true(expr) expect ((expr) != 0, 1)
140 196
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 198#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 199
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */
202
144typedef struct ev_watcher *W; 203typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 204typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 205typedef struct ev_watcher_time *WT;
147 206
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 208
209#ifdef _WIN32
210# include "ev_win32.c"
211#endif
212
150/*****************************************************************************/ 213/*****************************************************************************/
151 214
215static void (*syserr_cb)(const char *msg);
216
217void ev_set_syserr_cb (void (*cb)(const char *msg))
218{
219 syserr_cb = cb;
220}
221
222static void
223syserr (const char *msg)
224{
225 if (!msg)
226 msg = "(libev) system error";
227
228 if (syserr_cb)
229 syserr_cb (msg);
230 else
231 {
232 perror (msg);
233 abort ();
234 }
235}
236
237static void *(*alloc)(void *ptr, long size);
238
239void ev_set_allocator (void *(*cb)(void *ptr, long size))
240{
241 alloc = cb;
242}
243
244static void *
245ev_realloc (void *ptr, long size)
246{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248
249 if (!ptr && size)
250 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort ();
253 }
254
255 return ptr;
256}
257
258#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0)
260
261/*****************************************************************************/
262
152typedef struct 263typedef struct
153{ 264{
154 struct ev_watcher_list *head; 265 WL head;
155 unsigned char events; 266 unsigned char events;
156 unsigned char reify; 267 unsigned char reify;
268#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle;
270#endif
157} ANFD; 271} ANFD;
158 272
159typedef struct 273typedef struct
160{ 274{
161 W w; 275 W w;
162 int events; 276 int events;
163} ANPENDING; 277} ANPENDING;
164 278
165#if EV_MULTIPLICITY 279#if EV_MULTIPLICITY
166 280
167struct ev_loop 281 struct ev_loop
168{ 282 {
283 ev_tstamp ev_rt_now;
284 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 285 #define VAR(name,decl) decl;
170# include "ev_vars.h" 286 #include "ev_vars.h"
171};
172# undef VAR 287 #undef VAR
288 };
173# include "ev_wrap.h" 289 #include "ev_wrap.h"
290
291 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr;
174 293
175#else 294#else
176 295
296 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 297 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 298 #include "ev_vars.h"
179# undef VAR 299 #undef VAR
300
301 static int ev_default_loop_ptr;
180 302
181#endif 303#endif
182 304
183/*****************************************************************************/ 305/*****************************************************************************/
184 306
185inline ev_tstamp 307ev_tstamp
186ev_time (void) 308ev_time (void)
187{ 309{
188#if EV_USE_REALTIME 310#if EV_USE_REALTIME
189 struct timespec ts; 311 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 312 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 331#endif
210 332
211 return ev_time (); 333 return ev_time ();
212} 334}
213 335
336#if EV_MULTIPLICITY
214ev_tstamp 337ev_tstamp
215ev_now (EV_P) 338ev_now (EV_P)
216{ 339{
217 return rt_now; 340 return ev_rt_now;
218} 341}
342#endif
219 343
220#define array_roundsize(base,n) ((n) | 4 & ~3) 344#define array_roundsize(type,n) (((n) | 4) & ~3)
221 345
222#define array_needsize(base,cur,cnt,init) \ 346#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 347 if (expect_false ((cnt) > cur)) \
224 { \ 348 { \
225 int newcnt = cur; \ 349 int newcnt = cur; \
226 do \ 350 do \
227 { \ 351 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 352 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 353 } \
230 while ((cnt) > newcnt); \ 354 while ((cnt) > newcnt); \
231 \ 355 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 357 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 358 cur = newcnt; \
359 }
360
361#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 367 }
236 368
237#define array_free(stem, idx) \ 369#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 371
240/*****************************************************************************/ 372/*****************************************************************************/
241 373
242static void 374static void
243anfds_init (ANFD *base, int count) 375anfds_init (ANFD *base, int count)
250 382
251 ++base; 383 ++base;
252 } 384 }
253} 385}
254 386
255static void 387void
256event (EV_P_ W w, int events) 388ev_feed_event (EV_P_ void *w, int revents)
257{ 389{
258 if (w->pending) 390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
259 { 393 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 395 return;
262 } 396 }
263 397
264 w->pending = ++pendingcnt [ABSPRI (w)]; 398 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 402}
269 403
270static void 404static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 405queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 406{
273 int i; 407 int i;
274 408
275 for (i = 0; i < eventcnt; ++i) 409 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 410 ev_feed_event (EV_A_ events [i], type);
277} 411}
278 412
279static void 413inline void
280fd_event (EV_P_ int fd, int events) 414fd_event (EV_P_ int fd, int revents)
281{ 415{
282 ANFD *anfd = anfds + fd; 416 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 417 struct ev_io *w;
284 418
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 { 420 {
287 int ev = w->events & events; 421 int ev = w->events & revents;
288 422
289 if (ev) 423 if (ev)
290 event (EV_A_ (W)w, ev); 424 ev_feed_event (EV_A_ (W)w, ev);
291 } 425 }
426}
427
428void
429ev_feed_fd_event (EV_P_ int fd, int revents)
430{
431 fd_event (EV_A_ fd, revents);
292} 432}
293 433
294/*****************************************************************************/ 434/*****************************************************************************/
295 435
296static void 436inline void
297fd_reify (EV_P) 437fd_reify (EV_P)
298{ 438{
299 int i; 439 int i;
300 440
301 for (i = 0; i < fdchangecnt; ++i) 441 for (i = 0; i < fdchangecnt; ++i)
307 int events = 0; 447 int events = 0;
308 448
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events; 450 events |= w->events;
311 451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 {
455 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 }
459#endif
460
312 anfd->reify = 0; 461 anfd->reify = 0;
313 462
314 method_modify (EV_A_ fd, anfd->events, events); 463 backend_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events; 464 anfd->events = events;
316 } 465 }
317 466
318 fdchangecnt = 0; 467 fdchangecnt = 0;
319} 468}
320 469
321static void 470static void
322fd_change (EV_P_ int fd) 471fd_change (EV_P_ int fd)
323{ 472{
324 if (anfds [fd].reify || fdchangecnt < 0) 473 if (expect_false (anfds [fd].reify))
325 return; 474 return;
326 475
327 anfds [fd].reify = 1; 476 anfds [fd].reify = 1;
328 477
329 ++fdchangecnt; 478 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 480 fdchanges [fdchangecnt - 1] = fd;
332} 481}
333 482
334static void 483static void
335fd_kill (EV_P_ int fd) 484fd_kill (EV_P_ int fd)
337 struct ev_io *w; 486 struct ev_io *w;
338 487
339 while ((w = (struct ev_io *)anfds [fd].head)) 488 while ((w = (struct ev_io *)anfds [fd].head))
340 { 489 {
341 ev_io_stop (EV_A_ w); 490 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 492 }
493}
494
495inline int
496fd_valid (int fd)
497{
498#ifdef _WIN32
499 return _get_osfhandle (fd) != -1;
500#else
501 return fcntl (fd, F_GETFD) != -1;
502#endif
344} 503}
345 504
346/* called on EBADF to verify fds */ 505/* called on EBADF to verify fds */
347static void 506static void
348fd_ebadf (EV_P) 507fd_ebadf (EV_P)
349{ 508{
350 int fd; 509 int fd;
351 510
352 for (fd = 0; fd < anfdmax; ++fd) 511 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 512 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 513 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 514 fd_kill (EV_A_ fd);
356} 515}
357 516
358/* called on ENOMEM in select/poll to kill some fds and retry */ 517/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 518static void
362 int fd; 521 int fd;
363 522
364 for (fd = anfdmax; fd--; ) 523 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 524 if (anfds [fd].events)
366 { 525 {
367 close (fd);
368 fd_kill (EV_A_ fd); 526 fd_kill (EV_A_ fd);
369 return; 527 return;
370 } 528 }
371} 529}
372 530
373/* susually called after fork if method needs to re-arm all fds from scratch */ 531/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 532static void
375fd_rearm_all (EV_P) 533fd_rearm_all (EV_P)
376{ 534{
377 int fd; 535 int fd;
378 536
426 584
427 heap [k] = w; 585 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 586 ((W)heap [k])->active = k + 1;
429} 587}
430 588
589inline void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
431/*****************************************************************************/ 596/*****************************************************************************/
432 597
433typedef struct 598typedef struct
434{ 599{
435 struct ev_watcher_list *head; 600 WL head;
436 sig_atomic_t volatile gotsig; 601 sig_atomic_t volatile gotsig;
437} ANSIG; 602} ANSIG;
438 603
439static ANSIG *signals; 604static ANSIG *signals;
440static int signalmax; 605static int signalmax;
456} 621}
457 622
458static void 623static void
459sighandler (int signum) 624sighandler (int signum)
460{ 625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
461 signals [signum - 1].gotsig = 1; 630 signals [signum - 1].gotsig = 1;
462 631
463 if (!gotsig) 632 if (!gotsig)
464 { 633 {
465 int old_errno = errno; 634 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 636 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 637 errno = old_errno;
469 } 638 }
470} 639}
471 640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
472static void 661static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 662sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 663{
475 struct ev_watcher_list *w;
476 int signum; 664 int signum;
477 665
478 read (sigpipe [0], &revents, 1); 666 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 667 gotsig = 0;
480 668
481 for (signum = signalmax; signum--; ) 669 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 670 if (signals [signum].gotsig)
483 { 671 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 672}
485 673
486 for (w = signals [signum].head; w; w = w->next) 674static void
487 event (EV_A_ (W)w, EV_SIGNAL); 675fd_intern (int fd)
488 } 676{
677#ifdef _WIN32
678 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif
489} 684}
490 685
491static void 686static void
492siginit (EV_P) 687siginit (EV_P)
493{ 688{
494#ifndef WIN32 689 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 690 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 691
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 692 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 693 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 694 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 695}
507 696
508/*****************************************************************************/ 697/*****************************************************************************/
509 698
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 699static struct ev_child *childs [PID_HASHSIZE];
700
701#ifndef _WIN32
702
513static struct ev_signal childev; 703static struct ev_signal childev;
514 704
515#ifndef WCONTINUED 705#ifndef WCONTINUED
516# define WCONTINUED 0 706# define WCONTINUED 0
517#endif 707#endif
525 if (w->pid == pid || !w->pid) 715 if (w->pid == pid || !w->pid)
526 { 716 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 718 w->rpid = pid;
529 w->rstatus = status; 719 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 721 }
532} 722}
533 723
534static void 724static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 725childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 727 int pid, status;
538 728
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 730 {
541 /* make sure we are called again until all childs have been reaped */ 731 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 733
544 child_reap (EV_A_ sw, pid, pid, status); 734 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 736 }
547} 737}
548 738
549#endif 739#endif
550 740
551/*****************************************************************************/ 741/*****************************************************************************/
552 742
743#if EV_USE_PORT
744# include "ev_port.c"
745#endif
553#if EV_USE_KQUEUE 746#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 747# include "ev_kqueue.c"
555#endif 748#endif
556#if EV_USE_EPOLL 749#if EV_USE_EPOLL
557# include "ev_epoll.c" 750# include "ev_epoll.c"
577 770
578/* return true if we are running with elevated privileges and should ignore env variables */ 771/* return true if we are running with elevated privileges and should ignore env variables */
579static int 772static int
580enable_secure (void) 773enable_secure (void)
581{ 774{
582#ifdef WIN32 775#ifdef _WIN32
583 return 0; 776 return 0;
584#else 777#else
585 return getuid () != geteuid () 778 return getuid () != geteuid ()
586 || getgid () != getegid (); 779 || getgid () != getegid ();
587#endif 780#endif
588} 781}
589 782
590int 783unsigned int
591ev_method (EV_P) 784ev_supported_backends (void)
592{ 785{
593 return method; 786 unsigned int flags = 0;
594}
595 787
596static void 788 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 789 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
790 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
791 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
792 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
793
794 return flags;
795}
796
797unsigned int
798ev_recommended_backends (void)
598{ 799{
599 if (!method) 800 unsigned int flags = ev_recommended_backends ();
801
802#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE;
806#endif
807#ifdef __APPLE__
808 // flags &= ~EVBACKEND_KQUEUE; for documentation
809 flags &= ~EVBACKEND_POLL;
810#endif
811
812 return flags;
813}
814
815unsigned int
816ev_backend (EV_P)
817{
818 return backend;
819}
820
821static void
822loop_init (EV_P_ unsigned int flags)
823{
824 if (!backend)
600 { 825 {
601#if EV_USE_MONOTONIC 826#if EV_USE_MONOTONIC
602 { 827 {
603 struct timespec ts; 828 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 829 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 830 have_monotonic = 1;
606 } 831 }
607#endif 832#endif
608 833
609 rt_now = ev_time (); 834 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 835 mn_now = get_clock ();
611 now_floor = mn_now; 836 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 837 rtmn_diff = ev_rt_now - mn_now;
613 838
614 if (methods == EVMETHOD_AUTO) 839 if (!(flags & EVFLAG_NOENV)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 840 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 842 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 843
620 method = 0; 844 if (!(flags & 0x0000ffffUL))
621#if EV_USE_WIN32 845 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 846
847 backend = 0;
848#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 850#endif
624#if EV_USE_KQUEUE 851#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 853#endif
627#if EV_USE_EPOLL 854#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 855 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 856#endif
630#if EV_USE_POLL 857#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 858 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 859#endif
633#if EV_USE_SELECT 860#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 862#endif
636 }
637}
638 863
639void 864 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI);
866 }
867}
868
869static void
640loop_destroy (EV_P) 870loop_destroy (EV_P)
641{ 871{
642 int i; 872 int i;
643 873
644#if EV_USE_WIN32 874#if EV_USE_PORT
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
646#endif 876#endif
647#if EV_USE_KQUEUE 877#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 878 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
649#endif 879#endif
650#if EV_USE_EPOLL 880#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 881 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
652#endif 882#endif
653#if EV_USE_POLL 883#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 884 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
655#endif 885#endif
656#if EV_USE_SELECT 886#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
658#endif 888#endif
659 889
660 for (i = NUMPRI; i--; ) 890 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 891 array_free (pending, [i]);
662 892
893 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 894 array_free (fdchange, EMPTY0);
664 array_free (timer, ); 895 array_free (timer, EMPTY0);
896#if EV_PERIODICS
665 array_free (periodic, ); 897 array_free (periodic, EMPTY0);
898#endif
666 array_free (idle, ); 899 array_free (idle, EMPTY0);
667 array_free (prepare, ); 900 array_free (prepare, EMPTY0);
668 array_free (check, ); 901 array_free (check, EMPTY0);
669 902
670 method = 0; 903 backend = 0;
671 /*TODO*/
672} 904}
673 905
674void 906static void
675loop_fork (EV_P) 907loop_fork (EV_P)
676{ 908{
677 /*TODO*/ 909#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif
912#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif
678#if EV_USE_EPOLL 915#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
680#endif 917#endif
681#if EV_USE_KQUEUE 918
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 919 if (ev_is_active (&sigev))
683#endif 920 {
921 /* default loop */
922
923 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev);
925 close (sigpipe [0]);
926 close (sigpipe [1]);
927
928 while (pipe (sigpipe))
929 syserr ("(libev) error creating pipe");
930
931 siginit (EV_A);
932 }
933
934 postfork = 0;
684} 935}
685 936
686#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
687struct ev_loop * 938struct ev_loop *
688ev_loop_new (int methods) 939ev_loop_new (unsigned int flags)
689{ 940{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
691 942
943 memset (loop, 0, sizeof (struct ev_loop));
944
692 loop_init (EV_A_ methods); 945 loop_init (EV_A_ flags);
693 946
694 if (ev_method (EV_A)) 947 if (ev_backend (EV_A))
695 return loop; 948 return loop;
696 949
697 return 0; 950 return 0;
698} 951}
699 952
700void 953void
701ev_loop_destroy (EV_P) 954ev_loop_destroy (EV_P)
702{ 955{
703 loop_destroy (EV_A); 956 loop_destroy (EV_A);
704 free (loop); 957 ev_free (loop);
705} 958}
706 959
707void 960void
708ev_loop_fork (EV_P) 961ev_loop_fork (EV_P)
709{ 962{
710 loop_fork (EV_A); 963 postfork = 1;
711} 964}
712 965
713#endif 966#endif
714 967
715#if EV_MULTIPLICITY 968#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 969struct ev_loop *
970ev_default_loop_init (unsigned int flags)
720#else 971#else
721static int default_loop;
722
723int 972int
973ev_default_loop (unsigned int flags)
724#endif 974#endif
725ev_default_loop (int methods)
726{ 975{
727 if (sigpipe [0] == sigpipe [1]) 976 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe)) 977 if (pipe (sigpipe))
729 return 0; 978 return 0;
730 979
731 if (!default_loop) 980 if (!ev_default_loop_ptr)
732 { 981 {
733#if EV_MULTIPLICITY 982#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct; 983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
735#else 984#else
736 default_loop = 1; 985 ev_default_loop_ptr = 1;
737#endif 986#endif
738 987
739 loop_init (EV_A_ methods); 988 loop_init (EV_A_ flags);
740 989
741 if (ev_method (EV_A)) 990 if (ev_backend (EV_A))
742 { 991 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 992 siginit (EV_A);
746 993
747#ifndef WIN32 994#ifndef _WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 995 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 996 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 997 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 998 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 999#endif
753 } 1000 }
754 else 1001 else
755 default_loop = 0; 1002 ev_default_loop_ptr = 0;
756 } 1003 }
757 1004
758 return default_loop; 1005 return ev_default_loop_ptr;
759} 1006}
760 1007
761void 1008void
762ev_default_destroy (void) 1009ev_default_destroy (void)
763{ 1010{
764#if EV_MULTIPLICITY 1011#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 1012 struct ev_loop *loop = ev_default_loop_ptr;
766#endif 1013#endif
767 1014
1015#ifndef _WIN32
768 ev_ref (EV_A); /* child watcher */ 1016 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 1017 ev_signal_stop (EV_A_ &childev);
1018#endif
770 1019
771 ev_ref (EV_A); /* signal watcher */ 1020 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 1021 ev_io_stop (EV_A_ &sigev);
773 1022
774 close (sigpipe [0]); sigpipe [0] = 0; 1023 close (sigpipe [0]); sigpipe [0] = 0;
779 1028
780void 1029void
781ev_default_fork (void) 1030ev_default_fork (void)
782{ 1031{
783#if EV_MULTIPLICITY 1032#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 1033 struct ev_loop *loop = ev_default_loop_ptr;
785#endif 1034#endif
786 1035
787 loop_fork (EV_A); 1036 if (backend)
788 1037 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 1038}
797 1039
798/*****************************************************************************/ 1040/*****************************************************************************/
799 1041
800static void 1042static int
1043any_pending (EV_P)
1044{
1045 int pri;
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052}
1053
1054inline void
801call_pending (EV_P) 1055call_pending (EV_P)
802{ 1056{
803 int pri; 1057 int pri;
804 1058
805 for (pri = NUMPRI; pri--; ) 1059 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 1060 while (pendingcnt [pri])
807 { 1061 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 1063
810 if (p->w) 1064 if (expect_true (p->w))
811 { 1065 {
812 p->w->pending = 0; 1066 p->w->pending = 0;
813 1067 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
815 } 1068 }
816 } 1069 }
817} 1070}
818 1071
819static void 1072inline void
820timers_reify (EV_P) 1073timers_reify (EV_P)
821{ 1074{
822 while (timercnt && ((WT)timers [0])->at <= mn_now) 1075 while (timercnt && ((WT)timers [0])->at <= mn_now)
823 { 1076 {
824 struct ev_timer *w = timers [0]; 1077 struct ev_timer *w = timers [0];
827 1080
828 /* first reschedule or stop timer */ 1081 /* first reschedule or stop timer */
829 if (w->repeat) 1082 if (w->repeat)
830 { 1083 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085
832 ((WT)w)->at = mn_now + w->repeat; 1086 ((WT)w)->at += w->repeat;
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
833 downheap ((WT *)timers, timercnt, 0); 1090 downheap ((WT *)timers, timercnt, 0);
834 } 1091 }
835 else 1092 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 1094
838 event (EV_A_ (W)w, EV_TIMEOUT); 1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
839 } 1096 }
840} 1097}
841 1098
842static void 1099#if EV_PERIODICS
1100inline void
843periodics_reify (EV_P) 1101periodics_reify (EV_P)
844{ 1102{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
846 { 1104 {
847 struct ev_periodic *w = periodics [0]; 1105 struct ev_periodic *w = periodics [0];
848 1106
849 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1107 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850 1108
851 /* first reschedule or stop timer */ 1109 /* first reschedule or stop timer */
852 if (w->interval) 1110 if (w->reschedule_cb)
853 { 1111 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0);
1115 }
1116 else if (w->interval)
1117 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0); 1120 downheap ((WT *)periodics, periodiccnt, 0);
857 } 1121 }
858 else 1122 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860 1124
861 event (EV_A_ (W)w, EV_PERIODIC); 1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
862 } 1126 }
863} 1127}
864 1128
865static void 1129static void
866periodics_reschedule (EV_P) 1130periodics_reschedule (EV_P)
870 /* adjust periodics after time jump */ 1134 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i) 1135 for (i = 0; i < periodiccnt; ++i)
872 { 1136 {
873 struct ev_periodic *w = periodics [i]; 1137 struct ev_periodic *w = periodics [i];
874 1138
1139 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
875 if (w->interval) 1141 else if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 {
881 ev_periodic_stop (EV_A_ w);
882 ev_periodic_start (EV_A_ w);
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 }
886 }
887 } 1143 }
1144
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
888} 1148}
1149#endif
889 1150
890inline int 1151inline int
891time_update_monotonic (EV_P) 1152time_update_monotonic (EV_P)
892{ 1153{
893 mn_now = get_clock (); 1154 mn_now = get_clock ();
894 1155
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 { 1157 {
897 rt_now = rtmn_diff + mn_now; 1158 ev_rt_now = rtmn_diff + mn_now;
898 return 0; 1159 return 0;
899 } 1160 }
900 else 1161 else
901 { 1162 {
902 now_floor = mn_now; 1163 now_floor = mn_now;
903 rt_now = ev_time (); 1164 ev_rt_now = ev_time ();
904 return 1; 1165 return 1;
905 } 1166 }
906} 1167}
907 1168
908static void 1169inline void
909time_update (EV_P) 1170time_update (EV_P)
910{ 1171{
911 int i; 1172 int i;
912 1173
913#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
917 { 1178 {
918 ev_tstamp odiff = rtmn_diff; 1179 ev_tstamp odiff = rtmn_diff;
919 1180
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 { 1182 {
922 rtmn_diff = rt_now - mn_now; 1183 rtmn_diff = ev_rt_now - mn_now;
923 1184
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 return; /* all is well */ 1186 return; /* all is well */
926 1187
927 rt_now = ev_time (); 1188 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 1189 mn_now = get_clock ();
929 now_floor = mn_now; 1190 now_floor = mn_now;
930 } 1191 }
931 1192
1193# if EV_PERIODICS
932 periodics_reschedule (EV_A); 1194 periodics_reschedule (EV_A);
1195# endif
933 /* no timer adjustment, as the monotonic clock doesn't jump */ 1196 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 } 1198 }
936 } 1199 }
937 else 1200 else
938#endif 1201#endif
939 { 1202 {
940 rt_now = ev_time (); 1203 ev_rt_now = ev_time ();
941 1204
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 { 1206 {
1207#if EV_PERIODICS
944 periodics_reschedule (EV_A); 1208 periodics_reschedule (EV_A);
1209#endif
945 1210
946 /* adjust timers. this is easy, as the offset is the same for all */ 1211 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i) 1212 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now; 1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
949 } 1214 }
950 1215
951 mn_now = rt_now; 1216 mn_now = ev_rt_now;
952 } 1217 }
953} 1218}
954 1219
955void 1220void
956ev_ref (EV_P) 1221ev_ref (EV_P)
970ev_loop (EV_P_ int flags) 1235ev_loop (EV_P_ int flags)
971{ 1236{
972 double block; 1237 double block;
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
974 1239
975 do 1240 while (activecnt)
976 { 1241 {
977 /* queue check watchers (and execute them) */ 1242 /* queue check watchers (and execute them) */
978 if (expect_false (preparecnt)) 1243 if (expect_false (preparecnt))
979 { 1244 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 1246 call_pending (EV_A);
982 } 1247 }
983 1248
1249 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork))
1251 loop_fork (EV_A);
1252
984 /* update fd-related kernel structures */ 1253 /* update fd-related kernel structures */
985 fd_reify (EV_A); 1254 fd_reify (EV_A);
986 1255
987 /* calculate blocking time */ 1256 /* calculate blocking time */
988 1257
989 /* we only need this for !monotonic clockor timers, but as we basically 1258 /* we only need this for !monotonic clock or timers, but as we basically
990 always have timers, we just calculate it always */ 1259 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC 1260#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic)) 1261 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A); 1262 time_update_monotonic (EV_A);
994 else 1263 else
995#endif 1264#endif
996 { 1265 {
997 rt_now = ev_time (); 1266 ev_rt_now = ev_time ();
998 mn_now = rt_now; 1267 mn_now = ev_rt_now;
999 } 1268 }
1000 1269
1001 if (flags & EVLOOP_NONBLOCK || idlecnt) 1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.; 1271 block = 0.;
1003 else 1272 else
1004 { 1273 {
1005 block = MAX_BLOCKTIME; 1274 block = MAX_BLOCKTIME;
1006 1275
1007 if (timercnt) 1276 if (timercnt)
1008 { 1277 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1010 if (block > to) block = to; 1279 if (block > to) block = to;
1011 } 1280 }
1012 1281
1282#if EV_PERIODICS
1013 if (periodiccnt) 1283 if (periodiccnt)
1014 { 1284 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1016 if (block > to) block = to; 1286 if (block > to) block = to;
1017 } 1287 }
1288#endif
1018 1289
1019 if (block < 0.) block = 0.; 1290 if (expect_false (block < 0.)) block = 0.;
1020 } 1291 }
1021 1292
1022 method_poll (EV_A_ block); 1293 backend_poll (EV_A_ block);
1023 1294
1024 /* update rt_now, do magic */ 1295 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 1296 time_update (EV_A);
1026 1297
1027 /* queue pending timers and reschedule them */ 1298 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 1299 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS
1029 periodics_reify (EV_A); /* absolute timers called first */ 1301 periodics_reify (EV_A); /* absolute timers called first */
1302#endif
1030 1303
1031 /* queue idle watchers unless io or timers are pending */ 1304 /* queue idle watchers unless io or timers are pending */
1032 if (!pendingcnt) 1305 if (idlecnt && !any_pending (EV_A))
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1034 1307
1035 /* queue check watchers, to be executed first */ 1308 /* queue check watchers, to be executed first */
1036 if (checkcnt) 1309 if (expect_false (checkcnt))
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1038 1311
1039 call_pending (EV_A); 1312 call_pending (EV_A);
1313
1314 if (expect_false (loop_done))
1315 break;
1040 } 1316 }
1041 while (activecnt && !loop_done);
1042 1317
1043 if (loop_done != 2) 1318 if (loop_done != 2)
1044 loop_done = 0; 1319 loop_done = 0;
1045} 1320}
1046 1321
1106void 1381void
1107ev_io_start (EV_P_ struct ev_io *w) 1382ev_io_start (EV_P_ struct ev_io *w)
1108{ 1383{
1109 int fd = w->fd; 1384 int fd = w->fd;
1110 1385
1111 if (ev_is_active (w)) 1386 if (expect_false (ev_is_active (w)))
1112 return; 1387 return;
1113 1388
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 1389 assert (("ev_io_start called with negative fd", fd >= 0));
1115 1390
1116 ev_start (EV_A_ (W)w, 1); 1391 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1393 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1119 1394
1120 fd_change (EV_A_ fd); 1395 fd_change (EV_A_ fd);
1121} 1396}
1122 1397
1123void 1398void
1124ev_io_stop (EV_P_ struct ev_io *w) 1399ev_io_stop (EV_P_ struct ev_io *w)
1125{ 1400{
1126 ev_clear_pending (EV_A_ (W)w); 1401 ev_clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 1402 if (expect_false (!ev_is_active (w)))
1128 return; 1403 return;
1404
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1129 1406
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 1408 ev_stop (EV_A_ (W)w);
1132 1409
1133 fd_change (EV_A_ w->fd); 1410 fd_change (EV_A_ w->fd);
1134} 1411}
1135 1412
1136void 1413void
1137ev_timer_start (EV_P_ struct ev_timer *w) 1414ev_timer_start (EV_P_ struct ev_timer *w)
1138{ 1415{
1139 if (ev_is_active (w)) 1416 if (expect_false (ev_is_active (w)))
1140 return; 1417 return;
1141 1418
1142 ((WT)w)->at += mn_now; 1419 ((WT)w)->at += mn_now;
1143 1420
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 1422
1146 ev_start (EV_A_ (W)w, ++timercnt); 1423 ev_start (EV_A_ (W)w, ++timercnt);
1147 array_needsize (timers, timermax, timercnt, ); 1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1148 timers [timercnt - 1] = w; 1425 timers [timercnt - 1] = w;
1149 upheap ((WT *)timers, timercnt - 1); 1426 upheap ((WT *)timers, timercnt - 1);
1150 1427
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152} 1429}
1153 1430
1154void 1431void
1155ev_timer_stop (EV_P_ struct ev_timer *w) 1432ev_timer_stop (EV_P_ struct ev_timer *w)
1156{ 1433{
1157 ev_clear_pending (EV_A_ (W)w); 1434 ev_clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w)) 1435 if (expect_false (!ev_is_active (w)))
1159 return; 1436 return;
1160 1437
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162 1439
1163 if (((W)w)->active < timercnt--) 1440 if (expect_true (((W)w)->active < timercnt--))
1164 { 1441 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 1442 timers [((W)w)->active - 1] = timers [timercnt];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1167 } 1444 }
1168 1445
1169 ((WT)w)->at = w->repeat; 1446 ((WT)w)->at -= mn_now;
1170 1447
1171 ev_stop (EV_A_ (W)w); 1448 ev_stop (EV_A_ (W)w);
1172} 1449}
1173 1450
1174void 1451void
1177 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1178 { 1455 {
1179 if (w->repeat) 1456 if (w->repeat)
1180 { 1457 {
1181 ((WT)w)->at = mn_now + w->repeat; 1458 ((WT)w)->at = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1460 }
1184 else 1461 else
1185 ev_timer_stop (EV_A_ w); 1462 ev_timer_stop (EV_A_ w);
1186 } 1463 }
1187 else if (w->repeat) 1464 else if (w->repeat)
1465 {
1466 w->at = w->repeat;
1188 ev_timer_start (EV_A_ w); 1467 ev_timer_start (EV_A_ w);
1468 }
1189} 1469}
1190 1470
1471#if EV_PERIODICS
1191void 1472void
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 1473ev_periodic_start (EV_P_ struct ev_periodic *w)
1193{ 1474{
1194 if (ev_is_active (w)) 1475 if (expect_false (ev_is_active (w)))
1195 return; 1476 return;
1196 1477
1478 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval)
1481 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 1483 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 }
1202 1486
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 1487 ev_start (EV_A_ (W)w, ++periodiccnt);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 1489 periodics [periodiccnt - 1] = w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 1490 upheap ((WT *)periodics, periodiccnt - 1);
1207 1491
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209} 1493}
1210 1494
1211void 1495void
1212ev_periodic_stop (EV_P_ struct ev_periodic *w) 1496ev_periodic_stop (EV_P_ struct ev_periodic *w)
1213{ 1497{
1214 ev_clear_pending (EV_A_ (W)w); 1498 ev_clear_pending (EV_A_ (W)w);
1215 if (!ev_is_active (w)) 1499 if (expect_false (!ev_is_active (w)))
1216 return; 1500 return;
1217 1501
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219 1503
1220 if (((W)w)->active < periodiccnt--) 1504 if (expect_true (((W)w)->active < periodiccnt--))
1221 { 1505 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1506 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1224 } 1508 }
1225 1509
1226 ev_stop (EV_A_ (W)w); 1510 ev_stop (EV_A_ (W)w);
1227} 1511}
1228 1512
1229void 1513void
1514ev_periodic_again (EV_P_ struct ev_periodic *w)
1515{
1516 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w);
1519}
1520#endif
1521
1522void
1230ev_idle_start (EV_P_ struct ev_idle *w) 1523ev_idle_start (EV_P_ struct ev_idle *w)
1231{ 1524{
1232 if (ev_is_active (w)) 1525 if (expect_false (ev_is_active (w)))
1233 return; 1526 return;
1234 1527
1235 ev_start (EV_A_ (W)w, ++idlecnt); 1528 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, ); 1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1237 idles [idlecnt - 1] = w; 1530 idles [idlecnt - 1] = w;
1238} 1531}
1239 1532
1240void 1533void
1241ev_idle_stop (EV_P_ struct ev_idle *w) 1534ev_idle_stop (EV_P_ struct ev_idle *w)
1242{ 1535{
1243 ev_clear_pending (EV_A_ (W)w); 1536 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w)) 1537 if (expect_false (!ev_is_active (w)))
1245 return; 1538 return;
1246 1539
1247 idles [((W)w)->active - 1] = idles [--idlecnt]; 1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w); 1541 ev_stop (EV_A_ (W)w);
1249} 1542}
1250 1543
1251void 1544void
1252ev_prepare_start (EV_P_ struct ev_prepare *w) 1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{ 1546{
1254 if (ev_is_active (w)) 1547 if (expect_false (ev_is_active (w)))
1255 return; 1548 return;
1256 1549
1257 ev_start (EV_A_ (W)w, ++preparecnt); 1550 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, ); 1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1259 prepares [preparecnt - 1] = w; 1552 prepares [preparecnt - 1] = w;
1260} 1553}
1261 1554
1262void 1555void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w) 1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{ 1557{
1265 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w)) 1559 if (expect_false (!ev_is_active (w)))
1267 return; 1560 return;
1268 1561
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1271} 1564}
1272 1565
1273void 1566void
1274ev_check_start (EV_P_ struct ev_check *w) 1567ev_check_start (EV_P_ struct ev_check *w)
1275{ 1568{
1276 if (ev_is_active (w)) 1569 if (expect_false (ev_is_active (w)))
1277 return; 1570 return;
1278 1571
1279 ev_start (EV_A_ (W)w, ++checkcnt); 1572 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, ); 1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1281 checks [checkcnt - 1] = w; 1574 checks [checkcnt - 1] = w;
1282} 1575}
1283 1576
1284void 1577void
1285ev_check_stop (EV_P_ struct ev_check *w) 1578ev_check_stop (EV_P_ struct ev_check *w)
1286{ 1579{
1287 ev_clear_pending (EV_A_ (W)w); 1580 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 1581 if (expect_false (!ev_is_active (w)))
1289 return; 1582 return;
1290 1583
1291 checks [((W)w)->active - 1] = checks [--checkcnt]; 1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w); 1585 ev_stop (EV_A_ (W)w);
1293} 1586}
1298 1591
1299void 1592void
1300ev_signal_start (EV_P_ struct ev_signal *w) 1593ev_signal_start (EV_P_ struct ev_signal *w)
1301{ 1594{
1302#if EV_MULTIPLICITY 1595#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 1597#endif
1305 if (ev_is_active (w)) 1598 if (expect_false (ev_is_active (w)))
1306 return; 1599 return;
1307 1600
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309 1602
1310 ev_start (EV_A_ (W)w, 1); 1603 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 1606
1314 if (!((WL)w)->next) 1607 if (!((WL)w)->next)
1315 { 1608 {
1609#if _WIN32
1610 signal (w->signum, sighandler);
1611#else
1316 struct sigaction sa; 1612 struct sigaction sa;
1317 sa.sa_handler = sighandler; 1613 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask); 1614 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0); 1616 sigaction (w->signum, &sa, 0);
1617#endif
1321 } 1618 }
1322} 1619}
1323 1620
1324void 1621void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 1622ev_signal_stop (EV_P_ struct ev_signal *w)
1326{ 1623{
1327 ev_clear_pending (EV_A_ (W)w); 1624 ev_clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 1625 if (expect_false (!ev_is_active (w)))
1329 return; 1626 return;
1330 1627
1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1332 ev_stop (EV_A_ (W)w); 1629 ev_stop (EV_A_ (W)w);
1333 1630
1337 1634
1338void 1635void
1339ev_child_start (EV_P_ struct ev_child *w) 1636ev_child_start (EV_P_ struct ev_child *w)
1340{ 1637{
1341#if EV_MULTIPLICITY 1638#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1343#endif 1640#endif
1344 if (ev_is_active (w)) 1641 if (expect_false (ev_is_active (w)))
1345 return; 1642 return;
1346 1643
1347 ev_start (EV_A_ (W)w, 1); 1644 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1349} 1646}
1350 1647
1351void 1648void
1352ev_child_stop (EV_P_ struct ev_child *w) 1649ev_child_stop (EV_P_ struct ev_child *w)
1353{ 1650{
1354 ev_clear_pending (EV_A_ (W)w); 1651 ev_clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 1652 if (expect_false (!ev_is_active (w)))
1356 return; 1653 return;
1357 1654
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1359 ev_stop (EV_A_ (W)w); 1656 ev_stop (EV_A_ (W)w);
1360} 1657}
1375 void (*cb)(int revents, void *arg) = once->cb; 1672 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 1673 void *arg = once->arg;
1377 1674
1378 ev_io_stop (EV_A_ &once->io); 1675 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 1676 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 1677 ev_free (once);
1381 1678
1382 cb (revents, arg); 1679 cb (revents, arg);
1383} 1680}
1384 1681
1385static void 1682static void
1395} 1692}
1396 1693
1397void 1694void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1695ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 1696{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 1697 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 1698
1402 if (!once) 1699 if (expect_false (!once))
1700 {
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1701 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 else 1702 return;
1405 { 1703 }
1704
1406 once->cb = cb; 1705 once->cb = cb;
1407 once->arg = arg; 1706 once->arg = arg;
1408 1707
1409 ev_watcher_init (&once->io, once_cb_io); 1708 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 1709 if (fd >= 0)
1411 { 1710 {
1412 ev_io_set (&once->io, fd, events); 1711 ev_io_set (&once->io, fd, events);
1413 ev_io_start (EV_A_ &once->io); 1712 ev_io_start (EV_A_ &once->io);
1414 } 1713 }
1415 1714
1416 ev_watcher_init (&once->to, once_cb_to); 1715 ev_init (&once->to, once_cb_to);
1417 if (timeout >= 0.) 1716 if (timeout >= 0.)
1418 { 1717 {
1419 ev_timer_set (&once->to, timeout, 0.); 1718 ev_timer_set (&once->to, timeout, 0.);
1420 ev_timer_start (EV_A_ &once->to); 1719 ev_timer_start (EV_A_ &once->to);
1421 }
1422 } 1720 }
1423} 1721}
1424 1722
1723#ifdef __cplusplus
1724}
1725#endif
1726

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines