ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 192# define inline static inline
133#else 193#else
134# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
135# define inline static 195# define inline static
136#endif 196#endif
137 197
139#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
140 200
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
144typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
147 210
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 212
213#ifdef _WIN32
214# include "ev_win32.c"
215#endif
216
150/*****************************************************************************/ 217/*****************************************************************************/
151 218
219static void (*syserr_cb)(const char *msg);
220
221void ev_set_syserr_cb (void (*cb)(const char *msg))
222{
223 syserr_cb = cb;
224}
225
226static void
227syserr (const char *msg)
228{
229 if (!msg)
230 msg = "(libev) system error";
231
232 if (syserr_cb)
233 syserr_cb (msg);
234 else
235 {
236 perror (msg);
237 abort ();
238 }
239}
240
241static void *(*alloc)(void *ptr, long size);
242
243void ev_set_allocator (void *(*cb)(void *ptr, long size))
244{
245 alloc = cb;
246}
247
248static void *
249ev_realloc (void *ptr, long size)
250{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252
253 if (!ptr && size)
254 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort ();
257 }
258
259 return ptr;
260}
261
262#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0)
264
265/*****************************************************************************/
266
152typedef struct 267typedef struct
153{ 268{
154 struct ev_watcher_list *head; 269 WL head;
155 unsigned char events; 270 unsigned char events;
156 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
157} ANFD; 275} ANFD;
158 276
159typedef struct 277typedef struct
160{ 278{
161 W w; 279 W w;
162 int events; 280 int events;
163} ANPENDING; 281} ANPENDING;
164 282
165#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
166 284
167struct ev_loop 285 struct ev_loop
168{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
170# include "ev_vars.h" 290 #include "ev_vars.h"
171};
172# undef VAR 291 #undef VAR
292 };
173# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
174 297
175#else 298#else
176 299
300 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 302 #include "ev_vars.h"
179# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
180 306
181#endif 307#endif
182 308
183/*****************************************************************************/ 309/*****************************************************************************/
184 310
185inline ev_tstamp 311ev_tstamp
186ev_time (void) 312ev_time (void)
187{ 313{
188#if EV_USE_REALTIME 314#if EV_USE_REALTIME
189 struct timespec ts; 315 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 335#endif
210 336
211 return ev_time (); 337 return ev_time ();
212} 338}
213 339
340#if EV_MULTIPLICITY
214ev_tstamp 341ev_tstamp
215ev_now (EV_P) 342ev_now (EV_P)
216{ 343{
217 return rt_now; 344 return ev_rt_now;
218} 345}
346#endif
219 347
220#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
221 349
222#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
224 { \ 352 { \
225 int newcnt = cur; \ 353 int newcnt = cur; \
226 do \ 354 do \
227 { \ 355 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 357 } \
230 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
231 \ 359 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 362 cur = newcnt; \
363 }
364
365#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 371 }
236 372
237#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 375
240/*****************************************************************************/ 376/*****************************************************************************/
241 377
242static void 378static void
243anfds_init (ANFD *base, int count) 379anfds_init (ANFD *base, int count)
250 386
251 ++base; 387 ++base;
252 } 388 }
253} 389}
254 390
255static void 391void
256event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
257{ 393{
258 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
259 { 397 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 399 return;
262 } 400 }
263 401
402 if (expect_false (!w_->cb))
403 return;
404
264 w->pending = ++pendingcnt [ABSPRI (w)]; 405 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 409}
269 410
270static void 411static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 412queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 413{
273 int i; 414 int i;
274 415
275 for (i = 0; i < eventcnt; ++i) 416 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 417 ev_feed_event (EV_A_ events [i], type);
277} 418}
278 419
279static void 420inline void
280fd_event (EV_P_ int fd, int events) 421fd_event (EV_P_ int fd, int revents)
281{ 422{
282 ANFD *anfd = anfds + fd; 423 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 424 struct ev_io *w;
284 425
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 { 427 {
287 int ev = w->events & events; 428 int ev = w->events & revents;
288 429
289 if (ev) 430 if (ev)
290 event (EV_A_ (W)w, ev); 431 ev_feed_event (EV_A_ (W)w, ev);
291 } 432 }
433}
434
435void
436ev_feed_fd_event (EV_P_ int fd, int revents)
437{
438 fd_event (EV_A_ fd, revents);
292} 439}
293 440
294/*****************************************************************************/ 441/*****************************************************************************/
295 442
296static void 443inline void
297fd_reify (EV_P) 444fd_reify (EV_P)
298{ 445{
299 int i; 446 int i;
300 447
301 for (i = 0; i < fdchangecnt; ++i) 448 for (i = 0; i < fdchangecnt; ++i)
307 int events = 0; 454 int events = 0;
308 455
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events; 457 events |= w->events;
311 458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 {
462 unsigned long argp;
463 anfd->handle = _get_osfhandle (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 }
466#endif
467
312 anfd->reify = 0; 468 anfd->reify = 0;
313 469
314 method_modify (EV_A_ fd, anfd->events, events); 470 backend_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events; 471 anfd->events = events;
316 } 472 }
317 473
318 fdchangecnt = 0; 474 fdchangecnt = 0;
319} 475}
320 476
321static void 477static void
322fd_change (EV_P_ int fd) 478fd_change (EV_P_ int fd)
323{ 479{
324 if (anfds [fd].reify || fdchangecnt < 0) 480 if (expect_false (anfds [fd].reify))
325 return; 481 return;
326 482
327 anfds [fd].reify = 1; 483 anfds [fd].reify = 1;
328 484
329 ++fdchangecnt; 485 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 487 fdchanges [fdchangecnt - 1] = fd;
332} 488}
333 489
334static void 490static void
335fd_kill (EV_P_ int fd) 491fd_kill (EV_P_ int fd)
337 struct ev_io *w; 493 struct ev_io *w;
338 494
339 while ((w = (struct ev_io *)anfds [fd].head)) 495 while ((w = (struct ev_io *)anfds [fd].head))
340 { 496 {
341 ev_io_stop (EV_A_ w); 497 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 499 }
500}
501
502inline int
503fd_valid (int fd)
504{
505#ifdef _WIN32
506 return _get_osfhandle (fd) != -1;
507#else
508 return fcntl (fd, F_GETFD) != -1;
509#endif
344} 510}
345 511
346/* called on EBADF to verify fds */ 512/* called on EBADF to verify fds */
347static void 513static void
348fd_ebadf (EV_P) 514fd_ebadf (EV_P)
349{ 515{
350 int fd; 516 int fd;
351 517
352 for (fd = 0; fd < anfdmax; ++fd) 518 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 519 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 520 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 521 fd_kill (EV_A_ fd);
356} 522}
357 523
358/* called on ENOMEM in select/poll to kill some fds and retry */ 524/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 525static void
362 int fd; 528 int fd;
363 529
364 for (fd = anfdmax; fd--; ) 530 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 531 if (anfds [fd].events)
366 { 532 {
367 close (fd);
368 fd_kill (EV_A_ fd); 533 fd_kill (EV_A_ fd);
369 return; 534 return;
370 } 535 }
371} 536}
372 537
373/* susually called after fork if method needs to re-arm all fds from scratch */ 538/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 539static void
375fd_rearm_all (EV_P) 540fd_rearm_all (EV_P)
376{ 541{
377 int fd; 542 int fd;
378 543
426 591
427 heap [k] = w; 592 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 593 ((W)heap [k])->active = k + 1;
429} 594}
430 595
596inline void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
431/*****************************************************************************/ 603/*****************************************************************************/
432 604
433typedef struct 605typedef struct
434{ 606{
435 struct ev_watcher_list *head; 607 WL head;
436 sig_atomic_t volatile gotsig; 608 sig_atomic_t volatile gotsig;
437} ANSIG; 609} ANSIG;
438 610
439static ANSIG *signals; 611static ANSIG *signals;
440static int signalmax; 612static int signalmax;
456} 628}
457 629
458static void 630static void
459sighandler (int signum) 631sighandler (int signum)
460{ 632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
461 signals [signum - 1].gotsig = 1; 637 signals [signum - 1].gotsig = 1;
462 638
463 if (!gotsig) 639 if (!gotsig)
464 { 640 {
465 int old_errno = errno; 641 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 643 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 644 errno = old_errno;
469 } 645 }
470} 646}
471 647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
472static void 668static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 669sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 670{
475 struct ev_watcher_list *w;
476 int signum; 671 int signum;
477 672
478 read (sigpipe [0], &revents, 1); 673 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 674 gotsig = 0;
480 675
481 for (signum = signalmax; signum--; ) 676 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 677 if (signals [signum].gotsig)
483 { 678 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 679}
485 680
486 for (w = signals [signum].head; w; w = w->next) 681static void
487 event (EV_A_ (W)w, EV_SIGNAL); 682fd_intern (int fd)
488 } 683{
684#ifdef _WIN32
685 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif
489} 691}
490 692
491static void 693static void
492siginit (EV_P) 694siginit (EV_P)
493{ 695{
494#ifndef WIN32 696 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 697 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 698
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 699 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 700 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 701 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 702}
507 703
508/*****************************************************************************/ 704/*****************************************************************************/
509 705
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 706static struct ev_child *childs [PID_HASHSIZE];
707
708#ifndef _WIN32
709
513static struct ev_signal childev; 710static struct ev_signal childev;
514 711
515#ifndef WCONTINUED 712#ifndef WCONTINUED
516# define WCONTINUED 0 713# define WCONTINUED 0
517#endif 714#endif
525 if (w->pid == pid || !w->pid) 722 if (w->pid == pid || !w->pid)
526 { 723 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 725 w->rpid = pid;
529 w->rstatus = status; 726 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 728 }
532} 729}
533 730
534static void 731static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 732childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 734 int pid, status;
538 735
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 737 {
541 /* make sure we are called again until all childs have been reaped */ 738 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 741
544 child_reap (EV_A_ sw, pid, pid, status); 742 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 } 744 }
547} 745}
548 746
549#endif 747#endif
550 748
551/*****************************************************************************/ 749/*****************************************************************************/
552 750
751#if EV_USE_PORT
752# include "ev_port.c"
753#endif
553#if EV_USE_KQUEUE 754#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 755# include "ev_kqueue.c"
555#endif 756#endif
556#if EV_USE_EPOLL 757#if EV_USE_EPOLL
557# include "ev_epoll.c" 758# include "ev_epoll.c"
577 778
578/* return true if we are running with elevated privileges and should ignore env variables */ 779/* return true if we are running with elevated privileges and should ignore env variables */
579static int 780static int
580enable_secure (void) 781enable_secure (void)
581{ 782{
582#ifdef WIN32 783#ifdef _WIN32
583 return 0; 784 return 0;
584#else 785#else
585 return getuid () != geteuid () 786 return getuid () != geteuid ()
586 || getgid () != getegid (); 787 || getgid () != getegid ();
587#endif 788#endif
588} 789}
589 790
590int 791unsigned int
591ev_method (EV_P) 792ev_supported_backends (void)
592{ 793{
593 return method; 794 unsigned int flags = 0;
594}
595 795
596static void 796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 797 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
798 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
799 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801
802 return flags;
803}
804
805unsigned int
806ev_recommended_backends (void)
598{ 807{
599 if (!method) 808 unsigned int flags = ev_supported_backends ();
809
810#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE;
814#endif
815#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation
817 flags &= ~EVBACKEND_POLL;
818#endif
819
820 return flags;
821}
822
823unsigned int
824ev_embeddable_backends (void)
825{
826 return EVBACKEND_EPOLL
827 | EVBACKEND_KQUEUE
828 | EVBACKEND_PORT;
829}
830
831unsigned int
832ev_backend (EV_P)
833{
834 return backend;
835}
836
837static void
838loop_init (EV_P_ unsigned int flags)
839{
840 if (!backend)
600 { 841 {
601#if EV_USE_MONOTONIC 842#if EV_USE_MONOTONIC
602 { 843 {
603 struct timespec ts; 844 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 845 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 846 have_monotonic = 1;
606 } 847 }
607#endif 848#endif
608 849
609 rt_now = ev_time (); 850 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 851 mn_now = get_clock ();
611 now_floor = mn_now; 852 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 853 rtmn_diff = ev_rt_now - mn_now;
613 854
614 if (methods == EVMETHOD_AUTO) 855 if (!(flags & EVFLAG_NOENV)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 856 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 858 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 859
620 method = 0; 860 if (!(flags & 0x0000ffffUL))
621#if EV_USE_WIN32 861 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 862
863 backend = 0;
864#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 866#endif
624#if EV_USE_KQUEUE 867#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 869#endif
627#if EV_USE_EPOLL 870#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 872#endif
630#if EV_USE_POLL 873#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 875#endif
633#if EV_USE_SELECT 876#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 878#endif
636 }
637}
638 879
639void 880 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI);
882 }
883}
884
885static void
640loop_destroy (EV_P) 886loop_destroy (EV_P)
641{ 887{
642 int i; 888 int i;
643 889
644#if EV_USE_WIN32 890#if EV_USE_PORT
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
646#endif 892#endif
647#if EV_USE_KQUEUE 893#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
649#endif 895#endif
650#if EV_USE_EPOLL 896#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 897 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
652#endif 898#endif
653#if EV_USE_POLL 899#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 900 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
655#endif 901#endif
656#if EV_USE_SELECT 902#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
658#endif 904#endif
659 905
660 for (i = NUMPRI; i--; ) 906 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 907 array_free (pending, [i]);
662 908
909 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 910 array_free (fdchange, EMPTY0);
664 array_free (timer, ); 911 array_free (timer, EMPTY0);
912#if EV_PERIODICS
665 array_free (periodic, ); 913 array_free (periodic, EMPTY0);
914#endif
666 array_free (idle, ); 915 array_free (idle, EMPTY0);
667 array_free (prepare, ); 916 array_free (prepare, EMPTY0);
668 array_free (check, ); 917 array_free (check, EMPTY0);
669 918
670 method = 0; 919 backend = 0;
671 /*TODO*/
672} 920}
673 921
674void 922static void
675loop_fork (EV_P) 923loop_fork (EV_P)
676{ 924{
677 /*TODO*/ 925#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif
928#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif
678#if EV_USE_EPOLL 931#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
680#endif 933#endif
681#if EV_USE_KQUEUE 934
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 935 if (ev_is_active (&sigev))
683#endif 936 {
937 /* default loop */
938
939 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A);
948 }
949
950 postfork = 0;
684} 951}
685 952
686#if EV_MULTIPLICITY 953#if EV_MULTIPLICITY
687struct ev_loop * 954struct ev_loop *
688ev_loop_new (int methods) 955ev_loop_new (unsigned int flags)
689{ 956{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
691 958
959 memset (loop, 0, sizeof (struct ev_loop));
960
692 loop_init (EV_A_ methods); 961 loop_init (EV_A_ flags);
693 962
694 if (ev_method (EV_A)) 963 if (ev_backend (EV_A))
695 return loop; 964 return loop;
696 965
697 return 0; 966 return 0;
698} 967}
699 968
700void 969void
701ev_loop_destroy (EV_P) 970ev_loop_destroy (EV_P)
702{ 971{
703 loop_destroy (EV_A); 972 loop_destroy (EV_A);
704 free (loop); 973 ev_free (loop);
705} 974}
706 975
707void 976void
708ev_loop_fork (EV_P) 977ev_loop_fork (EV_P)
709{ 978{
710 loop_fork (EV_A); 979 postfork = 1;
711} 980}
712 981
713#endif 982#endif
714 983
715#if EV_MULTIPLICITY 984#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 985struct ev_loop *
986ev_default_loop_init (unsigned int flags)
720#else 987#else
721static int default_loop;
722
723int 988int
989ev_default_loop (unsigned int flags)
724#endif 990#endif
725ev_default_loop (int methods)
726{ 991{
727 if (sigpipe [0] == sigpipe [1]) 992 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe)) 993 if (pipe (sigpipe))
729 return 0; 994 return 0;
730 995
731 if (!default_loop) 996 if (!ev_default_loop_ptr)
732 { 997 {
733#if EV_MULTIPLICITY 998#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct; 999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
735#else 1000#else
736 default_loop = 1; 1001 ev_default_loop_ptr = 1;
737#endif 1002#endif
738 1003
739 loop_init (EV_A_ methods); 1004 loop_init (EV_A_ flags);
740 1005
741 if (ev_method (EV_A)) 1006 if (ev_backend (EV_A))
742 { 1007 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 1008 siginit (EV_A);
746 1009
747#ifndef WIN32 1010#ifndef _WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 1011 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 1012 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 1013 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 1015#endif
753 } 1016 }
754 else 1017 else
755 default_loop = 0; 1018 ev_default_loop_ptr = 0;
756 } 1019 }
757 1020
758 return default_loop; 1021 return ev_default_loop_ptr;
759} 1022}
760 1023
761void 1024void
762ev_default_destroy (void) 1025ev_default_destroy (void)
763{ 1026{
764#if EV_MULTIPLICITY 1027#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 1028 struct ev_loop *loop = ev_default_loop_ptr;
766#endif 1029#endif
767 1030
1031#ifndef _WIN32
768 ev_ref (EV_A); /* child watcher */ 1032 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 1033 ev_signal_stop (EV_A_ &childev);
1034#endif
770 1035
771 ev_ref (EV_A); /* signal watcher */ 1036 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 1037 ev_io_stop (EV_A_ &sigev);
773 1038
774 close (sigpipe [0]); sigpipe [0] = 0; 1039 close (sigpipe [0]); sigpipe [0] = 0;
779 1044
780void 1045void
781ev_default_fork (void) 1046ev_default_fork (void)
782{ 1047{
783#if EV_MULTIPLICITY 1048#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 1049 struct ev_loop *loop = ev_default_loop_ptr;
785#endif 1050#endif
786 1051
787 loop_fork (EV_A); 1052 if (backend)
788 1053 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 1054}
797 1055
798/*****************************************************************************/ 1056/*****************************************************************************/
799 1057
800static void 1058static int
1059any_pending (EV_P)
1060{
1061 int pri;
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068}
1069
1070inline void
801call_pending (EV_P) 1071call_pending (EV_P)
802{ 1072{
803 int pri; 1073 int pri;
804 1074
805 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 1076 while (pendingcnt [pri])
807 { 1077 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 1079
810 if (p->w) 1080 if (expect_true (p->w))
811 { 1081 {
812 p->w->pending = 0; 1082 p->w->pending = 0;
813 1083 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
815 } 1084 }
816 } 1085 }
817} 1086}
818 1087
819static void 1088inline void
820timers_reify (EV_P) 1089timers_reify (EV_P)
821{ 1090{
822 while (timercnt && ((WT)timers [0])->at <= mn_now) 1091 while (timercnt && ((WT)timers [0])->at <= mn_now)
823 { 1092 {
824 struct ev_timer *w = timers [0]; 1093 struct ev_timer *w = timers [0];
827 1096
828 /* first reschedule or stop timer */ 1097 /* first reschedule or stop timer */
829 if (w->repeat) 1098 if (w->repeat)
830 { 1099 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101
832 ((WT)w)->at = mn_now + w->repeat; 1102 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
833 downheap ((WT *)timers, timercnt, 0); 1106 downheap ((WT *)timers, timercnt, 0);
834 } 1107 }
835 else 1108 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 1110
838 event (EV_A_ (W)w, EV_TIMEOUT); 1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
839 } 1112 }
840} 1113}
841 1114
842static void 1115#if EV_PERIODICS
1116inline void
843periodics_reify (EV_P) 1117periodics_reify (EV_P)
844{ 1118{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
846 { 1120 {
847 struct ev_periodic *w = periodics [0]; 1121 struct ev_periodic *w = periodics [0];
848 1122
849 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1123 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850 1124
851 /* first reschedule or stop timer */ 1125 /* first reschedule or stop timer */
852 if (w->interval) 1126 if (w->reschedule_cb)
853 { 1127 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 }
1132 else if (w->interval)
1133 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0); 1136 downheap ((WT *)periodics, periodiccnt, 0);
857 } 1137 }
858 else 1138 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860 1140
861 event (EV_A_ (W)w, EV_PERIODIC); 1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
862 } 1142 }
863} 1143}
864 1144
865static void 1145static void
866periodics_reschedule (EV_P) 1146periodics_reschedule (EV_P)
870 /* adjust periodics after time jump */ 1150 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i) 1151 for (i = 0; i < periodiccnt; ++i)
872 { 1152 {
873 struct ev_periodic *w = periodics [i]; 1153 struct ev_periodic *w = periodics [i];
874 1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
875 if (w->interval) 1157 else if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 {
881 ev_periodic_stop (EV_A_ w);
882 ev_periodic_start (EV_A_ w);
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 }
886 }
887 } 1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
888} 1164}
1165#endif
889 1166
890inline int 1167inline int
891time_update_monotonic (EV_P) 1168time_update_monotonic (EV_P)
892{ 1169{
893 mn_now = get_clock (); 1170 mn_now = get_clock ();
894 1171
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 { 1173 {
897 rt_now = rtmn_diff + mn_now; 1174 ev_rt_now = rtmn_diff + mn_now;
898 return 0; 1175 return 0;
899 } 1176 }
900 else 1177 else
901 { 1178 {
902 now_floor = mn_now; 1179 now_floor = mn_now;
903 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
904 return 1; 1181 return 1;
905 } 1182 }
906} 1183}
907 1184
908static void 1185inline void
909time_update (EV_P) 1186time_update (EV_P)
910{ 1187{
911 int i; 1188 int i;
912 1189
913#if EV_USE_MONOTONIC 1190#if EV_USE_MONOTONIC
917 { 1194 {
918 ev_tstamp odiff = rtmn_diff; 1195 ev_tstamp odiff = rtmn_diff;
919 1196
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 { 1198 {
922 rtmn_diff = rt_now - mn_now; 1199 rtmn_diff = ev_rt_now - mn_now;
923 1200
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 return; /* all is well */ 1202 return; /* all is well */
926 1203
927 rt_now = ev_time (); 1204 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 1205 mn_now = get_clock ();
929 now_floor = mn_now; 1206 now_floor = mn_now;
930 } 1207 }
931 1208
1209# if EV_PERIODICS
932 periodics_reschedule (EV_A); 1210 periodics_reschedule (EV_A);
1211# endif
933 /* no timer adjustment, as the monotonic clock doesn't jump */ 1212 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 } 1214 }
936 } 1215 }
937 else 1216 else
938#endif 1217#endif
939 { 1218 {
940 rt_now = ev_time (); 1219 ev_rt_now = ev_time ();
941 1220
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 { 1222 {
1223#if EV_PERIODICS
944 periodics_reschedule (EV_A); 1224 periodics_reschedule (EV_A);
1225#endif
945 1226
946 /* adjust timers. this is easy, as the offset is the same for all */ 1227 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i) 1228 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now; 1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
949 } 1230 }
950 1231
951 mn_now = rt_now; 1232 mn_now = ev_rt_now;
952 } 1233 }
953} 1234}
954 1235
955void 1236void
956ev_ref (EV_P) 1237ev_ref (EV_P)
970ev_loop (EV_P_ int flags) 1251ev_loop (EV_P_ int flags)
971{ 1252{
972 double block; 1253 double block;
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
974 1255
975 do 1256 while (activecnt)
976 { 1257 {
977 /* queue check watchers (and execute them) */ 1258 /* queue check watchers (and execute them) */
978 if (expect_false (preparecnt)) 1259 if (expect_false (preparecnt))
979 { 1260 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 1262 call_pending (EV_A);
982 } 1263 }
983 1264
1265 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork))
1267 loop_fork (EV_A);
1268
984 /* update fd-related kernel structures */ 1269 /* update fd-related kernel structures */
985 fd_reify (EV_A); 1270 fd_reify (EV_A);
986 1271
987 /* calculate blocking time */ 1272 /* calculate blocking time */
988 1273
989 /* we only need this for !monotonic clockor timers, but as we basically 1274 /* we only need this for !monotonic clock or timers, but as we basically
990 always have timers, we just calculate it always */ 1275 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC 1276#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic)) 1277 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A); 1278 time_update_monotonic (EV_A);
994 else 1279 else
995#endif 1280#endif
996 { 1281 {
997 rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
998 mn_now = rt_now; 1283 mn_now = ev_rt_now;
999 } 1284 }
1000 1285
1001 if (flags & EVLOOP_NONBLOCK || idlecnt) 1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.; 1287 block = 0.;
1003 else 1288 else
1004 { 1289 {
1005 block = MAX_BLOCKTIME; 1290 block = MAX_BLOCKTIME;
1006 1291
1007 if (timercnt) 1292 if (timercnt)
1008 { 1293 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1010 if (block > to) block = to; 1295 if (block > to) block = to;
1011 } 1296 }
1012 1297
1298#if EV_PERIODICS
1013 if (periodiccnt) 1299 if (periodiccnt)
1014 { 1300 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1016 if (block > to) block = to; 1302 if (block > to) block = to;
1017 } 1303 }
1304#endif
1018 1305
1019 if (block < 0.) block = 0.; 1306 if (expect_false (block < 0.)) block = 0.;
1020 } 1307 }
1021 1308
1022 method_poll (EV_A_ block); 1309 backend_poll (EV_A_ block);
1023 1310
1024 /* update rt_now, do magic */ 1311 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 1312 time_update (EV_A);
1026 1313
1027 /* queue pending timers and reschedule them */ 1314 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 1315 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS
1029 periodics_reify (EV_A); /* absolute timers called first */ 1317 periodics_reify (EV_A); /* absolute timers called first */
1318#endif
1030 1319
1031 /* queue idle watchers unless io or timers are pending */ 1320 /* queue idle watchers unless io or timers are pending */
1032 if (!pendingcnt) 1321 if (idlecnt && !any_pending (EV_A))
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1034 1323
1035 /* queue check watchers, to be executed first */ 1324 /* queue check watchers, to be executed first */
1036 if (checkcnt) 1325 if (expect_false (checkcnt))
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1038 1327
1039 call_pending (EV_A); 1328 call_pending (EV_A);
1329
1330 if (expect_false (loop_done))
1331 break;
1040 } 1332 }
1041 while (activecnt && !loop_done);
1042 1333
1043 if (loop_done != 2) 1334 if (loop_done != 2)
1044 loop_done = 0; 1335 loop_done = 0;
1045} 1336}
1046 1337
1106void 1397void
1107ev_io_start (EV_P_ struct ev_io *w) 1398ev_io_start (EV_P_ struct ev_io *w)
1108{ 1399{
1109 int fd = w->fd; 1400 int fd = w->fd;
1110 1401
1111 if (ev_is_active (w)) 1402 if (expect_false (ev_is_active (w)))
1112 return; 1403 return;
1113 1404
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 1405 assert (("ev_io_start called with negative fd", fd >= 0));
1115 1406
1116 ev_start (EV_A_ (W)w, 1); 1407 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1409 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1119 1410
1120 fd_change (EV_A_ fd); 1411 fd_change (EV_A_ fd);
1121} 1412}
1122 1413
1123void 1414void
1124ev_io_stop (EV_P_ struct ev_io *w) 1415ev_io_stop (EV_P_ struct ev_io *w)
1125{ 1416{
1126 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 1418 if (expect_false (!ev_is_active (w)))
1128 return; 1419 return;
1420
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1129 1422
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1132 1425
1133 fd_change (EV_A_ w->fd); 1426 fd_change (EV_A_ w->fd);
1134} 1427}
1135 1428
1136void 1429void
1137ev_timer_start (EV_P_ struct ev_timer *w) 1430ev_timer_start (EV_P_ struct ev_timer *w)
1138{ 1431{
1139 if (ev_is_active (w)) 1432 if (expect_false (ev_is_active (w)))
1140 return; 1433 return;
1141 1434
1142 ((WT)w)->at += mn_now; 1435 ((WT)w)->at += mn_now;
1143 1436
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 1438
1146 ev_start (EV_A_ (W)w, ++timercnt); 1439 ev_start (EV_A_ (W)w, ++timercnt);
1147 array_needsize (timers, timermax, timercnt, ); 1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1148 timers [timercnt - 1] = w; 1441 timers [timercnt - 1] = w;
1149 upheap ((WT *)timers, timercnt - 1); 1442 upheap ((WT *)timers, timercnt - 1);
1150 1443
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152} 1445}
1153 1446
1154void 1447void
1155ev_timer_stop (EV_P_ struct ev_timer *w) 1448ev_timer_stop (EV_P_ struct ev_timer *w)
1156{ 1449{
1157 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w)) 1451 if (expect_false (!ev_is_active (w)))
1159 return; 1452 return;
1160 1453
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162 1455
1163 if (((W)w)->active < timercnt--) 1456 if (expect_true (((W)w)->active < timercnt--))
1164 { 1457 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 1458 timers [((W)w)->active - 1] = timers [timercnt];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1167 } 1460 }
1168 1461
1169 ((WT)w)->at = w->repeat; 1462 ((WT)w)->at -= mn_now;
1170 1463
1171 ev_stop (EV_A_ (W)w); 1464 ev_stop (EV_A_ (W)w);
1172} 1465}
1173 1466
1174void 1467void
1177 if (ev_is_active (w)) 1470 if (ev_is_active (w))
1178 { 1471 {
1179 if (w->repeat) 1472 if (w->repeat)
1180 { 1473 {
1181 ((WT)w)->at = mn_now + w->repeat; 1474 ((WT)w)->at = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1476 }
1184 else 1477 else
1185 ev_timer_stop (EV_A_ w); 1478 ev_timer_stop (EV_A_ w);
1186 } 1479 }
1187 else if (w->repeat) 1480 else if (w->repeat)
1481 {
1482 w->at = w->repeat;
1188 ev_timer_start (EV_A_ w); 1483 ev_timer_start (EV_A_ w);
1484 }
1189} 1485}
1190 1486
1487#if EV_PERIODICS
1191void 1488void
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 1489ev_periodic_start (EV_P_ struct ev_periodic *w)
1193{ 1490{
1194 if (ev_is_active (w)) 1491 if (expect_false (ev_is_active (w)))
1195 return; 1492 return;
1196 1493
1494 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval)
1497 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 1499 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1501 }
1202 1502
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 1503 ev_start (EV_A_ (W)w, ++periodiccnt);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 1505 periodics [periodiccnt - 1] = w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 1506 upheap ((WT *)periodics, periodiccnt - 1);
1207 1507
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209} 1509}
1210 1510
1211void 1511void
1212ev_periodic_stop (EV_P_ struct ev_periodic *w) 1512ev_periodic_stop (EV_P_ struct ev_periodic *w)
1213{ 1513{
1214 ev_clear_pending (EV_A_ (W)w); 1514 ev_clear_pending (EV_A_ (W)w);
1215 if (!ev_is_active (w)) 1515 if (expect_false (!ev_is_active (w)))
1216 return; 1516 return;
1217 1517
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219 1519
1220 if (((W)w)->active < periodiccnt--) 1520 if (expect_true (((W)w)->active < periodiccnt--))
1221 { 1521 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1522 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1224 } 1524 }
1225 1525
1226 ev_stop (EV_A_ (W)w); 1526 ev_stop (EV_A_ (W)w);
1227} 1527}
1228 1528
1229void 1529void
1530ev_periodic_again (EV_P_ struct ev_periodic *w)
1531{
1532 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w);
1535}
1536#endif
1537
1538void
1230ev_idle_start (EV_P_ struct ev_idle *w) 1539ev_idle_start (EV_P_ struct ev_idle *w)
1231{ 1540{
1232 if (ev_is_active (w)) 1541 if (expect_false (ev_is_active (w)))
1233 return; 1542 return;
1234 1543
1235 ev_start (EV_A_ (W)w, ++idlecnt); 1544 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, ); 1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1237 idles [idlecnt - 1] = w; 1546 idles [idlecnt - 1] = w;
1238} 1547}
1239 1548
1240void 1549void
1241ev_idle_stop (EV_P_ struct ev_idle *w) 1550ev_idle_stop (EV_P_ struct ev_idle *w)
1242{ 1551{
1243 ev_clear_pending (EV_A_ (W)w); 1552 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w)) 1553 if (expect_false (!ev_is_active (w)))
1245 return; 1554 return;
1246 1555
1247 idles [((W)w)->active - 1] = idles [--idlecnt]; 1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w); 1557 ev_stop (EV_A_ (W)w);
1249} 1558}
1250 1559
1251void 1560void
1252ev_prepare_start (EV_P_ struct ev_prepare *w) 1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{ 1562{
1254 if (ev_is_active (w)) 1563 if (expect_false (ev_is_active (w)))
1255 return; 1564 return;
1256 1565
1257 ev_start (EV_A_ (W)w, ++preparecnt); 1566 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, ); 1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1259 prepares [preparecnt - 1] = w; 1568 prepares [preparecnt - 1] = w;
1260} 1569}
1261 1570
1262void 1571void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w) 1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{ 1573{
1265 ev_clear_pending (EV_A_ (W)w); 1574 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w)) 1575 if (expect_false (!ev_is_active (w)))
1267 return; 1576 return;
1268 1577
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w); 1579 ev_stop (EV_A_ (W)w);
1271} 1580}
1272 1581
1273void 1582void
1274ev_check_start (EV_P_ struct ev_check *w) 1583ev_check_start (EV_P_ struct ev_check *w)
1275{ 1584{
1276 if (ev_is_active (w)) 1585 if (expect_false (ev_is_active (w)))
1277 return; 1586 return;
1278 1587
1279 ev_start (EV_A_ (W)w, ++checkcnt); 1588 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, ); 1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1281 checks [checkcnt - 1] = w; 1590 checks [checkcnt - 1] = w;
1282} 1591}
1283 1592
1284void 1593void
1285ev_check_stop (EV_P_ struct ev_check *w) 1594ev_check_stop (EV_P_ struct ev_check *w)
1286{ 1595{
1287 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1289 return; 1598 return;
1290 1599
1291 checks [((W)w)->active - 1] = checks [--checkcnt]; 1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1293} 1602}
1298 1607
1299void 1608void
1300ev_signal_start (EV_P_ struct ev_signal *w) 1609ev_signal_start (EV_P_ struct ev_signal *w)
1301{ 1610{
1302#if EV_MULTIPLICITY 1611#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 1613#endif
1305 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1306 return; 1615 return;
1307 1616
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309 1618
1310 ev_start (EV_A_ (W)w, 1); 1619 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 1622
1314 if (!((WL)w)->next) 1623 if (!((WL)w)->next)
1315 { 1624 {
1625#if _WIN32
1626 signal (w->signum, sighandler);
1627#else
1316 struct sigaction sa; 1628 struct sigaction sa;
1317 sa.sa_handler = sighandler; 1629 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask); 1630 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0); 1632 sigaction (w->signum, &sa, 0);
1633#endif
1321 } 1634 }
1322} 1635}
1323 1636
1324void 1637void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 1638ev_signal_stop (EV_P_ struct ev_signal *w)
1326{ 1639{
1327 ev_clear_pending (EV_A_ (W)w); 1640 ev_clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 1641 if (expect_false (!ev_is_active (w)))
1329 return; 1642 return;
1330 1643
1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1332 ev_stop (EV_A_ (W)w); 1645 ev_stop (EV_A_ (W)w);
1333 1646
1337 1650
1338void 1651void
1339ev_child_start (EV_P_ struct ev_child *w) 1652ev_child_start (EV_P_ struct ev_child *w)
1340{ 1653{
1341#if EV_MULTIPLICITY 1654#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1343#endif 1656#endif
1344 if (ev_is_active (w)) 1657 if (expect_false (ev_is_active (w)))
1345 return; 1658 return;
1346 1659
1347 ev_start (EV_A_ (W)w, 1); 1660 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1349} 1662}
1350 1663
1351void 1664void
1352ev_child_stop (EV_P_ struct ev_child *w) 1665ev_child_stop (EV_P_ struct ev_child *w)
1353{ 1666{
1354 ev_clear_pending (EV_A_ (W)w); 1667 ev_clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 1668 if (expect_false (!ev_is_active (w)))
1356 return; 1669 return;
1357 1670
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1359 ev_stop (EV_A_ (W)w); 1672 ev_stop (EV_A_ (W)w);
1360} 1673}
1674
1675#if EV_MULTIPLICITY
1676static void
1677embed_cb (EV_P_ struct ev_io *io, int revents)
1678{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1680
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683}
1684
1685void
1686ev_embed_start (EV_P_ struct ev_embed *w)
1687{
1688 if (expect_false (ev_is_active (w)))
1689 return;
1690
1691 {
1692 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696
1697 ev_io_start (EV_A_ &w->io);
1698 ev_start (EV_A_ (W)w, 1);
1699}
1700
1701void
1702ev_embed_stop (EV_P_ struct ev_embed *w)
1703{
1704 ev_clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w)))
1706 return;
1707
1708 ev_io_stop (EV_A_ &w->io);
1709 ev_stop (EV_A_ (W)w);
1710}
1711#endif
1361 1712
1362/*****************************************************************************/ 1713/*****************************************************************************/
1363 1714
1364struct ev_once 1715struct ev_once
1365{ 1716{
1375 void (*cb)(int revents, void *arg) = once->cb; 1726 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 1727 void *arg = once->arg;
1377 1728
1378 ev_io_stop (EV_A_ &once->io); 1729 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 1730 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 1731 ev_free (once);
1381 1732
1382 cb (revents, arg); 1733 cb (revents, arg);
1383} 1734}
1384 1735
1385static void 1736static void
1395} 1746}
1396 1747
1397void 1748void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 1750{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 1751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 1752
1402 if (!once) 1753 if (expect_false (!once))
1754 {
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 else 1756 return;
1405 { 1757 }
1758
1406 once->cb = cb; 1759 once->cb = cb;
1407 once->arg = arg; 1760 once->arg = arg;
1408 1761
1409 ev_watcher_init (&once->io, once_cb_io); 1762 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 1763 if (fd >= 0)
1411 { 1764 {
1412 ev_io_set (&once->io, fd, events); 1765 ev_io_set (&once->io, fd, events);
1413 ev_io_start (EV_A_ &once->io); 1766 ev_io_start (EV_A_ &once->io);
1414 } 1767 }
1415 1768
1416 ev_watcher_init (&once->to, once_cb_to); 1769 ev_init (&once->to, once_cb_to);
1417 if (timeout >= 0.) 1770 if (timeout >= 0.)
1418 { 1771 {
1419 ev_timer_set (&once->to, timeout, 0.); 1772 ev_timer_set (&once->to, timeout, 0.);
1420 ev_timer_start (EV_A_ &once->to); 1773 ev_timer_start (EV_A_ &once->to);
1421 }
1422 } 1774 }
1423} 1775}
1424 1776
1777#ifdef __cplusplus
1778}
1779#endif
1780

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines