ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.20 by root, Wed Oct 31 18:28:00 2007 UTC vs.
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
36 63
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
41#include <sys/time.h> 72#include <sys/time.h>
42#include <time.h> 73#include <time.h>
43 74
75/**/
76
44#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
45# ifdef CLOCK_MONOTONIC
46# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
47# endif 102# endif
48#endif 103#endif
49 104
50#ifndef HAVE_SELECT
51# define HAVE_SELECT 1
52#endif
53
54#ifndef HAVE_EPOLL
55# define HAVE_EPOLL 0
56#endif
57
58#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
60#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
61 122
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
64 127
65#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
66 143
67typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
68typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
70 147
71static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
72ev_tstamp ev_now;
73int ev_method;
74
75static int have_monotonic; /* runtime */
76
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
78static void (*method_modify)(int fd, int oev, int nev);
79static void (*method_poll)(ev_tstamp timeout);
80 149
81/*****************************************************************************/ 150/*****************************************************************************/
82 151
83ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
84ev_time (void) 186ev_time (void)
85{ 187{
86#if HAVE_REALTIME 188#if EV_USE_REALTIME
87 struct timespec ts; 189 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 192#else
91 struct timeval tv; 193 struct timeval tv;
92 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 196#endif
95} 197}
96 198
97static ev_tstamp 199inline ev_tstamp
98get_clock (void) 200get_clock (void)
99{ 201{
100#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
101 if (have_monotonic) 203 if (expect_true (have_monotonic))
102 { 204 {
103 struct timespec ts; 205 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 208 }
107#endif 209#endif
108 210
109 return ev_time (); 211 return ev_time ();
110} 212}
111 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
112#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
113 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
114 { \ 224 { \
115 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
117 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
118 cur = newcnt; \ 234 cur = newcnt; \
119 } 235 }
120 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
121/*****************************************************************************/ 240/*****************************************************************************/
122 241
123typedef struct
124{
125 struct ev_io *head;
126 unsigned char wev, rev; /* want, received event set */
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void 242static void
136anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
137{ 244{
138 while (count--) 245 while (count--)
139 { 246 {
140 base->head = 0; 247 base->head = 0;
141 base->wev = base->rev = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
142 ++base; 251 ++base;
143 } 252 }
144} 253}
145 254
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void 255static void
156event (W w, int events) 256event (EV_P_ W w, int events)
157{ 257{
158 if (w->active) 258 if (w->pending)
159 { 259 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
164 } 262 }
165}
166 263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268}
269
167static void 270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
168fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
169{ 281{
170 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
171 struct ev_io *w; 283 struct ev_io *w;
172 284
173 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
174 { 286 {
175 int ev = w->events & events; 287 int ev = w->events & events;
176 288
177 if (ev) 289 if (ev)
178 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
179 } 291 }
180} 292}
181 293
294/*****************************************************************************/
295
182static void 296static void
183queue_events (W *events, int eventcnt, int type) 297fd_reify (EV_P)
184{ 298{
185 int i; 299 int i;
186 300
187 for (i = 0; i < eventcnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
188 event (events [i], type); 302 {
303 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd;
305 struct ev_io *w;
306
307 int events = 0;
308
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events;
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
189} 344}
190 345
191/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
192static void 347static void
193fd_recheck () 348fd_ebadf (EV_P)
194{ 349{
195 int fd; 350 int fd;
196 351
197 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev) 353 if (anfds [fd].events)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
201 evio_stop (anfds [fd].head); 356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
202} 386}
203 387
204/*****************************************************************************/ 388/*****************************************************************************/
205 389
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void 390static void
213upheap (WT *timers, int k) 391upheap (WT *heap, int k)
214{ 392{
215 WT w = timers [k]; 393 WT w = heap [k];
216 394
217 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
218 { 396 {
219 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
220 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
221 k >>= 1; 399 k >>= 1;
222 } 400 }
223 401
224 timers [k] = w; 402 heap [k] = w;
225 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
226 404
227} 405}
228 406
229static void 407static void
230downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
231{ 409{
232 WT w = timers [k]; 410 WT w = heap [k];
233 411
234 while (k < (N >> 1)) 412 while (k < (N >> 1))
235 { 413 {
236 int j = k << 1; 414 int j = k << 1;
237 415
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
239 ++j; 417 ++j;
240 418
241 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
242 break; 420 break;
243 421
244 timers [k] = timers [j]; 422 heap [k] = heap [j];
245 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
246 k = j; 424 k = j;
247 } 425 }
248 426
249 timers [k] = w; 427 heap [k] = w;
250 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
251} 429}
252 430
253/*****************************************************************************/ 431/*****************************************************************************/
254 432
255typedef struct 433typedef struct
256{ 434{
257 struct ev_signal *head; 435 struct ev_watcher_list *head;
258 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
259} ANSIG; 437} ANSIG;
260 438
261static ANSIG *signals; 439static ANSIG *signals;
262static int signalmax; 440static int signalmax;
263 441
264static int sigpipe [2]; 442static int sigpipe [2];
265static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
266static struct ev_io sigev; 444static struct ev_io sigev;
267 445
268static void 446static void
269signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
270{ 448{
271 while (count--) 449 while (count--)
272 { 450 {
273 base->head = 0; 451 base->head = 0;
274 base->gotsig = 0; 452 base->gotsig = 0;
453
275 ++base; 454 ++base;
276 } 455 }
277} 456}
278 457
279static void 458static void
281{ 460{
282 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
283 462
284 if (!gotsig) 463 if (!gotsig)
285 { 464 {
465 int old_errno = errno;
286 gotsig = 1; 466 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
288 } 469 }
289} 470}
290 471
291static void 472static void
292sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
293{ 474{
294 struct ev_signal *w; 475 struct ev_watcher_list *w;
295 int sig; 476 int signum;
296 477
478 read (sigpipe [0], &revents, 1);
297 gotsig = 0; 479 gotsig = 0;
298 read (sigpipe [0], &revents, 1);
299 480
300 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
301 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
302 { 483 {
303 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
304 485
305 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
306 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
307 } 488 }
308} 489}
309 490
310static void 491static void
311siginit (void) 492siginit (EV_P)
312{ 493{
494#ifndef WIN32
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 497
316 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
319 502
320 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
322} 506}
323 507
324/*****************************************************************************/ 508/*****************************************************************************/
325 509
326static struct ev_idle **idles; 510#ifndef WIN32
327static int idlemax, idlecnt;
328 511
329static struct ev_prepare **prepares; 512static struct ev_child *childs [PID_HASHSIZE];
330static int preparemax, preparecnt; 513static struct ev_signal childev;
331 514
332static struct ev_check **checks; 515#ifndef WCONTINUED
333static int checkmax, checkcnt; 516# define WCONTINUED 0
517#endif
518
519static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
334 550
335/*****************************************************************************/ 551/*****************************************************************************/
336 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
337#if HAVE_EPOLL 556#if EV_USE_EPOLL
338# include "ev_epoll.c" 557# include "ev_epoll.c"
339#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
340#if HAVE_SELECT 562#if EV_USE_SELECT
341# include "ev_select.c" 563# include "ev_select.c"
342#endif 564#endif
343 565
344int ev_init (int flags) 566int
567ev_version_major (void)
345{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
346#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
347 { 602 {
348 struct timespec ts; 603 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1; 605 have_monotonic = 1;
351 } 606 }
352#endif 607#endif
353 608
354 ev_now = ev_time (); 609 rt_now = ev_time ();
355 now = get_clock (); 610 mn_now = get_clock ();
356 diff = ev_now - now; 611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
357 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
358 if (pipe (sigpipe)) 728 if (pipe (sigpipe))
359 return 0; 729 return 0;
360 730
361 ev_method = EVMETHOD_NONE; 731 if (!default_loop)
362#if HAVE_EPOLL
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
364#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368
369 if (ev_method)
370 { 732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
741 if (ev_method (EV_A))
742 {
371 evw_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
372 siginit (); 745 siginit (EV_A);
373 }
374 746
375 return ev_method; 747#ifndef WIN32
376} 748 ev_signal_init (&childev, childcb, SIGCHLD);
377 749 ev_set_priority (&childev, EV_MAXPRI);
378/*****************************************************************************/ 750 ev_signal_start (EV_A_ &childev);
379 751 ev_unref (EV_A); /* child watcher should not keep loop alive */
380void ev_prefork (void)
381{
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif 752#endif
753 }
754 else
755 default_loop = 0;
756 }
396 757
758 return default_loop;
759}
760
761void
762ev_default_destroy (void)
763{
764#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
397 evio_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
398 close (sigpipe [0]); 790 close (sigpipe [0]);
399 close (sigpipe [1]); 791 close (sigpipe [1]);
400 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
401 siginit (); 795 siginit (EV_A);
402} 796}
403 797
404/*****************************************************************************/ 798/*****************************************************************************/
405 799
406static void 800static void
407fd_reify (void) 801call_pending (EV_P)
408{ 802{
409 int i; 803 int pri;
410 804
411 for (i = 0; i < fdchangecnt; ++i) 805 for (pri = NUMPRI; pri--; )
412 { 806 while (pendingcnt [pri])
413 int fd = fdchanges [i];
414 ANFD *anfd = anfds + fd;
415 struct ev_io *w;
416
417 int wev = 0;
418
419 for (w = anfd->head; w; w = w->next)
420 wev |= w->events;
421
422 if (anfd->wev != wev)
423 { 807 {
424 method_modify (fd, anfd->wev, wev);
425 anfd->wev = wev;
426 }
427 }
428
429 fdchangecnt = 0;
430}
431
432static void
433call_pending ()
434{
435 while (pendingcnt)
436 {
437 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
438 809
439 if (p->w) 810 if (p->w)
440 { 811 {
441 p->w->pending = 0; 812 p->w->pending = 0;
442 p->w->cb (p->w, p->events); 813
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
443 } 815 }
444 } 816 }
445} 817}
446 818
447static void 819static void
448timers_reify () 820timers_reify (EV_P)
449{ 821{
450 while (timercnt && timers [0]->at <= now) 822 while (timercnt && ((WT)timers [0])->at <= mn_now)
451 { 823 {
452 struct ev_timer *w = timers [0]; 824 struct ev_timer *w = timers [0];
453 825
454 event ((W)w, EV_TIMEOUT); 826 assert (("inactive timer on timer heap detected", ev_is_active (w)));
455 827
456 /* first reschedule or stop timer */ 828 /* first reschedule or stop timer */
457 if (w->repeat) 829 if (w->repeat)
458 { 830 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
459 w->at = now + w->repeat; 832 ((WT)w)->at = mn_now + w->repeat;
460 assert (("timer timeout in the past, negative repeat?", w->at > now));
461 downheap ((WT *)timers, timercnt, 0); 833 downheap ((WT *)timers, timercnt, 0);
462 } 834 }
463 else 835 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
465 }
466}
467 837
838 event (EV_A_ (W)w, EV_TIMEOUT);
839 }
840}
841
468static void 842static void
469periodics_reify () 843periodics_reify (EV_P)
470{ 844{
471 while (periodiccnt && periodics [0]->at <= ev_now) 845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
472 { 846 {
473 struct ev_periodic *w = periodics [0]; 847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
474 850
475 /* first reschedule or stop timer */ 851 /* first reschedule or stop timer */
476 if (w->interval) 852 if (w->interval)
477 { 853 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
480 downheap ((WT *)periodics, periodiccnt, 0); 856 downheap ((WT *)periodics, periodiccnt, 0);
481 } 857 }
482 else 858 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
484 860
485 event ((W)w, EV_TIMEOUT); 861 event (EV_A_ (W)w, EV_PERIODIC);
486 } 862 }
487} 863}
488 864
489static void 865static void
490periodics_reschedule (ev_tstamp diff) 866periodics_reschedule (EV_P)
491{ 867{
492 int i; 868 int i;
493 869
494 /* adjust periodics after time jump */ 870 /* adjust periodics after time jump */
495 for (i = 0; i < periodiccnt; ++i) 871 for (i = 0; i < periodiccnt; ++i)
496 { 872 {
497 struct ev_periodic *w = periodics [i]; 873 struct ev_periodic *w = periodics [i];
498 874
499 if (w->interval) 875 if (w->interval)
500 { 876 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
502 878
503 if (fabs (diff) >= 1e-4) 879 if (fabs (diff) >= 1e-4)
504 { 880 {
505 evperiodic_stop (w); 881 ev_periodic_stop (EV_A_ w);
506 evperiodic_start (w); 882 ev_periodic_start (EV_A_ w);
507 883
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
509 } 885 }
510 } 886 }
511 } 887 }
512} 888}
513 889
890inline int
891time_update_monotonic (EV_P)
892{
893 mn_now = get_clock ();
894
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 }
900 else
901 {
902 now_floor = mn_now;
903 rt_now = ev_time ();
904 return 1;
905 }
906}
907
514static void 908static void
515time_update () 909time_update (EV_P)
516{ 910{
517 int i; 911 int i;
518 912
519 ev_now = ev_time (); 913#if EV_USE_MONOTONIC
520
521 if (have_monotonic) 914 if (expect_true (have_monotonic))
522 { 915 {
523 ev_tstamp odiff = diff; 916 if (time_update_monotonic (EV_A))
524
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */
526 { 917 {
527 now = get_clock (); 918 ev_tstamp odiff = rtmn_diff;
919
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 {
528 diff = ev_now - now; 922 rtmn_diff = rt_now - mn_now;
529 923
530 if (fabs (odiff - diff) < MIN_TIMEJUMP) 924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
531 return; /* all is well */ 925 return; /* all is well */
532 926
533 ev_now = ev_time (); 927 rt_now = ev_time ();
928 mn_now = get_clock ();
929 now_floor = mn_now;
930 }
931
932 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
534 } 935 }
535
536 periodics_reschedule (diff - odiff);
537 /* no timer adjustment, as the monotonic clock doesn't jump */
538 } 936 }
539 else 937 else
938#endif
540 { 939 {
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 940 rt_now = ev_time ();
941
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
542 { 943 {
543 periodics_reschedule (ev_now - now); 944 periodics_reschedule (EV_A);
544 945
545 /* adjust timers. this is easy, as the offset is the same for all */ 946 /* adjust timers. this is easy, as the offset is the same for all */
546 for (i = 0; i < timercnt; ++i) 947 for (i = 0; i < timercnt; ++i)
547 timers [i]->at += diff; 948 ((WT)timers [i])->at += rt_now - mn_now;
548 } 949 }
549 950
550 now = ev_now; 951 mn_now = rt_now;
551 } 952 }
552} 953}
553 954
554int ev_loop_done; 955void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
555 960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
556void ev_loop (int flags) 970ev_loop (EV_P_ int flags)
557{ 971{
558 double block; 972 double block;
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
560 974
561 do 975 do
562 { 976 {
563 /* queue check watchers (and execute them) */ 977 /* queue check watchers (and execute them) */
564 if (checkcnt) 978 if (expect_false (preparecnt))
565 { 979 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
567 call_pending (); 981 call_pending (EV_A);
568 } 982 }
569 983
570 /* update fd-related kernel structures */ 984 /* update fd-related kernel structures */
571 fd_reify (); 985 fd_reify (EV_A);
572 986
573 /* calculate blocking time */ 987 /* calculate blocking time */
574 988
575 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 989 /* we only need this for !monotonic clockor timers, but as we basically
990 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A);
994 else
995#endif
996 {
576 ev_now = ev_time (); 997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
577 1000
578 if (flags & EVLOOP_NONBLOCK || idlecnt) 1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
579 block = 0.; 1002 block = 0.;
580 else 1003 else
581 { 1004 {
582 block = MAX_BLOCKTIME; 1005 block = MAX_BLOCKTIME;
583 1006
584 if (timercnt) 1007 if (timercnt)
585 { 1008 {
586 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
587 if (block > to) block = to; 1010 if (block > to) block = to;
588 } 1011 }
589 1012
590 if (periodiccnt) 1013 if (periodiccnt)
591 { 1014 {
592 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
593 if (block > to) block = to; 1016 if (block > to) block = to;
594 } 1017 }
595 1018
596 if (block < 0.) block = 0.; 1019 if (block < 0.) block = 0.;
597 } 1020 }
598 1021
599 method_poll (block); 1022 method_poll (EV_A_ block);
600 1023
601 /* update ev_now, do magic */ 1024 /* update rt_now, do magic */
602 time_update (); 1025 time_update (EV_A);
603 1026
604 /* queue pending timers and reschedule them */ 1027 /* queue pending timers and reschedule them */
605 timers_reify (); /* relative timers called last */ 1028 timers_reify (EV_A); /* relative timers called last */
606 periodics_reify (); /* absolute timers called first */ 1029 periodics_reify (EV_A); /* absolute timers called first */
607 1030
608 /* queue idle watchers unless io or timers are pending */ 1031 /* queue idle watchers unless io or timers are pending */
609 if (!pendingcnt) 1032 if (!pendingcnt)
610 queue_events ((W *)idles, idlecnt, EV_IDLE); 1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
611 1034
612 /* queue check watchers, to be executed first */ 1035 /* queue check watchers, to be executed first */
613 if (checkcnt) 1036 if (checkcnt)
614 queue_events ((W *)checks, checkcnt, EV_CHECK); 1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
615 1038
616 call_pending (); 1039 call_pending (EV_A);
617 } 1040 }
618 while (!ev_loop_done); 1041 while (activecnt && !loop_done);
619 1042
620 if (ev_loop_done != 2) 1043 if (loop_done != 2)
621 ev_loop_done = 0; 1044 loop_done = 0;
1045}
1046
1047void
1048ev_unloop (EV_P_ int how)
1049{
1050 loop_done = how;
622} 1051}
623 1052
624/*****************************************************************************/ 1053/*****************************************************************************/
625 1054
626static void 1055inline void
627wlist_add (WL *head, WL elem) 1056wlist_add (WL *head, WL elem)
628{ 1057{
629 elem->next = *head; 1058 elem->next = *head;
630 *head = elem; 1059 *head = elem;
631} 1060}
632 1061
633static void 1062inline void
634wlist_del (WL *head, WL elem) 1063wlist_del (WL *head, WL elem)
635{ 1064{
636 while (*head) 1065 while (*head)
637 { 1066 {
638 if (*head == elem) 1067 if (*head == elem)
643 1072
644 head = &(*head)->next; 1073 head = &(*head)->next;
645 } 1074 }
646} 1075}
647 1076
648static void 1077inline void
649ev_clear (W w) 1078ev_clear_pending (EV_P_ W w)
650{ 1079{
651 if (w->pending) 1080 if (w->pending)
652 { 1081 {
653 pendings [w->pending - 1].w = 0; 1082 pendings [ABSPRI (w)][w->pending - 1].w = 0;
654 w->pending = 0; 1083 w->pending = 0;
655 } 1084 }
656} 1085}
657 1086
658static void 1087inline void
659ev_start (W w, int active) 1088ev_start (EV_P_ W w, int active)
660{ 1089{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
661 w->active = active; 1093 w->active = active;
1094 ev_ref (EV_A);
662} 1095}
663 1096
664static void 1097inline void
665ev_stop (W w) 1098ev_stop (EV_P_ W w)
666{ 1099{
1100 ev_unref (EV_A);
667 w->active = 0; 1101 w->active = 0;
668} 1102}
669 1103
670/*****************************************************************************/ 1104/*****************************************************************************/
671 1105
672void 1106void
673evio_start (struct ev_io *w) 1107ev_io_start (EV_P_ struct ev_io *w)
674{ 1108{
1109 int fd = w->fd;
1110
675 if (ev_is_active (w)) 1111 if (ev_is_active (w))
676 return; 1112 return;
677 1113
678 int fd = w->fd; 1114 assert (("ev_io_start called with negative fd", fd >= 0));
679 1115
680 ev_start ((W)w, 1); 1116 ev_start (EV_A_ (W)w, 1);
681 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
682 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1118 wlist_add ((WL *)&anfds[fd].head, (WL)w);
683 1119
684 ++fdchangecnt; 1120 fd_change (EV_A_ fd);
685 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
686 fdchanges [fdchangecnt - 1] = fd;
687} 1121}
688 1122
689void 1123void
690evio_stop (struct ev_io *w) 1124ev_io_stop (EV_P_ struct ev_io *w)
691{ 1125{
692 ev_clear ((W)w); 1126 ev_clear_pending (EV_A_ (W)w);
693 if (!ev_is_active (w)) 1127 if (!ev_is_active (w))
694 return; 1128 return;
695 1129
696 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
697 ev_stop ((W)w); 1131 ev_stop (EV_A_ (W)w);
698 1132
699 ++fdchangecnt; 1133 fd_change (EV_A_ w->fd);
700 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
701 fdchanges [fdchangecnt - 1] = w->fd;
702} 1134}
703 1135
704void 1136void
705evtimer_start (struct ev_timer *w) 1137ev_timer_start (EV_P_ struct ev_timer *w)
706{ 1138{
707 if (ev_is_active (w)) 1139 if (ev_is_active (w))
708 return; 1140 return;
709 1141
710 w->at += now; 1142 ((WT)w)->at += mn_now;
711 1143
712 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
713 1145
714 ev_start ((W)w, ++timercnt); 1146 ev_start (EV_A_ (W)w, ++timercnt);
715 array_needsize (timers, timermax, timercnt, ); 1147 array_needsize (timers, timermax, timercnt, );
716 timers [timercnt - 1] = w; 1148 timers [timercnt - 1] = w;
717 upheap ((WT *)timers, timercnt - 1); 1149 upheap ((WT *)timers, timercnt - 1);
718}
719 1150
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152}
1153
720void 1154void
721evtimer_stop (struct ev_timer *w) 1155ev_timer_stop (EV_P_ struct ev_timer *w)
722{ 1156{
723 ev_clear ((W)w); 1157 ev_clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1158 if (!ev_is_active (w))
725 return; 1159 return;
726 1160
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162
727 if (w->active < timercnt--) 1163 if (((W)w)->active < timercnt--)
728 { 1164 {
729 timers [w->active - 1] = timers [timercnt]; 1165 timers [((W)w)->active - 1] = timers [timercnt];
730 downheap ((WT *)timers, timercnt, w->active - 1); 1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
731 } 1167 }
732 1168
733 w->at = w->repeat; 1169 ((WT)w)->at = w->repeat;
734 1170
735 ev_stop ((W)w); 1171 ev_stop (EV_A_ (W)w);
736} 1172}
737 1173
738void 1174void
739evtimer_again (struct ev_timer *w) 1175ev_timer_again (EV_P_ struct ev_timer *w)
740{ 1176{
741 if (ev_is_active (w)) 1177 if (ev_is_active (w))
742 { 1178 {
743 if (w->repeat) 1179 if (w->repeat)
744 { 1180 {
745 w->at = now + w->repeat; 1181 ((WT)w)->at = mn_now + w->repeat;
746 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
747 } 1183 }
748 else 1184 else
749 evtimer_stop (w); 1185 ev_timer_stop (EV_A_ w);
750 } 1186 }
751 else if (w->repeat) 1187 else if (w->repeat)
752 evtimer_start (w); 1188 ev_timer_start (EV_A_ w);
753} 1189}
754 1190
755void 1191void
756evperiodic_start (struct ev_periodic *w) 1192ev_periodic_start (EV_P_ struct ev_periodic *w)
757{ 1193{
758 if (ev_is_active (w)) 1194 if (ev_is_active (w))
759 return; 1195 return;
760 1196
761 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
762 1198
763 /* this formula differs from the one in periodic_reify because we do not always round up */ 1199 /* this formula differs from the one in periodic_reify because we do not always round up */
764 if (w->interval) 1200 if (w->interval)
765 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
766 1202
767 ev_start ((W)w, ++periodiccnt); 1203 ev_start (EV_A_ (W)w, ++periodiccnt);
768 array_needsize (periodics, periodicmax, periodiccnt, ); 1204 array_needsize (periodics, periodicmax, periodiccnt, );
769 periodics [periodiccnt - 1] = w; 1205 periodics [periodiccnt - 1] = w;
770 upheap ((WT *)periodics, periodiccnt - 1); 1206 upheap ((WT *)periodics, periodiccnt - 1);
771}
772 1207
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209}
1210
773void 1211void
774evperiodic_stop (struct ev_periodic *w) 1212ev_periodic_stop (EV_P_ struct ev_periodic *w)
775{ 1213{
776 ev_clear ((W)w); 1214 ev_clear_pending (EV_A_ (W)w);
777 if (!ev_is_active (w)) 1215 if (!ev_is_active (w))
778 return; 1216 return;
779 1217
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219
780 if (w->active < periodiccnt--) 1220 if (((W)w)->active < periodiccnt--)
781 { 1221 {
782 periodics [w->active - 1] = periodics [periodiccnt]; 1222 periodics [((W)w)->active - 1] = periodics [periodiccnt];
783 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
784 } 1224 }
785 1225
786 ev_stop ((W)w); 1226 ev_stop (EV_A_ (W)w);
787} 1227}
788 1228
789void 1229void
790evsignal_start (struct ev_signal *w) 1230ev_idle_start (EV_P_ struct ev_idle *w)
791{ 1231{
792 if (ev_is_active (w)) 1232 if (ev_is_active (w))
793 return; 1233 return;
794 1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w);
1249}
1250
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294
1295#ifndef SA_RESTART
1296# define SA_RESTART 0
1297#endif
1298
1299void
1300ev_signal_start (EV_P_ struct ev_signal *w)
1301{
1302#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304#endif
1305 if (ev_is_active (w))
1306 return;
1307
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309
795 ev_start ((W)w, 1); 1310 ev_start (EV_A_ (W)w, 1);
796 array_needsize (signals, signalmax, w->signum, signals_init); 1311 array_needsize (signals, signalmax, w->signum, signals_init);
797 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
798 1313
799 if (!w->next) 1314 if (!((WL)w)->next)
800 { 1315 {
801 struct sigaction sa; 1316 struct sigaction sa;
802 sa.sa_handler = sighandler; 1317 sa.sa_handler = sighandler;
803 sigfillset (&sa.sa_mask); 1318 sigfillset (&sa.sa_mask);
804 sa.sa_flags = 0; 1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
805 sigaction (w->signum, &sa, 0); 1320 sigaction (w->signum, &sa, 0);
806 } 1321 }
807} 1322}
808 1323
809void 1324void
810evsignal_stop (struct ev_signal *w) 1325ev_signal_stop (EV_P_ struct ev_signal *w)
811{ 1326{
812 ev_clear ((W)w); 1327 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
814 return; 1329 return;
815 1330
816 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
817 ev_stop ((W)w); 1332 ev_stop (EV_A_ (W)w);
818 1333
819 if (!signals [w->signum - 1].head) 1334 if (!signals [w->signum - 1].head)
820 signal (w->signum, SIG_DFL); 1335 signal (w->signum, SIG_DFL);
821} 1336}
822 1337
823void evidle_start (struct ev_idle *w) 1338void
1339ev_child_start (EV_P_ struct ev_child *w)
824{ 1340{
1341#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop));
1343#endif
825 if (ev_is_active (w)) 1344 if (ev_is_active (w))
826 return; 1345 return;
827 1346
828 ev_start ((W)w, ++idlecnt); 1347 ev_start (EV_A_ (W)w, 1);
829 array_needsize (idles, idlemax, idlecnt, ); 1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
830 idles [idlecnt - 1] = w;
831} 1349}
832 1350
833void evidle_stop (struct ev_idle *w) 1351void
1352ev_child_stop (EV_P_ struct ev_child *w)
834{ 1353{
835 ev_clear ((W)w); 1354 ev_clear_pending (EV_A_ (W)w);
836 if (ev_is_active (w)) 1355 if (ev_is_active (w))
837 return; 1356 return;
838 1357
839 idles [w->active - 1] = idles [--idlecnt]; 1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
840 ev_stop ((W)w); 1359 ev_stop (EV_A_ (W)w);
841}
842
843void evprepare_start (struct ev_prepare *w)
844{
845 if (ev_is_active (w))
846 return;
847
848 ev_start ((W)w, ++preparecnt);
849 array_needsize (prepares, preparemax, preparecnt, );
850 prepares [preparecnt - 1] = w;
851}
852
853void evprepare_stop (struct ev_prepare *w)
854{
855 ev_clear ((W)w);
856 if (ev_is_active (w))
857 return;
858
859 prepares [w->active - 1] = prepares [--preparecnt];
860 ev_stop ((W)w);
861}
862
863void evcheck_start (struct ev_check *w)
864{
865 if (ev_is_active (w))
866 return;
867
868 ev_start ((W)w, ++checkcnt);
869 array_needsize (checks, checkmax, checkcnt, );
870 checks [checkcnt - 1] = w;
871}
872
873void evcheck_stop (struct ev_check *w)
874{
875 ev_clear ((W)w);
876 if (ev_is_active (w))
877 return;
878
879 checks [w->active - 1] = checks [--checkcnt];
880 ev_stop ((W)w);
881} 1360}
882 1361
883/*****************************************************************************/ 1362/*****************************************************************************/
884 1363
885struct ev_once 1364struct ev_once
889 void (*cb)(int revents, void *arg); 1368 void (*cb)(int revents, void *arg);
890 void *arg; 1369 void *arg;
891}; 1370};
892 1371
893static void 1372static void
894once_cb (struct ev_once *once, int revents) 1373once_cb (EV_P_ struct ev_once *once, int revents)
895{ 1374{
896 void (*cb)(int revents, void *arg) = once->cb; 1375 void (*cb)(int revents, void *arg) = once->cb;
897 void *arg = once->arg; 1376 void *arg = once->arg;
898 1377
899 evio_stop (&once->io); 1378 ev_io_stop (EV_A_ &once->io);
900 evtimer_stop (&once->to); 1379 ev_timer_stop (EV_A_ &once->to);
901 free (once); 1380 free (once);
902 1381
903 cb (revents, arg); 1382 cb (revents, arg);
904} 1383}
905 1384
906static void 1385static void
907once_cb_io (struct ev_io *w, int revents) 1386once_cb_io (EV_P_ struct ev_io *w, int revents)
908{ 1387{
909 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
910} 1389}
911 1390
912static void 1391static void
913once_cb_to (struct ev_timer *w, int revents) 1392once_cb_to (EV_P_ struct ev_timer *w, int revents)
914{ 1393{
915 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
916} 1395}
917 1396
918void 1397void
919ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
920{ 1399{
921 struct ev_once *once = malloc (sizeof (struct ev_once)); 1400 struct ev_once *once = malloc (sizeof (struct ev_once));
922 1401
923 if (!once) 1402 if (!once)
924 cb (EV_ERROR, arg); 1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
925 else 1404 else
926 { 1405 {
927 once->cb = cb; 1406 once->cb = cb;
928 once->arg = arg; 1407 once->arg = arg;
929 1408
930 evw_init (&once->io, once_cb_io); 1409 ev_watcher_init (&once->io, once_cb_io);
931
932 if (fd >= 0) 1410 if (fd >= 0)
933 { 1411 {
934 evio_set (&once->io, fd, events); 1412 ev_io_set (&once->io, fd, events);
935 evio_start (&once->io); 1413 ev_io_start (EV_A_ &once->io);
936 } 1414 }
937 1415
938 evw_init (&once->to, once_cb_to); 1416 ev_watcher_init (&once->to, once_cb_to);
939
940 if (timeout >= 0.) 1417 if (timeout >= 0.)
941 { 1418 {
942 evtimer_set (&once->to, timeout, 0.); 1419 ev_timer_set (&once->to, timeout, 0.);
943 evtimer_start (&once->to); 1420 ev_timer_start (EV_A_ &once->to);
944 } 1421 }
945 } 1422 }
946} 1423}
947 1424
948/*****************************************************************************/
949
950#if 0
951
952struct ev_io wio;
953
954static void
955sin_cb (struct ev_io *w, int revents)
956{
957 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
958}
959
960static void
961ocb (struct ev_timer *w, int revents)
962{
963 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
964 evtimer_stop (w);
965 evtimer_start (w);
966}
967
968static void
969scb (struct ev_signal *w, int revents)
970{
971 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
972 evio_stop (&wio);
973 evio_start (&wio);
974}
975
976static void
977gcb (struct ev_signal *w, int revents)
978{
979 fprintf (stderr, "generic %x\n", revents);
980
981}
982
983int main (void)
984{
985 ev_init (0);
986
987 evio_init (&wio, sin_cb, 0, EV_READ);
988 evio_start (&wio);
989
990 struct ev_timer t[10000];
991
992#if 0
993 int i;
994 for (i = 0; i < 10000; ++i)
995 {
996 struct ev_timer *w = t + i;
997 evw_init (w, ocb, i);
998 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
999 evtimer_start (w);
1000 if (drand48 () < 0.5)
1001 evtimer_stop (w);
1002 }
1003#endif
1004
1005 struct ev_timer t1;
1006 evtimer_init (&t1, ocb, 5, 10);
1007 evtimer_start (&t1);
1008
1009 struct ev_signal sig;
1010 evsignal_init (&sig, scb, SIGQUIT);
1011 evsignal_start (&sig);
1012
1013 struct ev_check cw;
1014 evcheck_init (&cw, gcb);
1015 evcheck_start (&cw);
1016
1017 struct ev_idle iw;
1018 evidle_init (&iw, gcb);
1019 evidle_start (&iw);
1020
1021 ev_loop (0);
1022
1023 return 0;
1024}
1025
1026#endif
1027
1028
1029
1030

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines