ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.33 by root, Thu Nov 1 11:11:22 2007 UTC vs.
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
63#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
65#endif 119#endif
66#ifndef EV_USE_REALTIME 120
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
68#endif
69 122
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 127
75#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 143
77typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
80 147
81static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84
85static int have_monotonic; /* runtime */
86
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
88static void (*method_modify)(int fd, int oev, int nev);
89static void (*method_poll)(ev_tstamp timeout);
90 149
91/*****************************************************************************/ 150/*****************************************************************************/
92 151
93ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
94ev_time (void) 186ev_time (void)
95{ 187{
96#if EV_USE_REALTIME 188#if EV_USE_REALTIME
97 struct timespec ts; 189 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 196#endif
105} 197}
106 198
107static ev_tstamp 199inline ev_tstamp
108get_clock (void) 200get_clock (void)
109{ 201{
110#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
111 if (have_monotonic) 203 if (expect_true (have_monotonic))
112 { 204 {
113 struct timespec ts; 205 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 208 }
117#endif 209#endif
118 210
119 return ev_time (); 211 return ev_time ();
120} 212}
121 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
122#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
123 221
124#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
126 { \ 224 { \
127 int newcnt = cur; \ 225 int newcnt = cur; \
128 do \ 226 do \
129 { \ 227 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
134 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
136 cur = newcnt; \ 234 cur = newcnt; \
137 } 235 }
138 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
139/*****************************************************************************/ 240/*****************************************************************************/
140
141typedef struct
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147
148static ANFD *anfds;
149static int anfdmax;
150 241
151static void 242static void
152anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
153{ 244{
154 while (count--) 245 while (count--)
159 250
160 ++base; 251 ++base;
161 } 252 }
162} 253}
163 254
164typedef struct
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void 255static void
174event (W w, int events) 256event (EV_P_ W w, int events)
175{ 257{
176 if (w->pending) 258 if (w->pending)
177 { 259 {
178 pendings [w->pending - 1].events |= events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
179 return; 261 return;
180 } 262 }
181 263
182 w->pending = ++pendingcnt; 264 w->pending = ++pendingcnt [ABSPRI (w)];
183 array_needsize (pendings, pendingmax, pendingcnt, ); 265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
184 pendings [pendingcnt - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
185 pendings [pendingcnt - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
186} 268}
187 269
188static void 270static void
189queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 272{
191 int i; 273 int i;
192 274
193 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 276 event (EV_A_ events [i], type);
195} 277}
196 278
197static void 279static void
198fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
199{ 281{
200 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 283 struct ev_io *w;
202 284
203 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
204 { 286 {
205 int ev = w->events & events; 287 int ev = w->events & events;
206 288
207 if (ev) 289 if (ev)
208 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
209 } 291 }
210} 292}
211 293
212/*****************************************************************************/ 294/*****************************************************************************/
213 295
214static int *fdchanges;
215static int fdchangemax, fdchangecnt;
216
217static void 296static void
218fd_reify (void) 297fd_reify (EV_P)
219{ 298{
220 int i; 299 int i;
221 300
222 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
223 { 302 {
225 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 305 struct ev_io *w;
227 306
228 int events = 0; 307 int events = 0;
229 308
230 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
231 events |= w->events; 310 events |= w->events;
232 311
233 anfd->reify = 0; 312 anfd->reify = 0;
234 313
235 if (anfd->events != events)
236 {
237 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
238 anfd->events = events; 315 anfd->events = events;
239 }
240 } 316 }
241 317
242 fdchangecnt = 0; 318 fdchangecnt = 0;
243} 319}
244 320
245static void 321static void
246fd_change (int fd) 322fd_change (EV_P_ int fd)
247{ 323{
248 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
249 return; 325 return;
250 326
251 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
253 ++fdchangecnt; 329 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
255 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
256} 332}
257 333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
258/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
259static void 347static void
260fd_recheck (void) 348fd_ebadf (EV_P)
261{ 349{
262 int fd; 350 int fd;
263 351
264 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 353 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
267 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
268 { 366 {
269 ev_io_stop (anfds [fd].head); 367 close (fd);
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 368 fd_kill (EV_A_ fd);
369 return;
271 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
272} 386}
273 387
274/*****************************************************************************/ 388/*****************************************************************************/
275 389
276static struct ev_timer **timers;
277static int timermax, timercnt;
278
279static struct ev_periodic **periodics;
280static int periodicmax, periodiccnt;
281
282static void 390static void
283upheap (WT *timers, int k) 391upheap (WT *heap, int k)
284{ 392{
285 WT w = timers [k]; 393 WT w = heap [k];
286 394
287 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
288 { 396 {
289 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
290 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
291 k >>= 1; 399 k >>= 1;
292 } 400 }
293 401
294 timers [k] = w; 402 heap [k] = w;
295 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
296 404
297} 405}
298 406
299static void 407static void
300downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
301{ 409{
302 WT w = timers [k]; 410 WT w = heap [k];
303 411
304 while (k < (N >> 1)) 412 while (k < (N >> 1))
305 { 413 {
306 int j = k << 1; 414 int j = k << 1;
307 415
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
309 ++j; 417 ++j;
310 418
311 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
312 break; 420 break;
313 421
314 timers [k] = timers [j]; 422 heap [k] = heap [j];
315 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
316 k = j; 424 k = j;
317 } 425 }
318 426
319 timers [k] = w; 427 heap [k] = w;
320 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
321} 429}
322 430
323/*****************************************************************************/ 431/*****************************************************************************/
324 432
325typedef struct 433typedef struct
326{ 434{
327 struct ev_signal *head; 435 struct ev_watcher_list *head;
328 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
329} ANSIG; 437} ANSIG;
330 438
331static ANSIG *signals; 439static ANSIG *signals;
332static int signalmax; 440static int signalmax;
333 441
334static int sigpipe [2]; 442static int sigpipe [2];
335static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
336static struct ev_io sigev; 444static struct ev_io sigev;
337 445
338static void 446static void
339signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
340{ 448{
352{ 460{
353 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
354 462
355 if (!gotsig) 463 if (!gotsig)
356 { 464 {
465 int old_errno = errno;
357 gotsig = 1; 466 gotsig = 1;
358 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
359 } 469 }
360} 470}
361 471
362static void 472static void
363sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
364{ 474{
365 struct ev_signal *w; 475 struct ev_watcher_list *w;
366 int sig; 476 int signum;
367 477
478 read (sigpipe [0], &revents, 1);
368 gotsig = 0; 479 gotsig = 0;
369 read (sigpipe [0], &revents, 1);
370 480
371 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
372 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
373 { 483 {
374 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
375 485
376 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
378 } 488 }
379} 489}
380 490
381static void 491static void
382siginit (void) 492siginit (EV_P)
383{ 493{
494#ifndef WIN32
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386 497
387 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
390 502
391 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
393} 506}
394 507
395/*****************************************************************************/ 508/*****************************************************************************/
396 509
397static struct ev_idle **idles; 510#ifndef WIN32
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407 511
408static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 513static struct ev_signal childev;
410 514
411#ifndef WCONTINUED 515#ifndef WCONTINUED
412# define WCONTINUED 0 516# define WCONTINUED 0
413#endif 517#endif
414 518
415static void 519static void
416childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
417{ 521{
418 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
419 int pid, status; 537 int pid, status;
420 538
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
423 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
424 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
425 w->status = status; 543
426 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
427 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
428} 547}
548
549#endif
429 550
430/*****************************************************************************/ 551/*****************************************************************************/
431 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
432#if EV_USE_EPOLL 556#if EV_USE_EPOLL
433# include "ev_epoll.c" 557# include "ev_epoll.c"
434#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
435#if EV_USE_SELECT 562#if EV_USE_SELECT
436# include "ev_select.c" 563# include "ev_select.c"
437#endif 564#endif
438 565
439int 566int
446ev_version_minor (void) 573ev_version_minor (void)
447{ 574{
448 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
449} 576}
450 577
451int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
452{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
453 if (!ev_method) 599 if (!method)
454 { 600 {
455#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
456 { 602 {
457 struct timespec ts; 603 struct timespec ts;
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
459 have_monotonic = 1; 605 have_monotonic = 1;
460 } 606 }
461#endif 607#endif
462 608
463 ev_now = ev_time (); 609 rt_now = ev_time ();
464 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
465 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
466 613
467 if (pipe (sigpipe)) 614 if (methods == EVMETHOD_AUTO)
468 return 0; 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
469 616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
470 ev_method = EVMETHOD_NONE; 618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
471#if EV_USE_EPOLL 627#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
473#endif 632#endif
474#if EV_USE_SELECT 633#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
476#endif 635#endif
636 }
637}
477 638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
478 if (ev_method) 741 if (ev_method (EV_A))
479 { 742 {
480 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
481 siginit (); 745 siginit (EV_A);
482 746
747#ifndef WIN32
483 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
485 } 753 }
754 else
755 default_loop = 0;
486 } 756 }
487 757
488 return ev_method; 758 return default_loop;
489} 759}
490 760
491/*****************************************************************************/
492
493void 761void
494ev_prefork (void) 762ev_default_destroy (void)
495{ 763{
496 /* nop */ 764#if EV_MULTIPLICITY
497} 765 struct ev_loop *loop = default_loop;
498
499void
500ev_postfork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_postfork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif 766#endif
512 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
513 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
514 close (sigpipe [0]); 790 close (sigpipe [0]);
515 close (sigpipe [1]); 791 close (sigpipe [1]);
516 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
517 siginit (); 795 siginit (EV_A);
518} 796}
519 797
520/*****************************************************************************/ 798/*****************************************************************************/
521 799
522static void 800static void
523call_pending (void) 801call_pending (EV_P)
524{ 802{
803 int pri;
804
805 for (pri = NUMPRI; pri--; )
525 while (pendingcnt) 806 while (pendingcnt [pri])
526 { 807 {
527 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
528 809
529 if (p->w) 810 if (p->w)
530 { 811 {
531 p->w->pending = 0; 812 p->w->pending = 0;
532 p->w->cb (p->w, p->events); 813
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
533 } 815 }
534 } 816 }
535} 817}
536 818
537static void 819static void
538timers_reify (void) 820timers_reify (EV_P)
539{ 821{
540 while (timercnt && timers [0]->at <= now) 822 while (timercnt && ((WT)timers [0])->at <= mn_now)
541 { 823 {
542 struct ev_timer *w = timers [0]; 824 struct ev_timer *w = timers [0];
825
826 assert (("inactive timer on timer heap detected", ev_is_active (w)));
543 827
544 /* first reschedule or stop timer */ 828 /* first reschedule or stop timer */
545 if (w->repeat) 829 if (w->repeat)
546 { 830 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 832 ((WT)w)->at = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 833 downheap ((WT *)timers, timercnt, 0);
550 } 834 }
551 else 835 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
553 837
554 event ((W)w, EV_TIMEOUT); 838 event (EV_A_ (W)w, EV_TIMEOUT);
555 } 839 }
556} 840}
557 841
558static void 842static void
559periodics_reify (void) 843periodics_reify (EV_P)
560{ 844{
561 while (periodiccnt && periodics [0]->at <= ev_now) 845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
562 { 846 {
563 struct ev_periodic *w = periodics [0]; 847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
564 850
565 /* first reschedule or stop timer */ 851 /* first reschedule or stop timer */
566 if (w->interval) 852 if (w->interval)
567 { 853 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
570 downheap ((WT *)periodics, periodiccnt, 0); 856 downheap ((WT *)periodics, periodiccnt, 0);
571 } 857 }
572 else 858 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
574 860
575 event ((W)w, EV_PERIODIC); 861 event (EV_A_ (W)w, EV_PERIODIC);
576 } 862 }
577} 863}
578 864
579static void 865static void
580periodics_reschedule (ev_tstamp diff) 866periodics_reschedule (EV_P)
581{ 867{
582 int i; 868 int i;
583 869
584 /* adjust periodics after time jump */ 870 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i) 871 for (i = 0; i < periodiccnt; ++i)
586 { 872 {
587 struct ev_periodic *w = periodics [i]; 873 struct ev_periodic *w = periodics [i];
588 874
589 if (w->interval) 875 if (w->interval)
590 { 876 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
592 878
593 if (fabs (diff) >= 1e-4) 879 if (fabs (diff) >= 1e-4)
594 { 880 {
595 ev_periodic_stop (w); 881 ev_periodic_stop (EV_A_ w);
596 ev_periodic_start (w); 882 ev_periodic_start (EV_A_ w);
597 883
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
599 } 885 }
600 } 886 }
601 } 887 }
602} 888}
603 889
890inline int
891time_update_monotonic (EV_P)
892{
893 mn_now = get_clock ();
894
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 }
900 else
901 {
902 now_floor = mn_now;
903 rt_now = ev_time ();
904 return 1;
905 }
906}
907
604static void 908static void
605time_update (void) 909time_update (EV_P)
606{ 910{
607 int i; 911 int i;
608 912
609 ev_now = ev_time (); 913#if EV_USE_MONOTONIC
610
611 if (have_monotonic) 914 if (expect_true (have_monotonic))
612 { 915 {
613 ev_tstamp odiff = diff; 916 if (time_update_monotonic (EV_A))
614
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */
616 { 917 {
617 now = get_clock (); 918 ev_tstamp odiff = rtmn_diff;
919
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 {
618 diff = ev_now - now; 922 rtmn_diff = rt_now - mn_now;
619 923
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
621 return; /* all is well */ 925 return; /* all is well */
622 926
623 ev_now = ev_time (); 927 rt_now = ev_time ();
928 mn_now = get_clock ();
929 now_floor = mn_now;
930 }
931
932 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
624 } 935 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 936 }
629 else 937 else
938#endif
630 { 939 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 940 rt_now = ev_time ();
941
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
632 { 943 {
633 periodics_reschedule (ev_now - now); 944 periodics_reschedule (EV_A);
634 945
635 /* adjust timers. this is easy, as the offset is the same for all */ 946 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i) 947 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff; 948 ((WT)timers [i])->at += rt_now - mn_now;
638 } 949 }
639 950
640 now = ev_now; 951 mn_now = rt_now;
641 } 952 }
642} 953}
643 954
644int ev_loop_done; 955void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
645 960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
646void ev_loop (int flags) 970ev_loop (EV_P_ int flags)
647{ 971{
648 double block; 972 double block;
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 974
651 do 975 do
652 { 976 {
653 /* queue check watchers (and execute them) */ 977 /* queue check watchers (and execute them) */
654 if (preparecnt) 978 if (expect_false (preparecnt))
655 { 979 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
657 call_pending (); 981 call_pending (EV_A);
658 } 982 }
659 983
660 /* update fd-related kernel structures */ 984 /* update fd-related kernel structures */
661 fd_reify (); 985 fd_reify (EV_A);
662 986
663 /* calculate blocking time */ 987 /* calculate blocking time */
664 988
665 /* we only need this for !monotonic clockor timers, but as we basically 989 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */ 990 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A);
994 else
995#endif
996 {
667 ev_now = ev_time (); 997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
668 1000
669 if (flags & EVLOOP_NONBLOCK || idlecnt) 1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.; 1002 block = 0.;
671 else 1003 else
672 { 1004 {
673 block = MAX_BLOCKTIME; 1005 block = MAX_BLOCKTIME;
674 1006
675 if (timercnt) 1007 if (timercnt)
676 { 1008 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
678 if (block > to) block = to; 1010 if (block > to) block = to;
679 } 1011 }
680 1012
681 if (periodiccnt) 1013 if (periodiccnt)
682 { 1014 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
684 if (block > to) block = to; 1016 if (block > to) block = to;
685 } 1017 }
686 1018
687 if (block < 0.) block = 0.; 1019 if (block < 0.) block = 0.;
688 } 1020 }
689 1021
690 method_poll (block); 1022 method_poll (EV_A_ block);
691 1023
692 /* update ev_now, do magic */ 1024 /* update rt_now, do magic */
693 time_update (); 1025 time_update (EV_A);
694 1026
695 /* queue pending timers and reschedule them */ 1027 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */ 1028 timers_reify (EV_A); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */ 1029 periodics_reify (EV_A); /* absolute timers called first */
698 1030
699 /* queue idle watchers unless io or timers are pending */ 1031 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt) 1032 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE); 1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
702 1034
703 /* queue check watchers, to be executed first */ 1035 /* queue check watchers, to be executed first */
704 if (checkcnt) 1036 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK); 1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
706 1038
707 call_pending (); 1039 call_pending (EV_A);
708 } 1040 }
709 while (!ev_loop_done); 1041 while (activecnt && !loop_done);
710 1042
711 if (ev_loop_done != 2) 1043 if (loop_done != 2)
712 ev_loop_done = 0; 1044 loop_done = 0;
1045}
1046
1047void
1048ev_unloop (EV_P_ int how)
1049{
1050 loop_done = how;
713} 1051}
714 1052
715/*****************************************************************************/ 1053/*****************************************************************************/
716 1054
717static void 1055inline void
718wlist_add (WL *head, WL elem) 1056wlist_add (WL *head, WL elem)
719{ 1057{
720 elem->next = *head; 1058 elem->next = *head;
721 *head = elem; 1059 *head = elem;
722} 1060}
723 1061
724static void 1062inline void
725wlist_del (WL *head, WL elem) 1063wlist_del (WL *head, WL elem)
726{ 1064{
727 while (*head) 1065 while (*head)
728 { 1066 {
729 if (*head == elem) 1067 if (*head == elem)
734 1072
735 head = &(*head)->next; 1073 head = &(*head)->next;
736 } 1074 }
737} 1075}
738 1076
739static void 1077inline void
740ev_clear_pending (W w) 1078ev_clear_pending (EV_P_ W w)
741{ 1079{
742 if (w->pending) 1080 if (w->pending)
743 { 1081 {
744 pendings [w->pending - 1].w = 0; 1082 pendings [ABSPRI (w)][w->pending - 1].w = 0;
745 w->pending = 0; 1083 w->pending = 0;
746 } 1084 }
747} 1085}
748 1086
749static void 1087inline void
750ev_start (W w, int active) 1088ev_start (EV_P_ W w, int active)
751{ 1089{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
752 w->active = active; 1093 w->active = active;
1094 ev_ref (EV_A);
753} 1095}
754 1096
755static void 1097inline void
756ev_stop (W w) 1098ev_stop (EV_P_ W w)
757{ 1099{
1100 ev_unref (EV_A);
758 w->active = 0; 1101 w->active = 0;
759} 1102}
760 1103
761/*****************************************************************************/ 1104/*****************************************************************************/
762 1105
763void 1106void
764ev_io_start (struct ev_io *w) 1107ev_io_start (EV_P_ struct ev_io *w)
765{ 1108{
1109 int fd = w->fd;
1110
766 if (ev_is_active (w)) 1111 if (ev_is_active (w))
767 return; 1112 return;
768 1113
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0)); 1114 assert (("ev_io_start called with negative fd", fd >= 0));
772 1115
773 ev_start ((W)w, 1); 1116 ev_start (EV_A_ (W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1118 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776 1119
777 fd_change (fd); 1120 fd_change (EV_A_ fd);
778} 1121}
779 1122
780void 1123void
781ev_io_stop (struct ev_io *w) 1124ev_io_stop (EV_P_ struct ev_io *w)
782{ 1125{
783 ev_clear_pending ((W)w); 1126 ev_clear_pending (EV_A_ (W)w);
784 if (!ev_is_active (w)) 1127 if (!ev_is_active (w))
785 return; 1128 return;
786 1129
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w); 1131 ev_stop (EV_A_ (W)w);
789 1132
790 fd_change (w->fd); 1133 fd_change (EV_A_ w->fd);
791} 1134}
792 1135
793void 1136void
794ev_timer_start (struct ev_timer *w) 1137ev_timer_start (EV_P_ struct ev_timer *w)
795{ 1138{
796 if (ev_is_active (w)) 1139 if (ev_is_active (w))
797 return; 1140 return;
798 1141
799 w->at += now; 1142 ((WT)w)->at += mn_now;
800 1143
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802 1145
803 ev_start ((W)w, ++timercnt); 1146 ev_start (EV_A_ (W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, ); 1147 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w; 1148 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1); 1149 upheap ((WT *)timers, timercnt - 1);
807}
808 1150
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152}
1153
809void 1154void
810ev_timer_stop (struct ev_timer *w) 1155ev_timer_stop (EV_P_ struct ev_timer *w)
811{ 1156{
812 ev_clear_pending ((W)w); 1157 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1158 if (!ev_is_active (w))
814 return; 1159 return;
815 1160
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162
816 if (w->active < timercnt--) 1163 if (((W)w)->active < timercnt--)
817 { 1164 {
818 timers [w->active - 1] = timers [timercnt]; 1165 timers [((W)w)->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1); 1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
820 } 1167 }
821 1168
822 w->at = w->repeat; 1169 ((WT)w)->at = w->repeat;
823 1170
824 ev_stop ((W)w); 1171 ev_stop (EV_A_ (W)w);
825} 1172}
826 1173
827void 1174void
828ev_timer_again (struct ev_timer *w) 1175ev_timer_again (EV_P_ struct ev_timer *w)
829{ 1176{
830 if (ev_is_active (w)) 1177 if (ev_is_active (w))
831 { 1178 {
832 if (w->repeat) 1179 if (w->repeat)
833 { 1180 {
834 w->at = now + w->repeat; 1181 ((WT)w)->at = mn_now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
836 } 1183 }
837 else 1184 else
838 ev_timer_stop (w); 1185 ev_timer_stop (EV_A_ w);
839 } 1186 }
840 else if (w->repeat) 1187 else if (w->repeat)
841 ev_timer_start (w); 1188 ev_timer_start (EV_A_ w);
842} 1189}
843 1190
844void 1191void
845ev_periodic_start (struct ev_periodic *w) 1192ev_periodic_start (EV_P_ struct ev_periodic *w)
846{ 1193{
847 if (ev_is_active (w)) 1194 if (ev_is_active (w))
848 return; 1195 return;
849 1196
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851 1198
852 /* this formula differs from the one in periodic_reify because we do not always round up */ 1199 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval) 1200 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
855 1202
856 ev_start ((W)w, ++periodiccnt); 1203 ev_start (EV_A_ (W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, ); 1204 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w; 1205 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1); 1206 upheap ((WT *)periodics, periodiccnt - 1);
860}
861 1207
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209}
1210
862void 1211void
863ev_periodic_stop (struct ev_periodic *w) 1212ev_periodic_stop (EV_P_ struct ev_periodic *w)
864{ 1213{
865 ev_clear_pending ((W)w); 1214 ev_clear_pending (EV_A_ (W)w);
866 if (!ev_is_active (w)) 1215 if (!ev_is_active (w))
867 return; 1216 return;
868 1217
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219
869 if (w->active < periodiccnt--) 1220 if (((W)w)->active < periodiccnt--)
870 { 1221 {
871 periodics [w->active - 1] = periodics [periodiccnt]; 1222 periodics [((W)w)->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
873 } 1224 }
874 1225
875 ev_stop ((W)w); 1226 ev_stop (EV_A_ (W)w);
876} 1227}
877 1228
878void 1229void
879ev_signal_start (struct ev_signal *w) 1230ev_idle_start (EV_P_ struct ev_idle *w)
880{ 1231{
881 if (ev_is_active (w)) 1232 if (ev_is_active (w))
882 return; 1233 return;
883 1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w);
1249}
1250
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294
1295#ifndef SA_RESTART
1296# define SA_RESTART 0
1297#endif
1298
1299void
1300ev_signal_start (EV_P_ struct ev_signal *w)
1301{
1302#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304#endif
1305 if (ev_is_active (w))
1306 return;
1307
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885 1309
886 ev_start ((W)w, 1); 1310 ev_start (EV_A_ (W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init); 1311 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889 1313
890 if (!w->next) 1314 if (!((WL)w)->next)
891 { 1315 {
892 struct sigaction sa; 1316 struct sigaction sa;
893 sa.sa_handler = sighandler; 1317 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask); 1318 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0; 1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
896 sigaction (w->signum, &sa, 0); 1320 sigaction (w->signum, &sa, 0);
897 } 1321 }
898} 1322}
899 1323
900void 1324void
901ev_signal_stop (struct ev_signal *w) 1325ev_signal_stop (EV_P_ struct ev_signal *w)
902{ 1326{
903 ev_clear_pending ((W)w); 1327 ev_clear_pending (EV_A_ (W)w);
904 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
905 return; 1329 return;
906 1330
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w); 1332 ev_stop (EV_A_ (W)w);
909 1333
910 if (!signals [w->signum - 1].head) 1334 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL); 1335 signal (w->signum, SIG_DFL);
912} 1336}
913 1337
914void 1338void
915ev_idle_start (struct ev_idle *w) 1339ev_child_start (EV_P_ struct ev_child *w)
916{ 1340{
1341#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop));
1343#endif
917 if (ev_is_active (w)) 1344 if (ev_is_active (w))
918 return; 1345 return;
919 1346
920 ev_start ((W)w, ++idlecnt); 1347 ev_start (EV_A_ (W)w, 1);
921 array_needsize (idles, idlemax, idlecnt, ); 1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
922 idles [idlecnt - 1] = w;
923} 1349}
924 1350
925void 1351void
926ev_idle_stop (struct ev_idle *w) 1352ev_child_stop (EV_P_ struct ev_child *w)
927{ 1353{
928 ev_clear_pending ((W)w); 1354 ev_clear_pending (EV_A_ (W)w);
929 if (ev_is_active (w)) 1355 if (ev_is_active (w))
930 return; 1356 return;
931 1357
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w); 1359 ev_stop (EV_A_ (W)w);
999} 1360}
1000 1361
1001/*****************************************************************************/ 1362/*****************************************************************************/
1002 1363
1003struct ev_once 1364struct ev_once
1007 void (*cb)(int revents, void *arg); 1368 void (*cb)(int revents, void *arg);
1008 void *arg; 1369 void *arg;
1009}; 1370};
1010 1371
1011static void 1372static void
1012once_cb (struct ev_once *once, int revents) 1373once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 1374{
1014 void (*cb)(int revents, void *arg) = once->cb; 1375 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 1376 void *arg = once->arg;
1016 1377
1017 ev_io_stop (&once->io); 1378 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 1379 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 1380 free (once);
1020 1381
1021 cb (revents, arg); 1382 cb (revents, arg);
1022} 1383}
1023 1384
1024static void 1385static void
1025once_cb_io (struct ev_io *w, int revents) 1386once_cb_io (EV_P_ struct ev_io *w, int revents)
1026{ 1387{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1028} 1389}
1029 1390
1030static void 1391static void
1031once_cb_to (struct ev_timer *w, int revents) 1392once_cb_to (EV_P_ struct ev_timer *w, int revents)
1032{ 1393{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1034} 1395}
1035 1396
1036void 1397void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 1399{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 1400 struct ev_once *once = malloc (sizeof (struct ev_once));
1040 1401
1041 if (!once) 1402 if (!once)
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1047 1408
1048 ev_watcher_init (&once->io, once_cb_io); 1409 ev_watcher_init (&once->io, once_cb_io);
1049 if (fd >= 0) 1410 if (fd >= 0)
1050 { 1411 {
1051 ev_io_set (&once->io, fd, events); 1412 ev_io_set (&once->io, fd, events);
1052 ev_io_start (&once->io); 1413 ev_io_start (EV_A_ &once->io);
1053 } 1414 }
1054 1415
1055 ev_watcher_init (&once->to, once_cb_to); 1416 ev_watcher_init (&once->to, once_cb_to);
1056 if (timeout >= 0.) 1417 if (timeout >= 0.)
1057 { 1418 {
1058 ev_timer_set (&once->to, timeout, 0.); 1419 ev_timer_set (&once->to, timeout, 0.);
1059 ev_timer_start (&once->to); 1420 ev_timer_start (EV_A_ &once->to);
1060 } 1421 }
1061 } 1422 }
1062} 1423}
1063 1424
1064/*****************************************************************************/
1065
1066#if 0
1067
1068struct ev_io wio;
1069
1070static void
1071sin_cb (struct ev_io *w, int revents)
1072{
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1074}
1075
1076static void
1077ocb (struct ev_timer *w, int revents)
1078{
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1080 ev_timer_stop (w);
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif
1120
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif
1143
1144
1145
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines