ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.363 by root, Sun Oct 24 19:38:20 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
33 61
34# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
37# endif 76# endif
38 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
41# endif 94# endif
42 95
43# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
44# define EV_USE_POLL 1 102# define EV_USE_POLL 0
45# endif 103# endif
46 104
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
49# endif 112# endif
50 113
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
53# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
54 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
55#endif 159#endif
56 160
57#include <math.h> 161#include <math.h>
58#include <stdlib.h> 162#include <stdlib.h>
59#include <unistd.h> 163#include <string.h>
60#include <fcntl.h> 164#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 165#include <stddef.h>
63 166
64#include <stdio.h> 167#include <stdio.h>
65 168
66#include <assert.h> 169#include <assert.h>
67#include <errno.h> 170#include <errno.h>
68#include <sys/types.h> 171#include <sys/types.h>
172#include <time.h>
173#include <limits.h>
174
175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
69#ifndef WIN32 185#ifndef _WIN32
186# include <sys/time.h>
70# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
71#endif 195# endif
72#include <sys/time.h> 196# undef EV_AVOID_STDIO
73#include <time.h> 197#endif
74 198
75/**/ 199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
76 244
77#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
78# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
79#endif 263#endif
80 264
81#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 267#endif
84 268
85#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
87#endif 275#endif
88 276
89#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
90# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
91#endif 283#endif
92 284
93#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
95#endif 287#endif
96 288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
97#ifndef EV_USE_WIN32 293#ifndef EV_USE_INOTIFY
98# ifdef WIN32 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
100# else 296# else
101# define EV_USE_WIN32 0 297# define EV_USE_INOTIFY 0
102# endif 298# endif
103#endif 299#endif
104 300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
105#ifndef EV_USE_REALTIME 309#ifndef EV_USE_EVENTFD
106# define EV_USE_REALTIME 1 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
107#endif 314# endif
315#endif
108 316
109/**/ 317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
110 364
111#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
114#endif 368#endif
116#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
119#endif 373#endif
120 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
121/**/ 438/**/
122 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 458
128#include "ev.h" 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
129 461
130#if __GNUC__ >= 3 462#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 464# define noinline __attribute__ ((noinline))
133#else 465#else
134# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
135# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
136#endif 471#endif
137 472
138#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
140 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
143 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
144typedef struct ev_watcher *W; 494typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
147 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
522# include "ev_win32.c"
523#endif
149 524
150/*****************************************************************************/ 525/*****************************************************************************/
151 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
577static void (*syserr_cb)(const char *msg);
578
579void
580ev_set_syserr_cb (void (*cb)(const char *msg))
581{
582 syserr_cb = cb;
583}
584
585static void noinline
586ev_syserr (const char *msg)
587{
588 if (!msg)
589 msg = "(libev) system error";
590
591 if (syserr_cb)
592 syserr_cb (msg);
593 else
594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
603 perror (msg);
604#endif
605 abort ();
606 }
607}
608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
629
630void
631ev_set_allocator (void *(*cb)(void *ptr, long size))
632{
633 alloc = cb;
634}
635
636inline_speed void *
637ev_realloc (void *ptr, long size)
638{
639 ptr = alloc (ptr, size);
640
641 if (!ptr && size)
642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
648 abort ();
649 }
650
651 return ptr;
652}
653
654#define ev_malloc(size) ev_realloc (0, (size))
655#define ev_free(ptr) ev_realloc ((ptr), 0)
656
657/*****************************************************************************/
658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
152typedef struct 663typedef struct
153{ 664{
154 struct ev_watcher_list *head; 665 WL head;
155 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
156 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
157} ANFD; 679} ANFD;
158 680
681/* stores the pending event set for a given watcher */
159typedef struct 682typedef struct
160{ 683{
161 W w; 684 W w;
162 int events; 685 int events; /* the pending event set for the given watcher */
163} ANPENDING; 686} ANPENDING;
164 687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
715
165#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
166 717
167struct ev_loop 718 struct ev_loop
168{ 719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 722 #define VAR(name,decl) decl;
170# include "ev_vars.h" 723 #include "ev_vars.h"
171};
172# undef VAR 724 #undef VAR
725 };
173# include "ev_wrap.h" 726 #include "ev_wrap.h"
727
728 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr;
174 730
175#else 731#else
176 732
733 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 735 #include "ev_vars.h"
179# undef VAR 736 #undef VAR
180 737
738 static int ev_default_loop_ptr;
739
181#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
182 753
183/*****************************************************************************/ 754/*****************************************************************************/
184 755
185inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
186ev_time (void) 758ev_time (void)
187{ 759{
188#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
189 struct timespec ts; 763 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 766 }
767#endif
768
193 struct timeval tv; 769 struct timeval tv;
194 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 772}
773#endif
198 774
199inline ev_tstamp 775inline_size ev_tstamp
200get_clock (void) 776get_clock (void)
201{ 777{
202#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
204 { 780 {
209#endif 785#endif
210 786
211 return ev_time (); 787 return ev_time ();
212} 788}
213 789
790#if EV_MULTIPLICITY
214ev_tstamp 791ev_tstamp
215ev_now (EV_P) 792ev_now (EV_P)
216{ 793{
217 return rt_now; 794 return ev_rt_now;
218} 795}
796#endif
219 797
220#define array_roundsize(base,n) ((n) | 4 & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
221 805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858
222#define array_needsize(base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
224 { \ 861 { \
225 int newcnt = cur; \ 862 int ocur_ = (cur); \
226 do \ 863 (base) = (type *)array_realloc \
227 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 866 }
230 while ((cnt) > newcnt); \ 867
868#if 0
869#define array_slim(type,stem) \
870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 871 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 875 }
876#endif
236 877
237#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
239 880
240/*****************************************************************************/ 881/*****************************************************************************/
241 882
242static void 883/* dummy callback for pending events */
243anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
244{ 886{
245 while (count--) 887}
246 {
247 base->head = 0;
248 base->events = EV_NONE;
249 base->reify = 0;
250 888
251 ++base; 889void noinline
890ev_feed_event (EV_P_ void *w, int revents)
891{
892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
894
895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
252 } 898 {
253} 899 w_->pending = ++pendingcnt [pri];
254 900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
255static void 901 pendings [pri][w_->pending - 1].w = w_;
256event (EV_P_ W w, int events)
257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 902 pendings [pri][w_->pending - 1].events = revents;
261 return;
262 } 903 }
263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268} 904}
269 905
270static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
271queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 923{
273 int i; 924 int i;
274 925
275 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
277} 928}
278 929
279static void 930/*****************************************************************************/
931
932inline_speed void
280fd_event (EV_P_ int fd, int events) 933fd_event_nocheck (EV_P_ int fd, int revents)
281{ 934{
282 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 936 ev_io *w;
284 937
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
286 { 939 {
287 int ev = w->events & events; 940 int ev = w->events & revents;
288 941
289 if (ev) 942 if (ev)
290 event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
291 } 944 }
292} 945}
293 946
294/*****************************************************************************/ 947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
295 953
296static void 954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
958void
959ev_feed_fd_event (EV_P_ int fd, int revents)
960{
961 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
297fd_reify (EV_P) 968fd_reify (EV_P)
298{ 969{
299 int i; 970 int i;
300 971
301 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
302 { 973 {
303 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
305 struct ev_io *w; 976 ev_io *w;
306 977
307 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
308 980
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0; 981 anfd->reify = 0;
313 982
314 method_modify (EV_A_ fd, anfd->events, events); 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
315 anfd->events = events; 995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
316 } 1006 }
317 1007
318 fdchangecnt = 0; 1008 fdchangecnt = 0;
319} 1009}
320 1010
321static void 1011/* something about the given fd changed */
1012inline_size void
322fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
323{ 1014{
324 if (anfds [fd].reify || fdchangecnt < 0) 1015 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
328 1017
1018 if (expect_true (!reify))
1019 {
329 ++fdchangecnt; 1020 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
332} 1024}
333 1025
334static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
335fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
336{ 1029{
337 struct ev_io *w; 1030 ev_io *w;
338 1031
339 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
340 { 1033 {
341 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 1036 }
1037}
1038
1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
1041fd_valid (int fd)
1042{
1043#ifdef _WIN32
1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1045#else
1046 return fcntl (fd, F_GETFD) != -1;
1047#endif
344} 1048}
345 1049
346/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
347static void 1051static void noinline
348fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
349{ 1053{
350 int fd; 1054 int fd;
351 1055
352 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 1057 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
356} 1060}
357 1061
358/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 1063static void noinline
360fd_enomem (EV_P) 1064fd_enomem (EV_P)
361{ 1065{
362 int fd; 1066 int fd;
363 1067
364 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 1069 if (anfds [fd].events)
366 { 1070 {
367 close (fd);
368 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
369 return; 1072 break;
370 } 1073 }
371} 1074}
372 1075
373/* susually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 1077static void noinline
375fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
376{ 1079{
377 int fd; 1080 int fd;
378 1081
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 1083 if (anfds [fd].events)
382 { 1084 {
383 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
385 } 1088 }
386} 1089}
387 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
388/*****************************************************************************/ 1105/*****************************************************************************/
389 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
390static void 1331static void
391upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
392{ 1333{
393 WT w = heap [k]; 1334 int i;
394 1335
395 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
396 { 1337 if (evfd >= 0)
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
401 1349
402 heap [k] = w; 1350 if (sig_pending)
403 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
404 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
405} 1372}
1373
1374/*****************************************************************************/
406 1375
407static void 1376static void
408downheap (WT *heap, int N, int k) 1377ev_sighandler (int signum)
409{ 1378{
410 WT w = heap [k]; 1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
411 1382
412 while (k < (N >> 1)) 1383#ifdef _WIN32
413 { 1384 signal (signum, ev_sighandler);
414 int j = k << 1; 1385#endif
415 1386
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1387 signals [signum - 1].pending = 1;
417 ++j; 1388 evpipe_write (EV_A_ &sig_pending);
1389}
418 1390
419 if (w->at <= heap [j]->at) 1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
420 break; 1430 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 } 1431 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429} 1432}
1433#endif
1434
1435#endif
430 1436
431/*****************************************************************************/ 1437/*****************************************************************************/
432 1438
433typedef struct 1439#if EV_CHILD_ENABLE
434{ 1440static WL childs [EV_PID_HASHSIZE];
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437} ANSIG;
438 1441
439static ANSIG *signals;
440static int signalmax;
441
442static int sigpipe [2];
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445
446static void
447signals_init (ANSIG *base, int count)
448{
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456}
457
458static void
459sighandler (int signum)
460{
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470}
471
472static void
473sigcb (EV_P_ struct ev_io *iow, int revents)
474{
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506}
507
508/*****************************************************************************/
509
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
514 1467
515#ifndef WCONTINUED 1468#ifndef WCONTINUED
516# define WCONTINUED 0 1469# define WCONTINUED 0
517#endif 1470#endif
518 1471
1472/* called on sigchld etc., calls waitpid */
519static void 1473static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
536{ 1475{
537 int pid, status; 1476 int pid, status;
538 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
541 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1488
544 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1492}
548 1493
549#endif 1494#endif
550 1495
551/*****************************************************************************/ 1496/*****************************************************************************/
552 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
553#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
555#endif 1506#endif
556#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
557# include "ev_epoll.c" 1508# include "ev_epoll.c"
574{ 1525{
575 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
576} 1527}
577 1528
578/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1530int inline_size
580enable_secure (void) 1531enable_secure (void)
581{ 1532{
582#ifdef WIN32 1533#ifdef _WIN32
583 return 0; 1534 return 0;
584#else 1535#else
585 return getuid () != geteuid () 1536 return getuid () != geteuid ()
586 || getgid () != getegid (); 1537 || getgid () != getegid ();
587#endif 1538#endif
588} 1539}
589 1540
590int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
591ev_method (EV_P) 1603ev_depth (EV_P)
592{ 1604{
593 return method; 1605 return loop_depth;
594} 1606}
595 1607
596static void 1608void
597loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
598{ 1610{
599 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
600 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
601#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736void
1737ev_loop_destroy (EV_P)
1738{
1739 int i;
1740
1741 /* mimic free (0) */
1742 if (!EV_A)
1743 return;
1744
1745#if EV_CLEANUP_ENABLE
1746 /* queue cleanup watchers (and execute them) */
1747 if (expect_false (cleanupcnt))
1748 {
1749 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1750 EV_INVOKE_PENDING;
1751 }
1752#endif
1753
1754#if EV_CHILD_ENABLE
1755 if (ev_is_active (&childev))
1756 {
1757 ev_ref (EV_A); /* child watcher */
1758 ev_signal_stop (EV_A_ &childev);
1759 }
1760#endif
1761
1762 if (ev_is_active (&pipe_w))
1763 {
1764 /*ev_ref (EV_A);*/
1765 /*ev_io_stop (EV_A_ &pipe_w);*/
1766
1767#if EV_USE_EVENTFD
1768 if (evfd >= 0)
1769 close (evfd);
1770#endif
1771
1772 if (evpipe [0] >= 0)
1773 {
1774 EV_WIN32_CLOSE_FD (evpipe [0]);
1775 EV_WIN32_CLOSE_FD (evpipe [1]);
1776 }
1777 }
1778
1779#if EV_USE_SIGNALFD
1780 if (ev_is_active (&sigfd_w))
1781 close (sigfd);
1782#endif
1783
1784#if EV_USE_INOTIFY
1785 if (fs_fd >= 0)
1786 close (fs_fd);
1787#endif
1788
1789 if (backend_fd >= 0)
1790 close (backend_fd);
1791
1792#if EV_USE_IOCP
1793 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1794#endif
1795#if EV_USE_PORT
1796 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1797#endif
1798#if EV_USE_KQUEUE
1799 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1800#endif
1801#if EV_USE_EPOLL
1802 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1803#endif
1804#if EV_USE_POLL
1805 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1806#endif
1807#if EV_USE_SELECT
1808 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1809#endif
1810
1811 for (i = NUMPRI; i--; )
1812 {
1813 array_free (pending, [i]);
1814#if EV_IDLE_ENABLE
1815 array_free (idle, [i]);
1816#endif
1817 }
1818
1819 ev_free (anfds); anfds = 0; anfdmax = 0;
1820
1821 /* have to use the microsoft-never-gets-it-right macro */
1822 array_free (rfeed, EMPTY);
1823 array_free (fdchange, EMPTY);
1824 array_free (timer, EMPTY);
1825#if EV_PERIODIC_ENABLE
1826 array_free (periodic, EMPTY);
1827#endif
1828#if EV_FORK_ENABLE
1829 array_free (fork, EMPTY);
1830#endif
1831#if EV_CLEANUP_ENABLE
1832 array_free (cleanup, EMPTY);
1833#endif
1834 array_free (prepare, EMPTY);
1835 array_free (check, EMPTY);
1836#if EV_ASYNC_ENABLE
1837 array_free (async, EMPTY);
1838#endif
1839
1840 backend = 0;
1841
1842#if EV_MULTIPLICITY
1843 if (ev_is_default_loop (EV_A))
1844#endif
1845 ev_default_loop_ptr = 0;
1846#if EV_MULTIPLICITY
1847 else
1848 ev_free (EV_A);
1849#endif
1850}
1851
1852#if EV_USE_INOTIFY
1853inline_size void infy_fork (EV_P);
1854#endif
1855
1856inline_size void
1857loop_fork (EV_P)
1858{
1859#if EV_USE_PORT
1860 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1861#endif
1862#if EV_USE_KQUEUE
1863 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1864#endif
1865#if EV_USE_EPOLL
1866 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1867#endif
1868#if EV_USE_INOTIFY
1869 infy_fork (EV_A);
1870#endif
1871
1872 if (ev_is_active (&pipe_w))
1873 {
1874 /* this "locks" the handlers against writing to the pipe */
1875 /* while we modify the fd vars */
1876 sig_pending = 1;
1877#if EV_ASYNC_ENABLE
1878 async_pending = 1;
1879#endif
1880
1881 ev_ref (EV_A);
1882 ev_io_stop (EV_A_ &pipe_w);
1883
1884#if EV_USE_EVENTFD
1885 if (evfd >= 0)
1886 close (evfd);
1887#endif
1888
1889 if (evpipe [0] >= 0)
1890 {
1891 EV_WIN32_CLOSE_FD (evpipe [0]);
1892 EV_WIN32_CLOSE_FD (evpipe [1]);
1893 }
1894
1895#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1896 evpipe_init (EV_A);
1897 /* now iterate over everything, in case we missed something */
1898 pipecb (EV_A_ &pipe_w, EV_READ);
1899#endif
1900 }
1901
1902 postfork = 0;
1903}
1904
1905#if EV_MULTIPLICITY
1906
1907struct ev_loop *
1908ev_loop_new (unsigned int flags)
1909{
1910 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1911
1912 memset (EV_A, 0, sizeof (struct ev_loop));
1913 loop_init (EV_A_ flags);
1914
1915 if (ev_backend (EV_A))
1916 return EV_A;
1917
1918 ev_free (EV_A);
1919 return 0;
1920}
1921
1922#endif /* multiplicity */
1923
1924#if EV_VERIFY
1925static void noinline
1926verify_watcher (EV_P_ W w)
1927{
1928 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1929
1930 if (w->pending)
1931 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1932}
1933
1934static void noinline
1935verify_heap (EV_P_ ANHE *heap, int N)
1936{
1937 int i;
1938
1939 for (i = HEAP0; i < N + HEAP0; ++i)
1940 {
1941 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1942 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1943 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1944
1945 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1946 }
1947}
1948
1949static void noinline
1950array_verify (EV_P_ W *ws, int cnt)
1951{
1952 while (cnt--)
1953 {
1954 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1955 verify_watcher (EV_A_ ws [cnt]);
1956 }
1957}
1958#endif
1959
1960#if EV_FEATURE_API
1961void
1962ev_verify (EV_P)
1963{
1964#if EV_VERIFY
1965 int i;
1966 WL w;
1967
1968 assert (activecnt >= -1);
1969
1970 assert (fdchangemax >= fdchangecnt);
1971 for (i = 0; i < fdchangecnt; ++i)
1972 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1973
1974 assert (anfdmax >= 0);
1975 for (i = 0; i < anfdmax; ++i)
1976 for (w = anfds [i].head; w; w = w->next)
602 { 1977 {
603 struct timespec ts; 1978 verify_watcher (EV_A_ (W)w);
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1979 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
605 have_monotonic = 1; 1980 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
606 } 1981 }
607#endif
608 1982
609 rt_now = ev_time (); 1983 assert (timermax >= timercnt);
610 mn_now = get_clock (); 1984 verify_heap (EV_A_ timers, timercnt);
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613 1985
614 if (methods == EVMETHOD_AUTO) 1986#if EV_PERIODIC_ENABLE
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1987 assert (periodicmax >= periodiccnt);
616 methods = atoi (getenv ("LIBEV_METHODS")); 1988 verify_heap (EV_A_ periodics, periodiccnt);
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif 1989#endif
659 1990
660 for (i = NUMPRI; i--; ) 1991 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 1992 {
1993 assert (pendingmax [i] >= pendingcnt [i]);
1994#if EV_IDLE_ENABLE
1995 assert (idleall >= 0);
1996 assert (idlemax [i] >= idlecnt [i]);
1997 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1998#endif
1999 }
662 2000
663 array_free (fdchange, ); 2001#if EV_FORK_ENABLE
664 array_free (timer, ); 2002 assert (forkmax >= forkcnt);
665 array_free (periodic, ); 2003 array_verify (EV_A_ (W *)forks, forkcnt);
666 array_free (idle, ); 2004#endif
667 array_free (prepare, );
668 array_free (check, );
669 2005
670 method = 0; 2006#if EV_CLEANUP_ENABLE
671 /*TODO*/ 2007 assert (cleanupmax >= cleanupcnt);
672} 2008 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2009#endif
673 2010
674void 2011#if EV_ASYNC_ENABLE
675loop_fork (EV_P) 2012 assert (asyncmax >= asynccnt);
676{ 2013 array_verify (EV_A_ (W *)asyncs, asynccnt);
677 /*TODO*/ 2014#endif
678#if EV_USE_EPOLL 2015
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2016#if EV_PREPARE_ENABLE
2017 assert (preparemax >= preparecnt);
2018 array_verify (EV_A_ (W *)prepares, preparecnt);
2019#endif
2020
2021#if EV_CHECK_ENABLE
2022 assert (checkmax >= checkcnt);
2023 array_verify (EV_A_ (W *)checks, checkcnt);
2024#endif
2025
2026# if 0
2027#if EV_CHILD_ENABLE
2028 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2029 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2030#endif
680#endif 2031# endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 2032#endif
684} 2033}
2034#endif
685 2035
686#if EV_MULTIPLICITY 2036#if EV_MULTIPLICITY
687struct ev_loop * 2037struct ev_loop *
688ev_loop_new (int methods) 2038#else
689{ 2039int
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif 2040#endif
714 2041ev_default_loop (unsigned int flags)
2042{
2043 if (!ev_default_loop_ptr)
2044 {
715#if EV_MULTIPLICITY 2045#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct; 2046 EV_P = ev_default_loop_ptr = &default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else 2047#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1; 2048 ev_default_loop_ptr = 1;
737#endif 2049#endif
738 2050
739 loop_init (EV_A_ methods); 2051 loop_init (EV_A_ flags);
740 2052
741 if (ev_method (EV_A)) 2053 if (ev_backend (EV_A))
742 { 2054 {
743 ev_watcher_init (&sigev, sigcb); 2055#if EV_CHILD_ENABLE
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A);
746
747#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 2056 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 2057 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 2058 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2059 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 2060#endif
753 } 2061 }
754 else 2062 else
755 default_loop = 0; 2063 ev_default_loop_ptr = 0;
756 } 2064 }
757 2065
758 return default_loop; 2066 return ev_default_loop_ptr;
759} 2067}
760 2068
761void 2069void
762ev_default_destroy (void)
763{
764#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A); 2070ev_loop_fork (EV_P)
788 2071{
789 ev_io_stop (EV_A_ &sigev); 2072 postfork = 1; /* must be in line with ev_default_fork */
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 2073}
797 2074
798/*****************************************************************************/ 2075/*****************************************************************************/
799 2076
800static void 2077void
801call_pending (EV_P) 2078ev_invoke (EV_P_ void *w, int revents)
2079{
2080 EV_CB_INVOKE ((W)w, revents);
2081}
2082
2083unsigned int
2084ev_pending_count (EV_P)
2085{
2086 int pri;
2087 unsigned int count = 0;
2088
2089 for (pri = NUMPRI; pri--; )
2090 count += pendingcnt [pri];
2091
2092 return count;
2093}
2094
2095void noinline
2096ev_invoke_pending (EV_P)
802{ 2097{
803 int pri; 2098 int pri;
804 2099
805 for (pri = NUMPRI; pri--; ) 2100 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 2101 while (pendingcnt [pri])
807 { 2102 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2103 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 2104
810 if (p->w) 2105 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
811 { 2106 /* ^ this is no longer true, as pending_w could be here */
2107
812 p->w->pending = 0; 2108 p->w->pending = 0;
813 2109 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events); 2110 EV_FREQUENT_CHECK;
815 }
816 } 2111 }
817} 2112}
818 2113
819static void 2114#if EV_IDLE_ENABLE
2115/* make idle watchers pending. this handles the "call-idle */
2116/* only when higher priorities are idle" logic */
2117inline_size void
820timers_reify (EV_P) 2118idle_reify (EV_P)
821{ 2119{
822 while (timercnt && ((WT)timers [0])->at <= mn_now) 2120 if (expect_false (idleall))
823 { 2121 {
824 struct ev_timer *w = timers [0]; 2122 int pri;
825 2123
826 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2124 for (pri = NUMPRI; pri--; )
827
828 /* first reschedule or stop timer */
829 if (w->repeat)
830 { 2125 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2126 if (pendingcnt [pri])
832 ((WT)w)->at = mn_now + w->repeat; 2127 break;
833 downheap ((WT *)timers, timercnt, 0);
834 }
835 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 2128
838 event (EV_A_ (W)w, EV_TIMEOUT); 2129 if (idlecnt [pri])
839 }
840}
841
842static void
843periodics_reify (EV_P)
844{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
846 {
847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850
851 /* first reschedule or stop timer */
852 if (w->interval)
853 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0);
857 }
858 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860
861 event (EV_A_ (W)w, EV_PERIODIC);
862 }
863}
864
865static void
866periodics_reschedule (EV_P)
867{
868 int i;
869
870 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i)
872 {
873 struct ev_periodic *w = periodics [i];
874
875 if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 { 2130 {
881 ev_periodic_stop (EV_A_ w); 2131 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
882 ev_periodic_start (EV_A_ w); 2132 break;
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 } 2133 }
886 } 2134 }
887 } 2135 }
888} 2136}
2137#endif
889 2138
890inline int 2139/* make timers pending */
891time_update_monotonic (EV_P) 2140inline_size void
2141timers_reify (EV_P)
892{ 2142{
893 mn_now = get_clock (); 2143 EV_FREQUENT_CHECK;
894 2144
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2145 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 } 2146 {
900 else 2147 do
2148 {
2149 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2150
2151 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2152
2153 /* first reschedule or stop timer */
2154 if (w->repeat)
2155 {
2156 ev_at (w) += w->repeat;
2157 if (ev_at (w) < mn_now)
2158 ev_at (w) = mn_now;
2159
2160 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2161
2162 ANHE_at_cache (timers [HEAP0]);
2163 downheap (timers, timercnt, HEAP0);
2164 }
2165 else
2166 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2167
2168 EV_FREQUENT_CHECK;
2169 feed_reverse (EV_A_ (W)w);
2170 }
2171 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2172
2173 feed_reverse_done (EV_A_ EV_TIMER);
901 { 2174 }
902 now_floor = mn_now; 2175}
903 rt_now = ev_time (); 2176
904 return 1; 2177#if EV_PERIODIC_ENABLE
2178/* make periodics pending */
2179inline_size void
2180periodics_reify (EV_P)
2181{
2182 EV_FREQUENT_CHECK;
2183
2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
905 } 2185 {
906} 2186 int feed_count = 0;
907 2187
908static void 2188 do
909time_update (EV_P) 2189 {
2190 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2191
2192 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2193
2194 /* first reschedule or stop timer */
2195 if (w->reschedule_cb)
2196 {
2197 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2198
2199 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2200
2201 ANHE_at_cache (periodics [HEAP0]);
2202 downheap (periodics, periodiccnt, HEAP0);
2203 }
2204 else if (w->interval)
2205 {
2206 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2207 /* if next trigger time is not sufficiently in the future, put it there */
2208 /* this might happen because of floating point inexactness */
2209 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2210 {
2211 ev_at (w) += w->interval;
2212
2213 /* if interval is unreasonably low we might still have a time in the past */
2214 /* so correct this. this will make the periodic very inexact, but the user */
2215 /* has effectively asked to get triggered more often than possible */
2216 if (ev_at (w) < ev_rt_now)
2217 ev_at (w) = ev_rt_now;
2218 }
2219
2220 ANHE_at_cache (periodics [HEAP0]);
2221 downheap (periodics, periodiccnt, HEAP0);
2222 }
2223 else
2224 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2225
2226 EV_FREQUENT_CHECK;
2227 feed_reverse (EV_A_ (W)w);
2228 }
2229 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2230
2231 feed_reverse_done (EV_A_ EV_PERIODIC);
2232 }
2233}
2234
2235/* simply recalculate all periodics */
2236/* TODO: maybe ensure that at least one event happens when jumping forward? */
2237static void noinline
2238periodics_reschedule (EV_P)
910{ 2239{
911 int i; 2240 int i;
912 2241
2242 /* adjust periodics after time jump */
2243 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2244 {
2245 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2246
2247 if (w->reschedule_cb)
2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2249 else if (w->interval)
2250 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2251
2252 ANHE_at_cache (periodics [i]);
2253 }
2254
2255 reheap (periodics, periodiccnt);
2256}
2257#endif
2258
2259/* adjust all timers by a given offset */
2260static void noinline
2261timers_reschedule (EV_P_ ev_tstamp adjust)
2262{
2263 int i;
2264
2265 for (i = 0; i < timercnt; ++i)
2266 {
2267 ANHE *he = timers + i + HEAP0;
2268 ANHE_w (*he)->at += adjust;
2269 ANHE_at_cache (*he);
2270 }
2271}
2272
2273/* fetch new monotonic and realtime times from the kernel */
2274/* also detect if there was a timejump, and act accordingly */
2275inline_speed void
2276time_update (EV_P_ ev_tstamp max_block)
2277{
913#if EV_USE_MONOTONIC 2278#if EV_USE_MONOTONIC
914 if (expect_true (have_monotonic)) 2279 if (expect_true (have_monotonic))
915 { 2280 {
916 if (time_update_monotonic (EV_A)) 2281 int i;
2282 ev_tstamp odiff = rtmn_diff;
2283
2284 mn_now = get_clock ();
2285
2286 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2287 /* interpolate in the meantime */
2288 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
917 { 2289 {
918 ev_tstamp odiff = rtmn_diff; 2290 ev_rt_now = rtmn_diff + mn_now;
2291 return;
2292 }
919 2293
2294 now_floor = mn_now;
2295 ev_rt_now = ev_time ();
2296
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2297 /* loop a few times, before making important decisions.
2298 * on the choice of "4": one iteration isn't enough,
2299 * in case we get preempted during the calls to
2300 * ev_time and get_clock. a second call is almost guaranteed
2301 * to succeed in that case, though. and looping a few more times
2302 * doesn't hurt either as we only do this on time-jumps or
2303 * in the unlikely event of having been preempted here.
2304 */
2305 for (i = 4; --i; )
921 { 2306 {
922 rtmn_diff = rt_now - mn_now; 2307 rtmn_diff = ev_rt_now - mn_now;
923 2308
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2309 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
925 return; /* all is well */ 2310 return; /* all is well */
926 2311
927 rt_now = ev_time (); 2312 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 2313 mn_now = get_clock ();
929 now_floor = mn_now; 2314 now_floor = mn_now;
930 } 2315 }
931 2316
2317 /* no timer adjustment, as the monotonic clock doesn't jump */
2318 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2319# if EV_PERIODIC_ENABLE
2320 periodics_reschedule (EV_A);
2321# endif
2322 }
2323 else
2324#endif
2325 {
2326 ev_rt_now = ev_time ();
2327
2328 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2329 {
2330 /* adjust timers. this is easy, as the offset is the same for all of them */
2331 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2332#if EV_PERIODIC_ENABLE
932 periodics_reschedule (EV_A); 2333 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */ 2334#endif
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 } 2335 }
936 }
937 else
938#endif
939 {
940 rt_now = ev_time ();
941 2336
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 {
944 periodics_reschedule (EV_A);
945
946 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now;
949 }
950
951 mn_now = rt_now; 2337 mn_now = ev_rt_now;
952 } 2338 }
953} 2339}
954 2340
955void 2341void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
970ev_loop (EV_P_ int flags) 2342ev_run (EV_P_ int flags)
971{ 2343{
972 double block; 2344#if EV_FEATURE_API
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2345 ++loop_depth;
2346#endif
2347
2348 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2349
2350 loop_done = EVBREAK_CANCEL;
2351
2352 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
974 2353
975 do 2354 do
976 { 2355 {
2356#if EV_VERIFY >= 2
2357 ev_verify (EV_A);
2358#endif
2359
2360#ifndef _WIN32
2361 if (expect_false (curpid)) /* penalise the forking check even more */
2362 if (expect_false (getpid () != curpid))
2363 {
2364 curpid = getpid ();
2365 postfork = 1;
2366 }
2367#endif
2368
2369#if EV_FORK_ENABLE
2370 /* we might have forked, so queue fork handlers */
2371 if (expect_false (postfork))
2372 if (forkcnt)
2373 {
2374 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2375 EV_INVOKE_PENDING;
2376 }
2377#endif
2378
2379#if EV_PREPARE_ENABLE
977 /* queue check watchers (and execute them) */ 2380 /* queue prepare watchers (and execute them) */
978 if (expect_false (preparecnt)) 2381 if (expect_false (preparecnt))
979 { 2382 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2383 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 2384 EV_INVOKE_PENDING;
982 } 2385 }
2386#endif
2387
2388 if (expect_false (loop_done))
2389 break;
2390
2391 /* we might have forked, so reify kernel state if necessary */
2392 if (expect_false (postfork))
2393 loop_fork (EV_A);
983 2394
984 /* update fd-related kernel structures */ 2395 /* update fd-related kernel structures */
985 fd_reify (EV_A); 2396 fd_reify (EV_A);
986 2397
987 /* calculate blocking time */ 2398 /* calculate blocking time */
2399 {
2400 ev_tstamp waittime = 0.;
2401 ev_tstamp sleeptime = 0.;
988 2402
989 /* we only need this for !monotonic clockor timers, but as we basically 2403 /* remember old timestamp for io_blocktime calculation */
990 always have timers, we just calculate it always */ 2404 ev_tstamp prev_mn_now = mn_now;
991#if EV_USE_MONOTONIC 2405
992 if (expect_true (have_monotonic)) 2406 /* update time to cancel out callback processing overhead */
993 time_update_monotonic (EV_A); 2407 time_update (EV_A_ 1e100);
994 else 2408
995#endif 2409 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
996 { 2410 {
997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
1000
1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.;
1003 else
1004 {
1005 block = MAX_BLOCKTIME; 2411 waittime = MAX_BLOCKTIME;
1006 2412
1007 if (timercnt) 2413 if (timercnt)
1008 { 2414 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2415 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1010 if (block > to) block = to; 2416 if (waittime > to) waittime = to;
1011 } 2417 }
1012 2418
2419#if EV_PERIODIC_ENABLE
1013 if (periodiccnt) 2420 if (periodiccnt)
1014 { 2421 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2422 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1016 if (block > to) block = to; 2423 if (waittime > to) waittime = to;
1017 } 2424 }
2425#endif
1018 2426
1019 if (block < 0.) block = 0.; 2427 /* don't let timeouts decrease the waittime below timeout_blocktime */
2428 if (expect_false (waittime < timeout_blocktime))
2429 waittime = timeout_blocktime;
2430
2431 /* extra check because io_blocktime is commonly 0 */
2432 if (expect_false (io_blocktime))
2433 {
2434 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2435
2436 if (sleeptime > waittime - backend_fudge)
2437 sleeptime = waittime - backend_fudge;
2438
2439 if (expect_true (sleeptime > 0.))
2440 {
2441 ev_sleep (sleeptime);
2442 waittime -= sleeptime;
2443 }
2444 }
1020 } 2445 }
1021 2446
1022 method_poll (EV_A_ block); 2447#if EV_FEATURE_API
2448 ++loop_count;
2449#endif
2450 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2451 backend_poll (EV_A_ waittime);
2452 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1023 2453
1024 /* update rt_now, do magic */ 2454 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 2455 time_update (EV_A_ waittime + sleeptime);
2456 }
1026 2457
1027 /* queue pending timers and reschedule them */ 2458 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 2459 timers_reify (EV_A); /* relative timers called last */
2460#if EV_PERIODIC_ENABLE
1029 periodics_reify (EV_A); /* absolute timers called first */ 2461 periodics_reify (EV_A); /* absolute timers called first */
2462#endif
1030 2463
2464#if EV_IDLE_ENABLE
1031 /* queue idle watchers unless io or timers are pending */ 2465 /* queue idle watchers unless other events are pending */
1032 if (!pendingcnt) 2466 idle_reify (EV_A);
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2467#endif
1034 2468
2469#if EV_CHECK_ENABLE
1035 /* queue check watchers, to be executed first */ 2470 /* queue check watchers, to be executed first */
1036 if (checkcnt) 2471 if (expect_false (checkcnt))
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2472 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2473#endif
1038 2474
1039 call_pending (EV_A); 2475 EV_INVOKE_PENDING;
1040 } 2476 }
1041 while (activecnt && !loop_done); 2477 while (expect_true (
2478 activecnt
2479 && !loop_done
2480 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2481 ));
1042 2482
1043 if (loop_done != 2) 2483 if (loop_done == EVBREAK_ONE)
1044 loop_done = 0; 2484 loop_done = EVBREAK_CANCEL;
1045}
1046 2485
2486#if EV_FEATURE_API
2487 --loop_depth;
2488#endif
2489}
2490
1047void 2491void
1048ev_unloop (EV_P_ int how) 2492ev_break (EV_P_ int how)
1049{ 2493{
1050 loop_done = how; 2494 loop_done = how;
1051} 2495}
1052 2496
2497void
2498ev_ref (EV_P)
2499{
2500 ++activecnt;
2501}
2502
2503void
2504ev_unref (EV_P)
2505{
2506 --activecnt;
2507}
2508
2509void
2510ev_now_update (EV_P)
2511{
2512 time_update (EV_A_ 1e100);
2513}
2514
2515void
2516ev_suspend (EV_P)
2517{
2518 ev_now_update (EV_A);
2519}
2520
2521void
2522ev_resume (EV_P)
2523{
2524 ev_tstamp mn_prev = mn_now;
2525
2526 ev_now_update (EV_A);
2527 timers_reschedule (EV_A_ mn_now - mn_prev);
2528#if EV_PERIODIC_ENABLE
2529 /* TODO: really do this? */
2530 periodics_reschedule (EV_A);
2531#endif
2532}
2533
1053/*****************************************************************************/ 2534/*****************************************************************************/
2535/* singly-linked list management, used when the expected list length is short */
1054 2536
1055inline void 2537inline_size void
1056wlist_add (WL *head, WL elem) 2538wlist_add (WL *head, WL elem)
1057{ 2539{
1058 elem->next = *head; 2540 elem->next = *head;
1059 *head = elem; 2541 *head = elem;
1060} 2542}
1061 2543
1062inline void 2544inline_size void
1063wlist_del (WL *head, WL elem) 2545wlist_del (WL *head, WL elem)
1064{ 2546{
1065 while (*head) 2547 while (*head)
1066 { 2548 {
1067 if (*head == elem) 2549 if (expect_true (*head == elem))
1068 { 2550 {
1069 *head = elem->next; 2551 *head = elem->next;
1070 return; 2552 break;
1071 } 2553 }
1072 2554
1073 head = &(*head)->next; 2555 head = &(*head)->next;
1074 } 2556 }
1075} 2557}
1076 2558
2559/* internal, faster, version of ev_clear_pending */
1077inline void 2560inline_speed void
1078ev_clear_pending (EV_P_ W w) 2561clear_pending (EV_P_ W w)
1079{ 2562{
1080 if (w->pending) 2563 if (w->pending)
1081 { 2564 {
1082 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2565 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1083 w->pending = 0; 2566 w->pending = 0;
1084 } 2567 }
1085} 2568}
1086 2569
2570int
2571ev_clear_pending (EV_P_ void *w)
2572{
2573 W w_ = (W)w;
2574 int pending = w_->pending;
2575
2576 if (expect_true (pending))
2577 {
2578 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2579 p->w = (W)&pending_w;
2580 w_->pending = 0;
2581 return p->events;
2582 }
2583 else
2584 return 0;
2585}
2586
1087inline void 2587inline_size void
2588pri_adjust (EV_P_ W w)
2589{
2590 int pri = ev_priority (w);
2591 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2592 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2593 ev_set_priority (w, pri);
2594}
2595
2596inline_speed void
1088ev_start (EV_P_ W w, int active) 2597ev_start (EV_P_ W w, int active)
1089{ 2598{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2599 pri_adjust (EV_A_ w);
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
1093 w->active = active; 2600 w->active = active;
1094 ev_ref (EV_A); 2601 ev_ref (EV_A);
1095} 2602}
1096 2603
1097inline void 2604inline_size void
1098ev_stop (EV_P_ W w) 2605ev_stop (EV_P_ W w)
1099{ 2606{
1100 ev_unref (EV_A); 2607 ev_unref (EV_A);
1101 w->active = 0; 2608 w->active = 0;
1102} 2609}
1103 2610
1104/*****************************************************************************/ 2611/*****************************************************************************/
1105 2612
1106void 2613void noinline
1107ev_io_start (EV_P_ struct ev_io *w) 2614ev_io_start (EV_P_ ev_io *w)
1108{ 2615{
1109 int fd = w->fd; 2616 int fd = w->fd;
1110 2617
1111 if (ev_is_active (w)) 2618 if (expect_false (ev_is_active (w)))
1112 return; 2619 return;
1113 2620
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 2621 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2622 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2623
2624 EV_FREQUENT_CHECK;
1115 2625
1116 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2627 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2628 wlist_add (&anfds[fd].head, (WL)w);
1119 2629
1120 fd_change (EV_A_ fd); 2630 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1121} 2631 w->events &= ~EV__IOFDSET;
1122 2632
1123void 2633 EV_FREQUENT_CHECK;
2634}
2635
2636void noinline
1124ev_io_stop (EV_P_ struct ev_io *w) 2637ev_io_stop (EV_P_ ev_io *w)
1125{ 2638{
1126 ev_clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 2640 if (expect_false (!ev_is_active (w)))
1128 return; 2641 return;
1129 2642
2643 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2644
2645 EV_FREQUENT_CHECK;
2646
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2647 wlist_del (&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 2648 ev_stop (EV_A_ (W)w);
1132 2649
1133 fd_change (EV_A_ w->fd); 2650 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1134}
1135 2651
1136void 2652 EV_FREQUENT_CHECK;
2653}
2654
2655void noinline
1137ev_timer_start (EV_P_ struct ev_timer *w) 2656ev_timer_start (EV_P_ ev_timer *w)
1138{ 2657{
1139 if (ev_is_active (w)) 2658 if (expect_false (ev_is_active (w)))
1140 return; 2659 return;
1141 2660
1142 ((WT)w)->at += mn_now; 2661 ev_at (w) += mn_now;
1143 2662
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2663 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 2664
2665 EV_FREQUENT_CHECK;
2666
2667 ++timercnt;
1146 ev_start (EV_A_ (W)w, ++timercnt); 2668 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1147 array_needsize (timers, timermax, timercnt, ); 2669 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1148 timers [timercnt - 1] = w; 2670 ANHE_w (timers [ev_active (w)]) = (WT)w;
1149 upheap ((WT *)timers, timercnt - 1); 2671 ANHE_at_cache (timers [ev_active (w)]);
2672 upheap (timers, ev_active (w));
1150 2673
2674 EV_FREQUENT_CHECK;
2675
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2676 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1152} 2677}
1153 2678
1154void 2679void noinline
1155ev_timer_stop (EV_P_ struct ev_timer *w) 2680ev_timer_stop (EV_P_ ev_timer *w)
1156{ 2681{
1157 ev_clear_pending (EV_A_ (W)w); 2682 clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w)) 2683 if (expect_false (!ev_is_active (w)))
1159 return; 2684 return;
1160 2685
2686 EV_FREQUENT_CHECK;
2687
2688 {
2689 int active = ev_active (w);
2690
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2691 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1162 2692
1163 if (((W)w)->active < timercnt--) 2693 --timercnt;
2694
2695 if (expect_true (active < timercnt + HEAP0))
1164 { 2696 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 2697 timers [active] = timers [timercnt + HEAP0];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2698 adjustheap (timers, timercnt, active);
1167 } 2699 }
2700 }
1168 2701
1169 ((WT)w)->at = w->repeat; 2702 ev_at (w) -= mn_now;
1170 2703
1171 ev_stop (EV_A_ (W)w); 2704 ev_stop (EV_A_ (W)w);
1172}
1173 2705
1174void 2706 EV_FREQUENT_CHECK;
2707}
2708
2709void noinline
1175ev_timer_again (EV_P_ struct ev_timer *w) 2710ev_timer_again (EV_P_ ev_timer *w)
1176{ 2711{
2712 EV_FREQUENT_CHECK;
2713
1177 if (ev_is_active (w)) 2714 if (ev_is_active (w))
1178 { 2715 {
1179 if (w->repeat) 2716 if (w->repeat)
1180 { 2717 {
1181 ((WT)w)->at = mn_now + w->repeat; 2718 ev_at (w) = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2719 ANHE_at_cache (timers [ev_active (w)]);
2720 adjustheap (timers, timercnt, ev_active (w));
1183 } 2721 }
1184 else 2722 else
1185 ev_timer_stop (EV_A_ w); 2723 ev_timer_stop (EV_A_ w);
1186 } 2724 }
1187 else if (w->repeat) 2725 else if (w->repeat)
2726 {
2727 ev_at (w) = w->repeat;
1188 ev_timer_start (EV_A_ w); 2728 ev_timer_start (EV_A_ w);
1189} 2729 }
1190 2730
1191void 2731 EV_FREQUENT_CHECK;
2732}
2733
2734ev_tstamp
2735ev_timer_remaining (EV_P_ ev_timer *w)
2736{
2737 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2738}
2739
2740#if EV_PERIODIC_ENABLE
2741void noinline
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 2742ev_periodic_start (EV_P_ ev_periodic *w)
1193{ 2743{
1194 if (ev_is_active (w)) 2744 if (expect_false (ev_is_active (w)))
1195 return; 2745 return;
1196 2746
2747 if (w->reschedule_cb)
2748 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2749 else if (w->interval)
2750 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2751 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 2752 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2753 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2754 }
2755 else
2756 ev_at (w) = w->offset;
1202 2757
2758 EV_FREQUENT_CHECK;
2759
2760 ++periodiccnt;
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 2761 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 2762 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 2763 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 2764 ANHE_at_cache (periodics [ev_active (w)]);
2765 upheap (periodics, ev_active (w));
1207 2766
2767 EV_FREQUENT_CHECK;
2768
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2769 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1209} 2770}
1210 2771
1211void 2772void noinline
1212ev_periodic_stop (EV_P_ struct ev_periodic *w) 2773ev_periodic_stop (EV_P_ ev_periodic *w)
1213{ 2774{
1214 ev_clear_pending (EV_A_ (W)w); 2775 clear_pending (EV_A_ (W)w);
1215 if (!ev_is_active (w)) 2776 if (expect_false (!ev_is_active (w)))
1216 return; 2777 return;
1217 2778
2779 EV_FREQUENT_CHECK;
2780
2781 {
2782 int active = ev_active (w);
2783
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2784 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1219 2785
1220 if (((W)w)->active < periodiccnt--) 2786 --periodiccnt;
2787
2788 if (expect_true (active < periodiccnt + HEAP0))
1221 { 2789 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2790 periodics [active] = periodics [periodiccnt + HEAP0];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2791 adjustheap (periodics, periodiccnt, active);
1224 } 2792 }
2793 }
1225 2794
1226 ev_stop (EV_A_ (W)w); 2795 ev_stop (EV_A_ (W)w);
1227}
1228 2796
1229void 2797 EV_FREQUENT_CHECK;
1230ev_idle_start (EV_P_ struct ev_idle *w)
1231{
1232 if (ev_is_active (w))
1233 return;
1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238} 2798}
1239 2799
1240void 2800void noinline
1241ev_idle_stop (EV_P_ struct ev_idle *w) 2801ev_periodic_again (EV_P_ ev_periodic *w)
1242{ 2802{
1243 ev_clear_pending (EV_A_ (W)w); 2803 /* TODO: use adjustheap and recalculation */
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w); 2804 ev_periodic_stop (EV_A_ w);
2805 ev_periodic_start (EV_A_ w);
1249} 2806}
1250 2807#endif
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294 2808
1295#ifndef SA_RESTART 2809#ifndef SA_RESTART
1296# define SA_RESTART 0 2810# define SA_RESTART 0
1297#endif 2811#endif
1298 2812
1299void 2813#if EV_SIGNAL_ENABLE
2814
2815void noinline
1300ev_signal_start (EV_P_ struct ev_signal *w) 2816ev_signal_start (EV_P_ ev_signal *w)
1301{ 2817{
2818 if (expect_false (ev_is_active (w)))
2819 return;
2820
2821 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2822
1302#if EV_MULTIPLICITY 2823#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2824 assert (("libev: a signal must not be attached to two different loops",
2825 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2826
2827 signals [w->signum - 1].loop = EV_A;
2828#endif
2829
2830 EV_FREQUENT_CHECK;
2831
2832#if EV_USE_SIGNALFD
2833 if (sigfd == -2)
2834 {
2835 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2836 if (sigfd < 0 && errno == EINVAL)
2837 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2838
2839 if (sigfd >= 0)
2840 {
2841 fd_intern (sigfd); /* doing it twice will not hurt */
2842
2843 sigemptyset (&sigfd_set);
2844
2845 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2846 ev_set_priority (&sigfd_w, EV_MAXPRI);
2847 ev_io_start (EV_A_ &sigfd_w);
2848 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2849 }
2850 }
2851
2852 if (sigfd >= 0)
2853 {
2854 /* TODO: check .head */
2855 sigaddset (&sigfd_set, w->signum);
2856 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2857
2858 signalfd (sigfd, &sigfd_set, 0);
2859 }
2860#endif
2861
2862 ev_start (EV_A_ (W)w, 1);
2863 wlist_add (&signals [w->signum - 1].head, (WL)w);
2864
2865 if (!((WL)w)->next)
2866# if EV_USE_SIGNALFD
2867 if (sigfd < 0) /*TODO*/
1304#endif 2868# endif
1305 if (ev_is_active (w)) 2869 {
2870# ifdef _WIN32
2871 evpipe_init (EV_A);
2872
2873 signal (w->signum, ev_sighandler);
2874# else
2875 struct sigaction sa;
2876
2877 evpipe_init (EV_A);
2878
2879 sa.sa_handler = ev_sighandler;
2880 sigfillset (&sa.sa_mask);
2881 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2882 sigaction (w->signum, &sa, 0);
2883
2884 sigemptyset (&sa.sa_mask);
2885 sigaddset (&sa.sa_mask, w->signum);
2886 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2887#endif
2888 }
2889
2890 EV_FREQUENT_CHECK;
2891}
2892
2893void noinline
2894ev_signal_stop (EV_P_ ev_signal *w)
2895{
2896 clear_pending (EV_A_ (W)w);
2897 if (expect_false (!ev_is_active (w)))
1306 return; 2898 return;
1307 2899
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2900 EV_FREQUENT_CHECK;
2901
2902 wlist_del (&signals [w->signum - 1].head, (WL)w);
2903 ev_stop (EV_A_ (W)w);
2904
2905 if (!signals [w->signum - 1].head)
2906 {
2907#if EV_MULTIPLICITY
2908 signals [w->signum - 1].loop = 0; /* unattach from signal */
2909#endif
2910#if EV_USE_SIGNALFD
2911 if (sigfd >= 0)
2912 {
2913 sigset_t ss;
2914
2915 sigemptyset (&ss);
2916 sigaddset (&ss, w->signum);
2917 sigdelset (&sigfd_set, w->signum);
2918
2919 signalfd (sigfd, &sigfd_set, 0);
2920 sigprocmask (SIG_UNBLOCK, &ss, 0);
2921 }
2922 else
2923#endif
2924 signal (w->signum, SIG_DFL);
2925 }
2926
2927 EV_FREQUENT_CHECK;
2928}
2929
2930#endif
2931
2932#if EV_CHILD_ENABLE
2933
2934void
2935ev_child_start (EV_P_ ev_child *w)
2936{
2937#if EV_MULTIPLICITY
2938 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2939#endif
2940 if (expect_false (ev_is_active (w)))
2941 return;
2942
2943 EV_FREQUENT_CHECK;
1309 2944
1310 ev_start (EV_A_ (W)w, 1); 2945 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 2946 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 2947
1314 if (!((WL)w)->next) 2948 EV_FREQUENT_CHECK;
1315 {
1316 struct sigaction sa;
1317 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0);
1321 }
1322} 2949}
1323 2950
1324void 2951void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 2952ev_child_stop (EV_P_ ev_child *w)
1326{ 2953{
1327 ev_clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 2955 if (expect_false (!ev_is_active (w)))
1329 return; 2956 return;
1330 2957
1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2958 EV_FREQUENT_CHECK;
2959
2960 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1332 ev_stop (EV_A_ (W)w); 2961 ev_stop (EV_A_ (W)w);
1333 2962
1334 if (!signals [w->signum - 1].head) 2963 EV_FREQUENT_CHECK;
1335 signal (w->signum, SIG_DFL);
1336} 2964}
1337 2965
1338void 2966#endif
1339ev_child_start (EV_P_ struct ev_child *w) 2967
1340{ 2968#if EV_STAT_ENABLE
1341#if EV_MULTIPLICITY 2969
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2970# ifdef _WIN32
2971# undef lstat
2972# define lstat(a,b) _stati64 (a,b)
1343#endif 2973# endif
1344 if (ev_is_active (w)) 2974
2975#define DEF_STAT_INTERVAL 5.0074891
2976#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2977#define MIN_STAT_INTERVAL 0.1074891
2978
2979static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2980
2981#if EV_USE_INOTIFY
2982
2983/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2984# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2985
2986static void noinline
2987infy_add (EV_P_ ev_stat *w)
2988{
2989 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2990
2991 if (w->wd >= 0)
2992 {
2993 struct statfs sfs;
2994
2995 /* now local changes will be tracked by inotify, but remote changes won't */
2996 /* unless the filesystem is known to be local, we therefore still poll */
2997 /* also do poll on <2.6.25, but with normal frequency */
2998
2999 if (!fs_2625)
3000 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3001 else if (!statfs (w->path, &sfs)
3002 && (sfs.f_type == 0x1373 /* devfs */
3003 || sfs.f_type == 0xEF53 /* ext2/3 */
3004 || sfs.f_type == 0x3153464a /* jfs */
3005 || sfs.f_type == 0x52654973 /* reiser3 */
3006 || sfs.f_type == 0x01021994 /* tempfs */
3007 || sfs.f_type == 0x58465342 /* xfs */))
3008 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3009 else
3010 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3011 }
3012 else
3013 {
3014 /* can't use inotify, continue to stat */
3015 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3016
3017 /* if path is not there, monitor some parent directory for speedup hints */
3018 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3019 /* but an efficiency issue only */
3020 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3021 {
3022 char path [4096];
3023 strcpy (path, w->path);
3024
3025 do
3026 {
3027 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3028 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3029
3030 char *pend = strrchr (path, '/');
3031
3032 if (!pend || pend == path)
3033 break;
3034
3035 *pend = 0;
3036 w->wd = inotify_add_watch (fs_fd, path, mask);
3037 }
3038 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3039 }
3040 }
3041
3042 if (w->wd >= 0)
3043 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3044
3045 /* now re-arm timer, if required */
3046 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3047 ev_timer_again (EV_A_ &w->timer);
3048 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3049}
3050
3051static void noinline
3052infy_del (EV_P_ ev_stat *w)
3053{
3054 int slot;
3055 int wd = w->wd;
3056
3057 if (wd < 0)
1345 return; 3058 return;
1346 3059
3060 w->wd = -2;
3061 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3062 wlist_del (&fs_hash [slot].head, (WL)w);
3063
3064 /* remove this watcher, if others are watching it, they will rearm */
3065 inotify_rm_watch (fs_fd, wd);
3066}
3067
3068static void noinline
3069infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3070{
3071 if (slot < 0)
3072 /* overflow, need to check for all hash slots */
3073 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3074 infy_wd (EV_A_ slot, wd, ev);
3075 else
3076 {
3077 WL w_;
3078
3079 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3080 {
3081 ev_stat *w = (ev_stat *)w_;
3082 w_ = w_->next; /* lets us remove this watcher and all before it */
3083
3084 if (w->wd == wd || wd == -1)
3085 {
3086 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3087 {
3088 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3089 w->wd = -1;
3090 infy_add (EV_A_ w); /* re-add, no matter what */
3091 }
3092
3093 stat_timer_cb (EV_A_ &w->timer, 0);
3094 }
3095 }
3096 }
3097}
3098
3099static void
3100infy_cb (EV_P_ ev_io *w, int revents)
3101{
3102 char buf [EV_INOTIFY_BUFSIZE];
3103 int ofs;
3104 int len = read (fs_fd, buf, sizeof (buf));
3105
3106 for (ofs = 0; ofs < len; )
3107 {
3108 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3109 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3110 ofs += sizeof (struct inotify_event) + ev->len;
3111 }
3112}
3113
3114inline_size void
3115ev_check_2625 (EV_P)
3116{
3117 /* kernels < 2.6.25 are borked
3118 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3119 */
3120 if (ev_linux_version () < 0x020619)
3121 return;
3122
3123 fs_2625 = 1;
3124}
3125
3126inline_size int
3127infy_newfd (void)
3128{
3129#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3130 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3131 if (fd >= 0)
3132 return fd;
3133#endif
3134 return inotify_init ();
3135}
3136
3137inline_size void
3138infy_init (EV_P)
3139{
3140 if (fs_fd != -2)
3141 return;
3142
3143 fs_fd = -1;
3144
3145 ev_check_2625 (EV_A);
3146
3147 fs_fd = infy_newfd ();
3148
3149 if (fs_fd >= 0)
3150 {
3151 fd_intern (fs_fd);
3152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3153 ev_set_priority (&fs_w, EV_MAXPRI);
3154 ev_io_start (EV_A_ &fs_w);
3155 ev_unref (EV_A);
3156 }
3157}
3158
3159inline_size void
3160infy_fork (EV_P)
3161{
3162 int slot;
3163
3164 if (fs_fd < 0)
3165 return;
3166
3167 ev_ref (EV_A);
3168 ev_io_stop (EV_A_ &fs_w);
3169 close (fs_fd);
3170 fs_fd = infy_newfd ();
3171
3172 if (fs_fd >= 0)
3173 {
3174 fd_intern (fs_fd);
3175 ev_io_set (&fs_w, fs_fd, EV_READ);
3176 ev_io_start (EV_A_ &fs_w);
3177 ev_unref (EV_A);
3178 }
3179
3180 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3181 {
3182 WL w_ = fs_hash [slot].head;
3183 fs_hash [slot].head = 0;
3184
3185 while (w_)
3186 {
3187 ev_stat *w = (ev_stat *)w_;
3188 w_ = w_->next; /* lets us add this watcher */
3189
3190 w->wd = -1;
3191
3192 if (fs_fd >= 0)
3193 infy_add (EV_A_ w); /* re-add, no matter what */
3194 else
3195 {
3196 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3197 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3198 ev_timer_again (EV_A_ &w->timer);
3199 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3200 }
3201 }
3202 }
3203}
3204
3205#endif
3206
3207#ifdef _WIN32
3208# define EV_LSTAT(p,b) _stati64 (p, b)
3209#else
3210# define EV_LSTAT(p,b) lstat (p, b)
3211#endif
3212
3213void
3214ev_stat_stat (EV_P_ ev_stat *w)
3215{
3216 if (lstat (w->path, &w->attr) < 0)
3217 w->attr.st_nlink = 0;
3218 else if (!w->attr.st_nlink)
3219 w->attr.st_nlink = 1;
3220}
3221
3222static void noinline
3223stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3224{
3225 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3226
3227 ev_statdata prev = w->attr;
3228 ev_stat_stat (EV_A_ w);
3229
3230 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3231 if (
3232 prev.st_dev != w->attr.st_dev
3233 || prev.st_ino != w->attr.st_ino
3234 || prev.st_mode != w->attr.st_mode
3235 || prev.st_nlink != w->attr.st_nlink
3236 || prev.st_uid != w->attr.st_uid
3237 || prev.st_gid != w->attr.st_gid
3238 || prev.st_rdev != w->attr.st_rdev
3239 || prev.st_size != w->attr.st_size
3240 || prev.st_atime != w->attr.st_atime
3241 || prev.st_mtime != w->attr.st_mtime
3242 || prev.st_ctime != w->attr.st_ctime
3243 ) {
3244 /* we only update w->prev on actual differences */
3245 /* in case we test more often than invoke the callback, */
3246 /* to ensure that prev is always different to attr */
3247 w->prev = prev;
3248
3249 #if EV_USE_INOTIFY
3250 if (fs_fd >= 0)
3251 {
3252 infy_del (EV_A_ w);
3253 infy_add (EV_A_ w);
3254 ev_stat_stat (EV_A_ w); /* avoid race... */
3255 }
3256 #endif
3257
3258 ev_feed_event (EV_A_ w, EV_STAT);
3259 }
3260}
3261
3262void
3263ev_stat_start (EV_P_ ev_stat *w)
3264{
3265 if (expect_false (ev_is_active (w)))
3266 return;
3267
3268 ev_stat_stat (EV_A_ w);
3269
3270 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3271 w->interval = MIN_STAT_INTERVAL;
3272
3273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3274 ev_set_priority (&w->timer, ev_priority (w));
3275
3276#if EV_USE_INOTIFY
3277 infy_init (EV_A);
3278
3279 if (fs_fd >= 0)
3280 infy_add (EV_A_ w);
3281 else
3282#endif
3283 {
3284 ev_timer_again (EV_A_ &w->timer);
3285 ev_unref (EV_A);
3286 }
3287
1347 ev_start (EV_A_ (W)w, 1); 3288 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1349}
1350 3289
3290 EV_FREQUENT_CHECK;
3291}
3292
1351void 3293void
1352ev_child_stop (EV_P_ struct ev_child *w) 3294ev_stat_stop (EV_P_ ev_stat *w)
1353{ 3295{
1354 ev_clear_pending (EV_A_ (W)w); 3296 clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 3297 if (expect_false (!ev_is_active (w)))
1356 return; 3298 return;
1357 3299
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3300 EV_FREQUENT_CHECK;
3301
3302#if EV_USE_INOTIFY
3303 infy_del (EV_A_ w);
3304#endif
3305
3306 if (ev_is_active (&w->timer))
3307 {
3308 ev_ref (EV_A);
3309 ev_timer_stop (EV_A_ &w->timer);
3310 }
3311
1359 ev_stop (EV_A_ (W)w); 3312 ev_stop (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
1360} 3315}
3316#endif
3317
3318#if EV_IDLE_ENABLE
3319void
3320ev_idle_start (EV_P_ ev_idle *w)
3321{
3322 if (expect_false (ev_is_active (w)))
3323 return;
3324
3325 pri_adjust (EV_A_ (W)w);
3326
3327 EV_FREQUENT_CHECK;
3328
3329 {
3330 int active = ++idlecnt [ABSPRI (w)];
3331
3332 ++idleall;
3333 ev_start (EV_A_ (W)w, active);
3334
3335 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3336 idles [ABSPRI (w)][active - 1] = w;
3337 }
3338
3339 EV_FREQUENT_CHECK;
3340}
3341
3342void
3343ev_idle_stop (EV_P_ ev_idle *w)
3344{
3345 clear_pending (EV_A_ (W)w);
3346 if (expect_false (!ev_is_active (w)))
3347 return;
3348
3349 EV_FREQUENT_CHECK;
3350
3351 {
3352 int active = ev_active (w);
3353
3354 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3355 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3356
3357 ev_stop (EV_A_ (W)w);
3358 --idleall;
3359 }
3360
3361 EV_FREQUENT_CHECK;
3362}
3363#endif
3364
3365#if EV_PREPARE_ENABLE
3366void
3367ev_prepare_start (EV_P_ ev_prepare *w)
3368{
3369 if (expect_false (ev_is_active (w)))
3370 return;
3371
3372 EV_FREQUENT_CHECK;
3373
3374 ev_start (EV_A_ (W)w, ++preparecnt);
3375 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3376 prepares [preparecnt - 1] = w;
3377
3378 EV_FREQUENT_CHECK;
3379}
3380
3381void
3382ev_prepare_stop (EV_P_ ev_prepare *w)
3383{
3384 clear_pending (EV_A_ (W)w);
3385 if (expect_false (!ev_is_active (w)))
3386 return;
3387
3388 EV_FREQUENT_CHECK;
3389
3390 {
3391 int active = ev_active (w);
3392
3393 prepares [active - 1] = prepares [--preparecnt];
3394 ev_active (prepares [active - 1]) = active;
3395 }
3396
3397 ev_stop (EV_A_ (W)w);
3398
3399 EV_FREQUENT_CHECK;
3400}
3401#endif
3402
3403#if EV_CHECK_ENABLE
3404void
3405ev_check_start (EV_P_ ev_check *w)
3406{
3407 if (expect_false (ev_is_active (w)))
3408 return;
3409
3410 EV_FREQUENT_CHECK;
3411
3412 ev_start (EV_A_ (W)w, ++checkcnt);
3413 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3414 checks [checkcnt - 1] = w;
3415
3416 EV_FREQUENT_CHECK;
3417}
3418
3419void
3420ev_check_stop (EV_P_ ev_check *w)
3421{
3422 clear_pending (EV_A_ (W)w);
3423 if (expect_false (!ev_is_active (w)))
3424 return;
3425
3426 EV_FREQUENT_CHECK;
3427
3428 {
3429 int active = ev_active (w);
3430
3431 checks [active - 1] = checks [--checkcnt];
3432 ev_active (checks [active - 1]) = active;
3433 }
3434
3435 ev_stop (EV_A_ (W)w);
3436
3437 EV_FREQUENT_CHECK;
3438}
3439#endif
3440
3441#if EV_EMBED_ENABLE
3442void noinline
3443ev_embed_sweep (EV_P_ ev_embed *w)
3444{
3445 ev_run (w->other, EVRUN_NOWAIT);
3446}
3447
3448static void
3449embed_io_cb (EV_P_ ev_io *io, int revents)
3450{
3451 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3452
3453 if (ev_cb (w))
3454 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3455 else
3456 ev_run (w->other, EVRUN_NOWAIT);
3457}
3458
3459static void
3460embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3463
3464 {
3465 EV_P = w->other;
3466
3467 while (fdchangecnt)
3468 {
3469 fd_reify (EV_A);
3470 ev_run (EV_A_ EVRUN_NOWAIT);
3471 }
3472 }
3473}
3474
3475static void
3476embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3477{
3478 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3479
3480 ev_embed_stop (EV_A_ w);
3481
3482 {
3483 EV_P = w->other;
3484
3485 ev_loop_fork (EV_A);
3486 ev_run (EV_A_ EVRUN_NOWAIT);
3487 }
3488
3489 ev_embed_start (EV_A_ w);
3490}
3491
3492#if 0
3493static void
3494embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3495{
3496 ev_idle_stop (EV_A_ idle);
3497}
3498#endif
3499
3500void
3501ev_embed_start (EV_P_ ev_embed *w)
3502{
3503 if (expect_false (ev_is_active (w)))
3504 return;
3505
3506 {
3507 EV_P = w->other;
3508 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3509 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3510 }
3511
3512 EV_FREQUENT_CHECK;
3513
3514 ev_set_priority (&w->io, ev_priority (w));
3515 ev_io_start (EV_A_ &w->io);
3516
3517 ev_prepare_init (&w->prepare, embed_prepare_cb);
3518 ev_set_priority (&w->prepare, EV_MINPRI);
3519 ev_prepare_start (EV_A_ &w->prepare);
3520
3521 ev_fork_init (&w->fork, embed_fork_cb);
3522 ev_fork_start (EV_A_ &w->fork);
3523
3524 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3525
3526 ev_start (EV_A_ (W)w, 1);
3527
3528 EV_FREQUENT_CHECK;
3529}
3530
3531void
3532ev_embed_stop (EV_P_ ev_embed *w)
3533{
3534 clear_pending (EV_A_ (W)w);
3535 if (expect_false (!ev_is_active (w)))
3536 return;
3537
3538 EV_FREQUENT_CHECK;
3539
3540 ev_io_stop (EV_A_ &w->io);
3541 ev_prepare_stop (EV_A_ &w->prepare);
3542 ev_fork_stop (EV_A_ &w->fork);
3543
3544 ev_stop (EV_A_ (W)w);
3545
3546 EV_FREQUENT_CHECK;
3547}
3548#endif
3549
3550#if EV_FORK_ENABLE
3551void
3552ev_fork_start (EV_P_ ev_fork *w)
3553{
3554 if (expect_false (ev_is_active (w)))
3555 return;
3556
3557 EV_FREQUENT_CHECK;
3558
3559 ev_start (EV_A_ (W)w, ++forkcnt);
3560 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3561 forks [forkcnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_fork_stop (EV_P_ ev_fork *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 forks [active - 1] = forks [--forkcnt];
3579 ev_active (forks [active - 1]) = active;
3580 }
3581
3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586#endif
3587
3588#if EV_CLEANUP_ENABLE
3589void
3590ev_cleanup_start (EV_P_ ev_cleanup *w)
3591{
3592 if (expect_false (ev_is_active (w)))
3593 return;
3594
3595 EV_FREQUENT_CHECK;
3596
3597 ev_start (EV_A_ (W)w, ++cleanupcnt);
3598 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3599 cleanups [cleanupcnt - 1] = w;
3600
3601 /* cleanup watchers should never keep a refcount on the loop */
3602 ev_unref (EV_A);
3603 EV_FREQUENT_CHECK;
3604}
3605
3606void
3607ev_cleanup_stop (EV_P_ ev_cleanup *w)
3608{
3609 clear_pending (EV_A_ (W)w);
3610 if (expect_false (!ev_is_active (w)))
3611 return;
3612
3613 EV_FREQUENT_CHECK;
3614 ev_ref (EV_A);
3615
3616 {
3617 int active = ev_active (w);
3618
3619 cleanups [active - 1] = cleanups [--cleanupcnt];
3620 ev_active (cleanups [active - 1]) = active;
3621 }
3622
3623 ev_stop (EV_A_ (W)w);
3624
3625 EV_FREQUENT_CHECK;
3626}
3627#endif
3628
3629#if EV_ASYNC_ENABLE
3630void
3631ev_async_start (EV_P_ ev_async *w)
3632{
3633 if (expect_false (ev_is_active (w)))
3634 return;
3635
3636 w->sent = 0;
3637
3638 evpipe_init (EV_A);
3639
3640 EV_FREQUENT_CHECK;
3641
3642 ev_start (EV_A_ (W)w, ++asynccnt);
3643 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3644 asyncs [asynccnt - 1] = w;
3645
3646 EV_FREQUENT_CHECK;
3647}
3648
3649void
3650ev_async_stop (EV_P_ ev_async *w)
3651{
3652 clear_pending (EV_A_ (W)w);
3653 if (expect_false (!ev_is_active (w)))
3654 return;
3655
3656 EV_FREQUENT_CHECK;
3657
3658 {
3659 int active = ev_active (w);
3660
3661 asyncs [active - 1] = asyncs [--asynccnt];
3662 ev_active (asyncs [active - 1]) = active;
3663 }
3664
3665 ev_stop (EV_A_ (W)w);
3666
3667 EV_FREQUENT_CHECK;
3668}
3669
3670void
3671ev_async_send (EV_P_ ev_async *w)
3672{
3673 w->sent = 1;
3674 evpipe_write (EV_A_ &async_pending);
3675}
3676#endif
1361 3677
1362/*****************************************************************************/ 3678/*****************************************************************************/
1363 3679
1364struct ev_once 3680struct ev_once
1365{ 3681{
1366 struct ev_io io; 3682 ev_io io;
1367 struct ev_timer to; 3683 ev_timer to;
1368 void (*cb)(int revents, void *arg); 3684 void (*cb)(int revents, void *arg);
1369 void *arg; 3685 void *arg;
1370}; 3686};
1371 3687
1372static void 3688static void
1373once_cb (EV_P_ struct ev_once *once, int revents) 3689once_cb (EV_P_ struct ev_once *once, int revents)
1374{ 3690{
1375 void (*cb)(int revents, void *arg) = once->cb; 3691 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 3692 void *arg = once->arg;
1377 3693
1378 ev_io_stop (EV_A_ &once->io); 3694 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 3695 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 3696 ev_free (once);
1381 3697
1382 cb (revents, arg); 3698 cb (revents, arg);
1383} 3699}
1384 3700
1385static void 3701static void
1386once_cb_io (EV_P_ struct ev_io *w, int revents) 3702once_cb_io (EV_P_ ev_io *w, int revents)
1387{ 3703{
1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3704 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3705
3706 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1389} 3707}
1390 3708
1391static void 3709static void
1392once_cb_to (EV_P_ struct ev_timer *w, int revents) 3710once_cb_to (EV_P_ ev_timer *w, int revents)
1393{ 3711{
1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3712 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3713
3714 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1395} 3715}
1396 3716
1397void 3717void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3718ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 3719{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 3720 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 3721
1402 if (!once) 3722 if (expect_false (!once))
3723 {
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3724 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1404 else 3725 return;
1405 { 3726 }
3727
1406 once->cb = cb; 3728 once->cb = cb;
1407 once->arg = arg; 3729 once->arg = arg;
1408 3730
1409 ev_watcher_init (&once->io, once_cb_io); 3731 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 3732 if (fd >= 0)
3733 {
3734 ev_io_set (&once->io, fd, events);
3735 ev_io_start (EV_A_ &once->io);
3736 }
3737
3738 ev_init (&once->to, once_cb_to);
3739 if (timeout >= 0.)
3740 {
3741 ev_timer_set (&once->to, timeout, 0.);
3742 ev_timer_start (EV_A_ &once->to);
3743 }
3744}
3745
3746/*****************************************************************************/
3747
3748#if EV_WALK_ENABLE
3749void
3750ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3751{
3752 int i, j;
3753 ev_watcher_list *wl, *wn;
3754
3755 if (types & (EV_IO | EV_EMBED))
3756 for (i = 0; i < anfdmax; ++i)
3757 for (wl = anfds [i].head; wl; )
1411 { 3758 {
1412 ev_io_set (&once->io, fd, events); 3759 wn = wl->next;
1413 ev_io_start (EV_A_ &once->io); 3760
3761#if EV_EMBED_ENABLE
3762 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3763 {
3764 if (types & EV_EMBED)
3765 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3766 }
3767 else
3768#endif
3769#if EV_USE_INOTIFY
3770 if (ev_cb ((ev_io *)wl) == infy_cb)
3771 ;
3772 else
3773#endif
3774 if ((ev_io *)wl != &pipe_w)
3775 if (types & EV_IO)
3776 cb (EV_A_ EV_IO, wl);
3777
3778 wl = wn;
1414 } 3779 }
1415 3780
1416 ev_watcher_init (&once->to, once_cb_to); 3781 if (types & (EV_TIMER | EV_STAT))
1417 if (timeout >= 0.) 3782 for (i = timercnt + HEAP0; i-- > HEAP0; )
3783#if EV_STAT_ENABLE
3784 /*TODO: timer is not always active*/
3785 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1418 { 3786 {
1419 ev_timer_set (&once->to, timeout, 0.); 3787 if (types & EV_STAT)
1420 ev_timer_start (EV_A_ &once->to); 3788 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1421 } 3789 }
1422 } 3790 else
1423} 3791#endif
3792 if (types & EV_TIMER)
3793 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1424 3794
3795#if EV_PERIODIC_ENABLE
3796 if (types & EV_PERIODIC)
3797 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3798 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3799#endif
3800
3801#if EV_IDLE_ENABLE
3802 if (types & EV_IDLE)
3803 for (j = NUMPRI; i--; )
3804 for (i = idlecnt [j]; i--; )
3805 cb (EV_A_ EV_IDLE, idles [j][i]);
3806#endif
3807
3808#if EV_FORK_ENABLE
3809 if (types & EV_FORK)
3810 for (i = forkcnt; i--; )
3811 if (ev_cb (forks [i]) != embed_fork_cb)
3812 cb (EV_A_ EV_FORK, forks [i]);
3813#endif
3814
3815#if EV_ASYNC_ENABLE
3816 if (types & EV_ASYNC)
3817 for (i = asynccnt; i--; )
3818 cb (EV_A_ EV_ASYNC, asyncs [i]);
3819#endif
3820
3821#if EV_PREPARE_ENABLE
3822 if (types & EV_PREPARE)
3823 for (i = preparecnt; i--; )
3824# if EV_EMBED_ENABLE
3825 if (ev_cb (prepares [i]) != embed_prepare_cb)
3826# endif
3827 cb (EV_A_ EV_PREPARE, prepares [i]);
3828#endif
3829
3830#if EV_CHECK_ENABLE
3831 if (types & EV_CHECK)
3832 for (i = checkcnt; i--; )
3833 cb (EV_A_ EV_CHECK, checks [i]);
3834#endif
3835
3836#if EV_SIGNAL_ENABLE
3837 if (types & EV_SIGNAL)
3838 for (i = 0; i < EV_NSIG - 1; ++i)
3839 for (wl = signals [i].head; wl; )
3840 {
3841 wn = wl->next;
3842 cb (EV_A_ EV_SIGNAL, wl);
3843 wl = wn;
3844 }
3845#endif
3846
3847#if EV_CHILD_ENABLE
3848 if (types & EV_CHILD)
3849 for (i = (EV_PID_HASHSIZE); i--; )
3850 for (wl = childs [i]; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_CHILD, wl);
3854 wl = wn;
3855 }
3856#endif
3857/* EV_STAT 0x00001000 /* stat data changed */
3858/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3859}
3860#endif
3861
3862#if EV_MULTIPLICITY
3863 #include "ev_wrap.h"
3864#endif
3865
3866EV_CPP(})
3867

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines