ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.428 by root, Tue May 8 15:44:09 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
59#include <unistd.h> 168#include <string.h>
60#include <fcntl.h> 169#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 170#include <stddef.h>
63 171
64#include <stdio.h> 172#include <stdio.h>
65 173
66#include <assert.h> 174#include <assert.h>
67#include <errno.h> 175#include <errno.h>
68#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
69#ifndef WIN32 199#ifndef _WIN32
200# include <sys/time.h>
70# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <windows.h>
207# include <winsock2.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
71#endif 210# endif
72#include <sys/time.h> 211# undef EV_AVOID_STDIO
73#include <time.h> 212#endif
74 213
75/**/ 214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
76 263
77#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
78# define EV_USE_MONOTONIC 1 268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
79#endif 282#endif
80 283
81#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 286#endif
84 287
85#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
87#endif 294#endif
88 295
89#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
90# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
91#endif 302#endif
92 303
93#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
95#endif 306#endif
96 307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
97#ifndef EV_USE_WIN32 312#ifndef EV_USE_INOTIFY
98# ifdef WIN32 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
100# else 315# else
101# define EV_USE_WIN32 0 316# define EV_USE_INOTIFY 0
102# endif 317# endif
103#endif 318#endif
104 319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
105#ifndef EV_USE_REALTIME 328#ifndef EV_USE_EVENTFD
106# define EV_USE_REALTIME 1 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
107#endif 333# endif
334#endif
108 335
109/**/ 336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
110 383
111#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
114#endif 387#endif
116#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
119#endif 392#endif
120 393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_SELECT_IS_WINSOCKET
417# include <winsock.h>
418#endif
419
420#if EV_USE_EVENTFD
421/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
422# include <stdint.h>
423# ifndef EFD_NONBLOCK
424# define EFD_NONBLOCK O_NONBLOCK
425# endif
426# ifndef EFD_CLOEXEC
427# ifdef O_CLOEXEC
428# define EFD_CLOEXEC O_CLOEXEC
429# else
430# define EFD_CLOEXEC 02000000
431# endif
432# endif
433EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
434#endif
435
436#if EV_USE_SIGNALFD
437/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
438# include <stdint.h>
439# ifndef SFD_NONBLOCK
440# define SFD_NONBLOCK O_NONBLOCK
441# endif
442# ifndef SFD_CLOEXEC
443# ifdef O_CLOEXEC
444# define SFD_CLOEXEC O_CLOEXEC
445# else
446# define SFD_CLOEXEC 02000000
447# endif
448# endif
449EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
450
451struct signalfd_siginfo
452{
453 uint32_t ssi_signo;
454 char pad[128 - sizeof (uint32_t)];
455};
456#endif
457
121/**/ 458/**/
122 459
460#if EV_VERIFY >= 3
461# define EV_FREQUENT_CHECK ev_verify (EV_A)
462#else
463# define EV_FREQUENT_CHECK do { } while (0)
464#endif
465
466/*
467 * This is used to work around floating point rounding problems.
468 * This value is good at least till the year 4000.
469 */
470#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
471/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
472
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 473#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 474#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 475
128#include "ev.h" 476#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
477#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
129 478
479/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
480/* ECB.H BEGIN */
481/*
482 * libecb - http://software.schmorp.de/pkg/libecb
483 *
484 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
485 * Copyright (©) 2011 Emanuele Giaquinta
486 * All rights reserved.
487 *
488 * Redistribution and use in source and binary forms, with or without modifica-
489 * tion, are permitted provided that the following conditions are met:
490 *
491 * 1. Redistributions of source code must retain the above copyright notice,
492 * this list of conditions and the following disclaimer.
493 *
494 * 2. Redistributions in binary form must reproduce the above copyright
495 * notice, this list of conditions and the following disclaimer in the
496 * documentation and/or other materials provided with the distribution.
497 *
498 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
499 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
500 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
501 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
502 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
503 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
504 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
505 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
506 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
507 * OF THE POSSIBILITY OF SUCH DAMAGE.
508 */
509
510#ifndef ECB_H
511#define ECB_H
512
513#ifdef _WIN32
514 typedef signed char int8_t;
515 typedef unsigned char uint8_t;
516 typedef signed short int16_t;
517 typedef unsigned short uint16_t;
518 typedef signed int int32_t;
519 typedef unsigned int uint32_t;
130#if __GNUC__ >= 3 520 #if __GNUC__
131# define expect(expr,value) __builtin_expect ((expr),(value)) 521 typedef signed long long int64_t;
132# define inline inline 522 typedef unsigned long long uint64_t;
523 #else /* _MSC_VER || __BORLANDC__ */
524 typedef signed __int64 int64_t;
525 typedef unsigned __int64 uint64_t;
526 #endif
133#else 527#else
134# define expect(expr,value) (expr) 528 #include <inttypes.h>
135# define inline static 529#endif
530
531/* many compilers define _GNUC_ to some versions but then only implement
532 * what their idiot authors think are the "more important" extensions,
533 * causing enormous grief in return for some better fake benchmark numbers.
534 * or so.
535 * we try to detect these and simply assume they are not gcc - if they have
536 * an issue with that they should have done it right in the first place.
537 */
538#ifndef ECB_GCC_VERSION
539 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
540 #define ECB_GCC_VERSION(major,minor) 0
541 #else
542 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
136#endif 543 #endif
137 544#endif
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
147
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 545
150/*****************************************************************************/ 546/*****************************************************************************/
151 547
548/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
549/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
550
551#if ECB_NO_THREADS
552# define ECB_NO_SMP 1
553#endif
554
555#if ECB_NO_THREADS || ECB_NO_SMP
556 #define ECB_MEMORY_FENCE do { } while (0)
557#endif
558
559#ifndef ECB_MEMORY_FENCE
560 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
561 #if __i386 || __i386__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
564 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
565 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
568 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
569 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
570 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
571 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
572 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
573 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
574 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
575 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
576 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
577 #elif __sparc || __sparc__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
579 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
580 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
581 #elif defined __s390__ || defined __s390x__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
583 #elif defined __mips__
584 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
585 #elif defined __alpha__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
587 #endif
588 #endif
589#endif
590
591#ifndef ECB_MEMORY_FENCE
592 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
593 #define ECB_MEMORY_FENCE __sync_synchronize ()
594 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
595 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
596 #elif _MSC_VER >= 1400 /* VC++ 2005 */
597 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
598 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
599 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
600 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
601 #elif defined _WIN32
602 #include <WinNT.h>
603 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
604 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
605 #include <mbarrier.h>
606 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
607 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
608 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
609 #elif __xlC__
610 #define ECB_MEMORY_FENCE __sync ()
611 #endif
612#endif
613
614#ifndef ECB_MEMORY_FENCE
615 #if !ECB_AVOID_PTHREADS
616 /*
617 * if you get undefined symbol references to pthread_mutex_lock,
618 * or failure to find pthread.h, then you should implement
619 * the ECB_MEMORY_FENCE operations for your cpu/compiler
620 * OR provide pthread.h and link against the posix thread library
621 * of your system.
622 */
623 #include <pthread.h>
624 #define ECB_NEEDS_PTHREADS 1
625 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
626
627 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
628 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
629 #endif
630#endif
631
632#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
634#endif
635
636#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
637 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
638#endif
639
640/*****************************************************************************/
641
642#define ECB_C99 (__STDC_VERSION__ >= 199901L)
643
644#if __cplusplus
645 #define ecb_inline static inline
646#elif ECB_GCC_VERSION(2,5)
647 #define ecb_inline static __inline__
648#elif ECB_C99
649 #define ecb_inline static inline
650#else
651 #define ecb_inline static
652#endif
653
654#if ECB_GCC_VERSION(3,3)
655 #define ecb_restrict __restrict__
656#elif ECB_C99
657 #define ecb_restrict restrict
658#else
659 #define ecb_restrict
660#endif
661
662typedef int ecb_bool;
663
664#define ECB_CONCAT_(a, b) a ## b
665#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
666#define ECB_STRINGIFY_(a) # a
667#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
668
669#define ecb_function_ ecb_inline
670
671#if ECB_GCC_VERSION(3,1)
672 #define ecb_attribute(attrlist) __attribute__(attrlist)
673 #define ecb_is_constant(expr) __builtin_constant_p (expr)
674 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
675 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
676#else
677 #define ecb_attribute(attrlist)
678 #define ecb_is_constant(expr) 0
679 #define ecb_expect(expr,value) (expr)
680 #define ecb_prefetch(addr,rw,locality)
681#endif
682
683/* no emulation for ecb_decltype */
684#if ECB_GCC_VERSION(4,5)
685 #define ecb_decltype(x) __decltype(x)
686#elif ECB_GCC_VERSION(3,0)
687 #define ecb_decltype(x) __typeof(x)
688#endif
689
690#define ecb_noinline ecb_attribute ((__noinline__))
691#define ecb_noreturn ecb_attribute ((__noreturn__))
692#define ecb_unused ecb_attribute ((__unused__))
693#define ecb_const ecb_attribute ((__const__))
694#define ecb_pure ecb_attribute ((__pure__))
695
696#if ECB_GCC_VERSION(4,3)
697 #define ecb_artificial ecb_attribute ((__artificial__))
698 #define ecb_hot ecb_attribute ((__hot__))
699 #define ecb_cold ecb_attribute ((__cold__))
700#else
701 #define ecb_artificial
702 #define ecb_hot
703 #define ecb_cold
704#endif
705
706/* put around conditional expressions if you are very sure that the */
707/* expression is mostly true or mostly false. note that these return */
708/* booleans, not the expression. */
709#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
710#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
711/* for compatibility to the rest of the world */
712#define ecb_likely(expr) ecb_expect_true (expr)
713#define ecb_unlikely(expr) ecb_expect_false (expr)
714
715/* count trailing zero bits and count # of one bits */
716#if ECB_GCC_VERSION(3,4)
717 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
718 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
719 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
720 #define ecb_ctz32(x) __builtin_ctz (x)
721 #define ecb_ctz64(x) __builtin_ctzll (x)
722 #define ecb_popcount32(x) __builtin_popcount (x)
723 /* no popcountll */
724#else
725 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_ctz32 (uint32_t x)
728 {
729 int r = 0;
730
731 x &= ~x + 1; /* this isolates the lowest bit */
732
733#if ECB_branchless_on_i386
734 r += !!(x & 0xaaaaaaaa) << 0;
735 r += !!(x & 0xcccccccc) << 1;
736 r += !!(x & 0xf0f0f0f0) << 2;
737 r += !!(x & 0xff00ff00) << 3;
738 r += !!(x & 0xffff0000) << 4;
739#else
740 if (x & 0xaaaaaaaa) r += 1;
741 if (x & 0xcccccccc) r += 2;
742 if (x & 0xf0f0f0f0) r += 4;
743 if (x & 0xff00ff00) r += 8;
744 if (x & 0xffff0000) r += 16;
745#endif
746
747 return r;
748 }
749
750 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
751 ecb_function_ int
752 ecb_ctz64 (uint64_t x)
753 {
754 int shift = x & 0xffffffffU ? 0 : 32;
755 return ecb_ctz32 (x >> shift) + shift;
756 }
757
758 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
759 ecb_function_ int
760 ecb_popcount32 (uint32_t x)
761 {
762 x -= (x >> 1) & 0x55555555;
763 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
764 x = ((x >> 4) + x) & 0x0f0f0f0f;
765 x *= 0x01010101;
766
767 return x >> 24;
768 }
769
770 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
771 ecb_function_ int ecb_ld32 (uint32_t x)
772 {
773 int r = 0;
774
775 if (x >> 16) { x >>= 16; r += 16; }
776 if (x >> 8) { x >>= 8; r += 8; }
777 if (x >> 4) { x >>= 4; r += 4; }
778 if (x >> 2) { x >>= 2; r += 2; }
779 if (x >> 1) { r += 1; }
780
781 return r;
782 }
783
784 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
785 ecb_function_ int ecb_ld64 (uint64_t x)
786 {
787 int r = 0;
788
789 if (x >> 32) { x >>= 32; r += 32; }
790
791 return r + ecb_ld32 (x);
792 }
793#endif
794
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
796ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
797{
798 return ( (x * 0x0802U & 0x22110U)
799 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
800}
801
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
803ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
804{
805 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
806 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
807 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
808 x = ( x >> 8 ) | ( x << 8);
809
810 return x;
811}
812
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
814ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
815{
816 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
817 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
818 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
819 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
820 x = ( x >> 16 ) | ( x << 16);
821
822 return x;
823}
824
825/* popcount64 is only available on 64 bit cpus as gcc builtin */
826/* so for this version we are lazy */
827ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
828ecb_function_ int
829ecb_popcount64 (uint64_t x)
830{
831 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
832}
833
834ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
841ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
842
843ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
844ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
845ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
846ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
847ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
848ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
849ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
850ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
851
852#if ECB_GCC_VERSION(4,3)
853 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
854 #define ecb_bswap32(x) __builtin_bswap32 (x)
855 #define ecb_bswap64(x) __builtin_bswap64 (x)
856#else
857 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
858 ecb_function_ uint16_t
859 ecb_bswap16 (uint16_t x)
860 {
861 return ecb_rotl16 (x, 8);
862 }
863
864 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
865 ecb_function_ uint32_t
866 ecb_bswap32 (uint32_t x)
867 {
868 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
869 }
870
871 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
872 ecb_function_ uint64_t
873 ecb_bswap64 (uint64_t x)
874 {
875 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
876 }
877#endif
878
879#if ECB_GCC_VERSION(4,5)
880 #define ecb_unreachable() __builtin_unreachable ()
881#else
882 /* this seems to work fine, but gcc always emits a warning for it :/ */
883 ecb_inline void ecb_unreachable (void) ecb_noreturn;
884 ecb_inline void ecb_unreachable (void) { }
885#endif
886
887/* try to tell the compiler that some condition is definitely true */
888#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
889
890ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
891ecb_inline unsigned char
892ecb_byteorder_helper (void)
893{
894 const uint32_t u = 0x11223344;
895 return *(unsigned char *)&u;
896}
897
898ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
899ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
900ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
901ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
902
903#if ECB_GCC_VERSION(3,0) || ECB_C99
904 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
905#else
906 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
907#endif
908
909#if __cplusplus
910 template<typename T>
911 static inline T ecb_div_rd (T val, T div)
912 {
913 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
914 }
915 template<typename T>
916 static inline T ecb_div_ru (T val, T div)
917 {
918 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
919 }
920#else
921 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
922 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
923#endif
924
925#if ecb_cplusplus_does_not_suck
926 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
927 template<typename T, int N>
928 static inline int ecb_array_length (const T (&arr)[N])
929 {
930 return N;
931 }
932#else
933 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
934#endif
935
936#endif
937
938/* ECB.H END */
939
940#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
941/* if your architecture doesn't need memory fences, e.g. because it is
942 * single-cpu/core, or if you use libev in a project that doesn't use libev
943 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
944 * libev, in which cases the memory fences become nops.
945 * alternatively, you can remove this #error and link against libpthread,
946 * which will then provide the memory fences.
947 */
948# error "memory fences not defined for your architecture, please report"
949#endif
950
951#ifndef ECB_MEMORY_FENCE
952# define ECB_MEMORY_FENCE do { } while (0)
953# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
954# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
955#endif
956
957#define expect_false(cond) ecb_expect_false (cond)
958#define expect_true(cond) ecb_expect_true (cond)
959#define noinline ecb_noinline
960
961#define inline_size ecb_inline
962
963#if EV_FEATURE_CODE
964# define inline_speed ecb_inline
965#else
966# define inline_speed static noinline
967#endif
968
969#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
970
971#if EV_MINPRI == EV_MAXPRI
972# define ABSPRI(w) (((W)w), 0)
973#else
974# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
975#endif
976
977#define EMPTY /* required for microsofts broken pseudo-c compiler */
978#define EMPTY2(a,b) /* used to suppress some warnings */
979
980typedef ev_watcher *W;
981typedef ev_watcher_list *WL;
982typedef ev_watcher_time *WT;
983
984#define ev_active(w) ((W)(w))->active
985#define ev_at(w) ((WT)(w))->at
986
987#if EV_USE_REALTIME
988/* sig_atomic_t is used to avoid per-thread variables or locking but still */
989/* giving it a reasonably high chance of working on typical architectures */
990static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
991#endif
992
993#if EV_USE_MONOTONIC
994static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
995#endif
996
997#ifndef EV_FD_TO_WIN32_HANDLE
998# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
999#endif
1000#ifndef EV_WIN32_HANDLE_TO_FD
1001# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1002#endif
1003#ifndef EV_WIN32_CLOSE_FD
1004# define EV_WIN32_CLOSE_FD(fd) close (fd)
1005#endif
1006
1007#ifdef _WIN32
1008# include "ev_win32.c"
1009#endif
1010
1011/*****************************************************************************/
1012
1013/* define a suitable floor function (only used by periodics atm) */
1014
1015#if EV_USE_FLOOR
1016# include <math.h>
1017# define ev_floor(v) floor (v)
1018#else
1019
1020#include <float.h>
1021
1022/* a floor() replacement function, should be independent of ev_tstamp type */
1023static ev_tstamp noinline
1024ev_floor (ev_tstamp v)
1025{
1026 /* the choice of shift factor is not terribly important */
1027#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1028 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1029#else
1030 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1031#endif
1032
1033 /* argument too large for an unsigned long? */
1034 if (expect_false (v >= shift))
1035 {
1036 ev_tstamp f;
1037
1038 if (v == v - 1.)
1039 return v; /* very large number */
1040
1041 f = shift * ev_floor (v * (1. / shift));
1042 return f + ev_floor (v - f);
1043 }
1044
1045 /* special treatment for negative args? */
1046 if (expect_false (v < 0.))
1047 {
1048 ev_tstamp f = -ev_floor (-v);
1049
1050 return f - (f == v ? 0 : 1);
1051 }
1052
1053 /* fits into an unsigned long */
1054 return (unsigned long)v;
1055}
1056
1057#endif
1058
1059/*****************************************************************************/
1060
1061#ifdef __linux
1062# include <sys/utsname.h>
1063#endif
1064
1065static unsigned int noinline ecb_cold
1066ev_linux_version (void)
1067{
1068#ifdef __linux
1069 unsigned int v = 0;
1070 struct utsname buf;
1071 int i;
1072 char *p = buf.release;
1073
1074 if (uname (&buf))
1075 return 0;
1076
1077 for (i = 3+1; --i; )
1078 {
1079 unsigned int c = 0;
1080
1081 for (;;)
1082 {
1083 if (*p >= '0' && *p <= '9')
1084 c = c * 10 + *p++ - '0';
1085 else
1086 {
1087 p += *p == '.';
1088 break;
1089 }
1090 }
1091
1092 v = (v << 8) | c;
1093 }
1094
1095 return v;
1096#else
1097 return 0;
1098#endif
1099}
1100
1101/*****************************************************************************/
1102
1103#if EV_AVOID_STDIO
1104static void noinline ecb_cold
1105ev_printerr (const char *msg)
1106{
1107 write (STDERR_FILENO, msg, strlen (msg));
1108}
1109#endif
1110
1111static void (*syserr_cb)(const char *msg) EV_THROW;
1112
1113void ecb_cold
1114ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
1115{
1116 syserr_cb = cb;
1117}
1118
1119static void noinline ecb_cold
1120ev_syserr (const char *msg)
1121{
1122 if (!msg)
1123 msg = "(libev) system error";
1124
1125 if (syserr_cb)
1126 syserr_cb (msg);
1127 else
1128 {
1129#if EV_AVOID_STDIO
1130 ev_printerr (msg);
1131 ev_printerr (": ");
1132 ev_printerr (strerror (errno));
1133 ev_printerr ("\n");
1134#else
1135 perror (msg);
1136#endif
1137 abort ();
1138 }
1139}
1140
1141static void *
1142ev_realloc_emul (void *ptr, long size)
1143{
1144#if __GLIBC__
1145 return realloc (ptr, size);
1146#else
1147 /* some systems, notably openbsd and darwin, fail to properly
1148 * implement realloc (x, 0) (as required by both ansi c-89 and
1149 * the single unix specification, so work around them here.
1150 */
1151
1152 if (size)
1153 return realloc (ptr, size);
1154
1155 free (ptr);
1156 return 0;
1157#endif
1158}
1159
1160static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1161
1162void ecb_cold
1163ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
1164{
1165 alloc = cb;
1166}
1167
1168inline_speed void *
1169ev_realloc (void *ptr, long size)
1170{
1171 ptr = alloc (ptr, size);
1172
1173 if (!ptr && size)
1174 {
1175#if EV_AVOID_STDIO
1176 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1177#else
1178 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1179#endif
1180 abort ();
1181 }
1182
1183 return ptr;
1184}
1185
1186#define ev_malloc(size) ev_realloc (0, (size))
1187#define ev_free(ptr) ev_realloc ((ptr), 0)
1188
1189/*****************************************************************************/
1190
1191/* set in reify when reification needed */
1192#define EV_ANFD_REIFY 1
1193
1194/* file descriptor info structure */
152typedef struct 1195typedef struct
153{ 1196{
154 struct ev_watcher_list *head; 1197 WL head;
155 unsigned char events; 1198 unsigned char events; /* the events watched for */
1199 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1200 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
156 unsigned char reify; 1201 unsigned char unused;
1202#if EV_USE_EPOLL
1203 unsigned int egen; /* generation counter to counter epoll bugs */
1204#endif
1205#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1206 SOCKET handle;
1207#endif
1208#if EV_USE_IOCP
1209 OVERLAPPED or, ow;
1210#endif
157} ANFD; 1211} ANFD;
158 1212
1213/* stores the pending event set for a given watcher */
159typedef struct 1214typedef struct
160{ 1215{
161 W w; 1216 W w;
162 int events; 1217 int events; /* the pending event set for the given watcher */
163} ANPENDING; 1218} ANPENDING;
164 1219
1220#if EV_USE_INOTIFY
1221/* hash table entry per inotify-id */
1222typedef struct
1223{
1224 WL head;
1225} ANFS;
1226#endif
1227
1228/* Heap Entry */
1229#if EV_HEAP_CACHE_AT
1230 /* a heap element */
1231 typedef struct {
1232 ev_tstamp at;
1233 WT w;
1234 } ANHE;
1235
1236 #define ANHE_w(he) (he).w /* access watcher, read-write */
1237 #define ANHE_at(he) (he).at /* access cached at, read-only */
1238 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1239#else
1240 /* a heap element */
1241 typedef WT ANHE;
1242
1243 #define ANHE_w(he) (he)
1244 #define ANHE_at(he) (he)->at
1245 #define ANHE_at_cache(he)
1246#endif
1247
165#if EV_MULTIPLICITY 1248#if EV_MULTIPLICITY
166 1249
167struct ev_loop 1250 struct ev_loop
168{ 1251 {
1252 ev_tstamp ev_rt_now;
1253 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 1254 #define VAR(name,decl) decl;
170# include "ev_vars.h" 1255 #include "ev_vars.h"
171};
172# undef VAR 1256 #undef VAR
1257 };
173# include "ev_wrap.h" 1258 #include "ev_wrap.h"
1259
1260 static struct ev_loop default_loop_struct;
1261 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
174 1262
175#else 1263#else
176 1264
1265 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
177# define VAR(name,decl) static decl; 1266 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 1267 #include "ev_vars.h"
179# undef VAR 1268 #undef VAR
180 1269
1270 static int ev_default_loop_ptr;
1271
181#endif 1272#endif
1273
1274#if EV_FEATURE_API
1275# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1276# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1277# define EV_INVOKE_PENDING invoke_cb (EV_A)
1278#else
1279# define EV_RELEASE_CB (void)0
1280# define EV_ACQUIRE_CB (void)0
1281# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1282#endif
1283
1284#define EVBREAK_RECURSE 0x80
182 1285
183/*****************************************************************************/ 1286/*****************************************************************************/
184 1287
185inline ev_tstamp 1288#ifndef EV_HAVE_EV_TIME
1289ev_tstamp
186ev_time (void) 1290ev_time (void) EV_THROW
187{ 1291{
188#if EV_USE_REALTIME 1292#if EV_USE_REALTIME
1293 if (expect_true (have_realtime))
1294 {
189 struct timespec ts; 1295 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 1296 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 1297 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 1298 }
1299#endif
1300
193 struct timeval tv; 1301 struct timeval tv;
194 gettimeofday (&tv, 0); 1302 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 1303 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 1304}
1305#endif
198 1306
199inline ev_tstamp 1307inline_size ev_tstamp
200get_clock (void) 1308get_clock (void)
201{ 1309{
202#if EV_USE_MONOTONIC 1310#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 1311 if (expect_true (have_monotonic))
204 { 1312 {
209#endif 1317#endif
210 1318
211 return ev_time (); 1319 return ev_time ();
212} 1320}
213 1321
1322#if EV_MULTIPLICITY
214ev_tstamp 1323ev_tstamp
215ev_now (EV_P) 1324ev_now (EV_P) EV_THROW
216{ 1325{
217 return rt_now; 1326 return ev_rt_now;
218} 1327}
1328#endif
219 1329
220#define array_roundsize(base,n) ((n) | 4 & ~3) 1330void
1331ev_sleep (ev_tstamp delay) EV_THROW
1332{
1333 if (delay > 0.)
1334 {
1335#if EV_USE_NANOSLEEP
1336 struct timespec ts;
221 1337
1338 EV_TS_SET (ts, delay);
1339 nanosleep (&ts, 0);
1340#elif defined _WIN32
1341 Sleep ((unsigned long)(delay * 1e3));
1342#else
1343 struct timeval tv;
1344
1345 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1346 /* something not guaranteed by newer posix versions, but guaranteed */
1347 /* by older ones */
1348 EV_TV_SET (tv, delay);
1349 select (0, 0, 0, 0, &tv);
1350#endif
1351 }
1352}
1353
1354/*****************************************************************************/
1355
1356#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1357
1358/* find a suitable new size for the given array, */
1359/* hopefully by rounding to a nice-to-malloc size */
1360inline_size int
1361array_nextsize (int elem, int cur, int cnt)
1362{
1363 int ncur = cur + 1;
1364
1365 do
1366 ncur <<= 1;
1367 while (cnt > ncur);
1368
1369 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1370 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1371 {
1372 ncur *= elem;
1373 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1374 ncur = ncur - sizeof (void *) * 4;
1375 ncur /= elem;
1376 }
1377
1378 return ncur;
1379}
1380
1381static void * noinline ecb_cold
1382array_realloc (int elem, void *base, int *cur, int cnt)
1383{
1384 *cur = array_nextsize (elem, *cur, cnt);
1385 return ev_realloc (base, elem * *cur);
1386}
1387
1388#define array_init_zero(base,count) \
1389 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1390
222#define array_needsize(base,cur,cnt,init) \ 1391#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 1392 if (expect_false ((cnt) > (cur))) \
224 { \ 1393 { \
225 int newcnt = cur; \ 1394 int ecb_unused ocur_ = (cur); \
226 do \ 1395 (base) = (type *)array_realloc \
227 { \ 1396 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 1397 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 1398 }
230 while ((cnt) > newcnt); \ 1399
1400#if 0
1401#define array_slim(type,stem) \
1402 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 1403 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 1404 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 1405 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 1406 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 1407 }
1408#endif
236 1409
237#define array_free(stem, idx) \ 1410#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1411 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
239 1412
240/*****************************************************************************/ 1413/*****************************************************************************/
241 1414
242static void 1415/* dummy callback for pending events */
243anfds_init (ANFD *base, int count) 1416static void noinline
1417pendingcb (EV_P_ ev_prepare *w, int revents)
244{ 1418{
245 while (count--) 1419}
246 {
247 base->head = 0;
248 base->events = EV_NONE;
249 base->reify = 0;
250 1420
251 ++base; 1421void noinline
1422ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1423{
1424 W w_ = (W)w;
1425 int pri = ABSPRI (w_);
1426
1427 if (expect_false (w_->pending))
1428 pendings [pri][w_->pending - 1].events |= revents;
1429 else
252 } 1430 {
253} 1431 w_->pending = ++pendingcnt [pri];
254 1432 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
255static void 1433 pendings [pri][w_->pending - 1].w = w_;
256event (EV_P_ W w, int events)
257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1434 pendings [pri][w_->pending - 1].events = revents;
261 return;
262 } 1435 }
263 1436
264 w->pending = ++pendingcnt [ABSPRI (w)]; 1437 pendingpri = NUMPRI - 1;
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268} 1438}
269 1439
270static void 1440inline_speed void
1441feed_reverse (EV_P_ W w)
1442{
1443 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1444 rfeeds [rfeedcnt++] = w;
1445}
1446
1447inline_size void
1448feed_reverse_done (EV_P_ int revents)
1449{
1450 do
1451 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1452 while (rfeedcnt);
1453}
1454
1455inline_speed void
271queue_events (EV_P_ W *events, int eventcnt, int type) 1456queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 1457{
273 int i; 1458 int i;
274 1459
275 for (i = 0; i < eventcnt; ++i) 1460 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 1461 ev_feed_event (EV_A_ events [i], type);
277} 1462}
278 1463
279static void 1464/*****************************************************************************/
1465
1466inline_speed void
280fd_event (EV_P_ int fd, int events) 1467fd_event_nocheck (EV_P_ int fd, int revents)
281{ 1468{
282 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 1470 ev_io *w;
284 1471
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1472 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
286 { 1473 {
287 int ev = w->events & events; 1474 int ev = w->events & revents;
288 1475
289 if (ev) 1476 if (ev)
290 event (EV_A_ (W)w, ev); 1477 ev_feed_event (EV_A_ (W)w, ev);
291 } 1478 }
292} 1479}
293 1480
294/*****************************************************************************/ 1481/* do not submit kernel events for fds that have reify set */
1482/* because that means they changed while we were polling for new events */
1483inline_speed void
1484fd_event (EV_P_ int fd, int revents)
1485{
1486 ANFD *anfd = anfds + fd;
295 1487
296static void 1488 if (expect_true (!anfd->reify))
1489 fd_event_nocheck (EV_A_ fd, revents);
1490}
1491
1492void
1493ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1494{
1495 if (fd >= 0 && fd < anfdmax)
1496 fd_event_nocheck (EV_A_ fd, revents);
1497}
1498
1499/* make sure the external fd watch events are in-sync */
1500/* with the kernel/libev internal state */
1501inline_size void
297fd_reify (EV_P) 1502fd_reify (EV_P)
298{ 1503{
299 int i; 1504 int i;
300 1505
1506#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
301 for (i = 0; i < fdchangecnt; ++i) 1507 for (i = 0; i < fdchangecnt; ++i)
302 { 1508 {
303 int fd = fdchanges [i]; 1509 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd; 1510 ANFD *anfd = anfds + fd;
1511
1512 if (anfd->reify & EV__IOFDSET && anfd->head)
1513 {
1514 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1515
1516 if (handle != anfd->handle)
1517 {
1518 unsigned long arg;
1519
1520 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1521
1522 /* handle changed, but fd didn't - we need to do it in two steps */
1523 backend_modify (EV_A_ fd, anfd->events, 0);
1524 anfd->events = 0;
1525 anfd->handle = handle;
1526 }
1527 }
1528 }
1529#endif
1530
1531 for (i = 0; i < fdchangecnt; ++i)
1532 {
1533 int fd = fdchanges [i];
1534 ANFD *anfd = anfds + fd;
305 struct ev_io *w; 1535 ev_io *w;
306 1536
307 int events = 0; 1537 unsigned char o_events = anfd->events;
1538 unsigned char o_reify = anfd->reify;
308 1539
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0; 1540 anfd->reify = 0;
313 1541
314 method_modify (EV_A_ fd, anfd->events, events); 1542 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1543 {
315 anfd->events = events; 1544 anfd->events = 0;
1545
1546 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1547 anfd->events |= (unsigned char)w->events;
1548
1549 if (o_events != anfd->events)
1550 o_reify = EV__IOFDSET; /* actually |= */
1551 }
1552
1553 if (o_reify & EV__IOFDSET)
1554 backend_modify (EV_A_ fd, o_events, anfd->events);
316 } 1555 }
317 1556
318 fdchangecnt = 0; 1557 fdchangecnt = 0;
319} 1558}
320 1559
321static void 1560/* something about the given fd changed */
1561inline_size void
322fd_change (EV_P_ int fd) 1562fd_change (EV_P_ int fd, int flags)
323{ 1563{
324 if (anfds [fd].reify || fdchangecnt < 0) 1564 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 1565 anfds [fd].reify |= flags;
328 1566
1567 if (expect_true (!reify))
1568 {
329 ++fdchangecnt; 1569 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 1571 fdchanges [fdchangecnt - 1] = fd;
1572 }
332} 1573}
333 1574
334static void 1575/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1576inline_speed void ecb_cold
335fd_kill (EV_P_ int fd) 1577fd_kill (EV_P_ int fd)
336{ 1578{
337 struct ev_io *w; 1579 ev_io *w;
338 1580
339 while ((w = (struct ev_io *)anfds [fd].head)) 1581 while ((w = (ev_io *)anfds [fd].head))
340 { 1582 {
341 ev_io_stop (EV_A_ w); 1583 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1584 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 1585 }
1586}
1587
1588/* check whether the given fd is actually valid, for error recovery */
1589inline_size int ecb_cold
1590fd_valid (int fd)
1591{
1592#ifdef _WIN32
1593 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1594#else
1595 return fcntl (fd, F_GETFD) != -1;
1596#endif
344} 1597}
345 1598
346/* called on EBADF to verify fds */ 1599/* called on EBADF to verify fds */
347static void 1600static void noinline ecb_cold
348fd_ebadf (EV_P) 1601fd_ebadf (EV_P)
349{ 1602{
350 int fd; 1603 int fd;
351 1604
352 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 1606 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1607 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 1608 fd_kill (EV_A_ fd);
356} 1609}
357 1610
358/* called on ENOMEM in select/poll to kill some fds and retry */ 1611/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 1612static void noinline ecb_cold
360fd_enomem (EV_P) 1613fd_enomem (EV_P)
361{ 1614{
362 int fd; 1615 int fd;
363 1616
364 for (fd = anfdmax; fd--; ) 1617 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 1618 if (anfds [fd].events)
366 { 1619 {
367 close (fd);
368 fd_kill (EV_A_ fd); 1620 fd_kill (EV_A_ fd);
369 return; 1621 break;
370 } 1622 }
371} 1623}
372 1624
373/* susually called after fork if method needs to re-arm all fds from scratch */ 1625/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 1626static void noinline
375fd_rearm_all (EV_P) 1627fd_rearm_all (EV_P)
376{ 1628{
377 int fd; 1629 int fd;
378 1630
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 1631 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 1632 if (anfds [fd].events)
382 { 1633 {
383 anfds [fd].events = 0; 1634 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 1635 anfds [fd].emask = 0;
1636 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
385 } 1637 }
386} 1638}
387 1639
1640/* used to prepare libev internal fd's */
1641/* this is not fork-safe */
1642inline_speed void
1643fd_intern (int fd)
1644{
1645#ifdef _WIN32
1646 unsigned long arg = 1;
1647 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1648#else
1649 fcntl (fd, F_SETFD, FD_CLOEXEC);
1650 fcntl (fd, F_SETFL, O_NONBLOCK);
1651#endif
1652}
1653
388/*****************************************************************************/ 1654/*****************************************************************************/
389 1655
1656/*
1657 * the heap functions want a real array index. array index 0 is guaranteed to not
1658 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1659 * the branching factor of the d-tree.
1660 */
1661
1662/*
1663 * at the moment we allow libev the luxury of two heaps,
1664 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1665 * which is more cache-efficient.
1666 * the difference is about 5% with 50000+ watchers.
1667 */
1668#if EV_USE_4HEAP
1669
1670#define DHEAP 4
1671#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1672#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1673#define UPHEAP_DONE(p,k) ((p) == (k))
1674
1675/* away from the root */
1676inline_speed void
1677downheap (ANHE *heap, int N, int k)
1678{
1679 ANHE he = heap [k];
1680 ANHE *E = heap + N + HEAP0;
1681
1682 for (;;)
1683 {
1684 ev_tstamp minat;
1685 ANHE *minpos;
1686 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1687
1688 /* find minimum child */
1689 if (expect_true (pos + DHEAP - 1 < E))
1690 {
1691 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else if (pos < E)
1697 {
1698 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1699 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1700 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1701 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1702 }
1703 else
1704 break;
1705
1706 if (ANHE_at (he) <= minat)
1707 break;
1708
1709 heap [k] = *minpos;
1710 ev_active (ANHE_w (*minpos)) = k;
1711
1712 k = minpos - heap;
1713 }
1714
1715 heap [k] = he;
1716 ev_active (ANHE_w (he)) = k;
1717}
1718
1719#else /* 4HEAP */
1720
1721#define HEAP0 1
1722#define HPARENT(k) ((k) >> 1)
1723#define UPHEAP_DONE(p,k) (!(p))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730
1731 for (;;)
1732 {
1733 int c = k << 1;
1734
1735 if (c >= N + HEAP0)
1736 break;
1737
1738 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1739 ? 1 : 0;
1740
1741 if (ANHE_at (he) <= ANHE_at (heap [c]))
1742 break;
1743
1744 heap [k] = heap [c];
1745 ev_active (ANHE_w (heap [k])) = k;
1746
1747 k = c;
1748 }
1749
1750 heap [k] = he;
1751 ev_active (ANHE_w (he)) = k;
1752}
1753#endif
1754
1755/* towards the root */
1756inline_speed void
1757upheap (ANHE *heap, int k)
1758{
1759 ANHE he = heap [k];
1760
1761 for (;;)
1762 {
1763 int p = HPARENT (k);
1764
1765 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1766 break;
1767
1768 heap [k] = heap [p];
1769 ev_active (ANHE_w (heap [k])) = k;
1770 k = p;
1771 }
1772
1773 heap [k] = he;
1774 ev_active (ANHE_w (he)) = k;
1775}
1776
1777/* move an element suitably so it is in a correct place */
1778inline_size void
1779adjustheap (ANHE *heap, int N, int k)
1780{
1781 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1782 upheap (heap, k);
1783 else
1784 downheap (heap, N, k);
1785}
1786
1787/* rebuild the heap: this function is used only once and executed rarely */
1788inline_size void
1789reheap (ANHE *heap, int N)
1790{
1791 int i;
1792
1793 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1794 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1795 for (i = 0; i < N; ++i)
1796 upheap (heap, i + HEAP0);
1797}
1798
1799/*****************************************************************************/
1800
1801/* associate signal watchers to a signal signal */
1802typedef struct
1803{
1804 EV_ATOMIC_T pending;
1805#if EV_MULTIPLICITY
1806 EV_P;
1807#endif
1808 WL head;
1809} ANSIG;
1810
1811static ANSIG signals [EV_NSIG - 1];
1812
1813/*****************************************************************************/
1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1816
1817static void noinline ecb_cold
1818evpipe_init (EV_P)
1819{
1820 if (!ev_is_active (&pipe_w))
1821 {
1822# if EV_USE_EVENTFD
1823 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1824 if (evfd < 0 && errno == EINVAL)
1825 evfd = eventfd (0, 0);
1826
1827 if (evfd >= 0)
1828 {
1829 evpipe [0] = -1;
1830 fd_intern (evfd); /* doing it twice doesn't hurt */
1831 ev_io_set (&pipe_w, evfd, EV_READ);
1832 }
1833 else
1834# endif
1835 {
1836 while (pipe (evpipe))
1837 ev_syserr ("(libev) error creating signal/async pipe");
1838
1839 fd_intern (evpipe [0]);
1840 fd_intern (evpipe [1]);
1841 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1842 }
1843
1844 ev_io_start (EV_A_ &pipe_w);
1845 ev_unref (EV_A); /* watcher should not keep loop alive */
1846 }
1847}
1848
1849inline_speed void
1850evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1851{
1852 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1853
1854 if (expect_true (*flag))
1855 return;
1856
1857 *flag = 1;
1858
1859 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1860
1861 pipe_write_skipped = 1;
1862
1863 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1864
1865 if (pipe_write_wanted)
1866 {
1867 int old_errno;
1868
1869 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1870
1871 old_errno = errno; /* save errno because write will clobber it */
1872
1873#if EV_USE_EVENTFD
1874 if (evfd >= 0)
1875 {
1876 uint64_t counter = 1;
1877 write (evfd, &counter, sizeof (uint64_t));
1878 }
1879 else
1880#endif
1881 {
1882#ifdef _WIN32
1883 WSABUF buf;
1884 DWORD sent;
1885 buf.buf = &buf;
1886 buf.len = 1;
1887 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1888#else
1889 write (evpipe [1], &(evpipe [1]), 1);
1890#endif
1891 }
1892
1893 errno = old_errno;
1894 }
1895}
1896
1897/* called whenever the libev signal pipe */
1898/* got some events (signal, async) */
390static void 1899static void
391upheap (WT *heap, int k) 1900pipecb (EV_P_ ev_io *iow, int revents)
392{ 1901{
393 WT w = heap [k]; 1902 int i;
394 1903
395 while (k && heap [k >> 1]->at > w->at) 1904 if (revents & EV_READ)
396 {
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 } 1905 {
1906#if EV_USE_EVENTFD
1907 if (evfd >= 0)
1908 {
1909 uint64_t counter;
1910 read (evfd, &counter, sizeof (uint64_t));
1911 }
1912 else
1913#endif
1914 {
1915 char dummy[4];
1916#ifdef _WIN32
1917 WSABUF buf;
1918 DWORD recvd;
1919 buf.buf = dummy;
1920 buf.len = sizeof (dummy);
1921 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1922#else
1923 read (evpipe [0], &dummy, sizeof (dummy));
1924#endif
1925 }
1926 }
401 1927
402 heap [k] = w; 1928 pipe_write_skipped = 0;
403 ((W)heap [k])->active = k + 1;
404 1929
1930 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1931
1932#if EV_SIGNAL_ENABLE
1933 if (sig_pending)
1934 {
1935 sig_pending = 0;
1936
1937 ECB_MEMORY_FENCE_RELEASE;
1938
1939 for (i = EV_NSIG - 1; i--; )
1940 if (expect_false (signals [i].pending))
1941 ev_feed_signal_event (EV_A_ i + 1);
1942 }
1943#endif
1944
1945#if EV_ASYNC_ENABLE
1946 if (async_pending)
1947 {
1948 async_pending = 0;
1949
1950 ECB_MEMORY_FENCE_RELEASE;
1951
1952 for (i = asynccnt; i--; )
1953 if (asyncs [i]->sent)
1954 {
1955 asyncs [i]->sent = 0;
1956 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1957 }
1958 }
1959#endif
1960}
1961
1962/*****************************************************************************/
1963
1964void
1965ev_feed_signal (int signum) EV_THROW
1966{
1967#if EV_MULTIPLICITY
1968 EV_P = signals [signum - 1].loop;
1969
1970 if (!EV_A)
1971 return;
1972#endif
1973
1974 if (!ev_active (&pipe_w))
1975 return;
1976
1977 signals [signum - 1].pending = 1;
1978 evpipe_write (EV_A_ &sig_pending);
405} 1979}
406 1980
407static void 1981static void
408downheap (WT *heap, int N, int k) 1982ev_sighandler (int signum)
409{ 1983{
410 WT w = heap [k]; 1984#ifdef _WIN32
1985 signal (signum, ev_sighandler);
1986#endif
411 1987
412 while (k < (N >> 1)) 1988 ev_feed_signal (signum);
413 { 1989}
414 int j = k << 1;
415 1990
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1991void noinline
417 ++j; 1992ev_feed_signal_event (EV_P_ int signum) EV_THROW
1993{
1994 WL w;
418 1995
419 if (w->at <= heap [j]->at) 1996 if (expect_false (signum <= 0 || signum > EV_NSIG))
1997 return;
1998
1999 --signum;
2000
2001#if EV_MULTIPLICITY
2002 /* it is permissible to try to feed a signal to the wrong loop */
2003 /* or, likely more useful, feeding a signal nobody is waiting for */
2004
2005 if (expect_false (signals [signum].loop != EV_A))
2006 return;
2007#endif
2008
2009 signals [signum].pending = 0;
2010
2011 for (w = signals [signum].head; w; w = w->next)
2012 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2013}
2014
2015#if EV_USE_SIGNALFD
2016static void
2017sigfdcb (EV_P_ ev_io *iow, int revents)
2018{
2019 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2020
2021 for (;;)
2022 {
2023 ssize_t res = read (sigfd, si, sizeof (si));
2024
2025 /* not ISO-C, as res might be -1, but works with SuS */
2026 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2027 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2028
2029 if (res < (ssize_t)sizeof (si))
420 break; 2030 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 } 2031 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429} 2032}
2033#endif
2034
2035#endif
430 2036
431/*****************************************************************************/ 2037/*****************************************************************************/
432 2038
433typedef struct 2039#if EV_CHILD_ENABLE
434{ 2040static WL childs [EV_PID_HASHSIZE];
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437} ANSIG;
438 2041
439static ANSIG *signals;
440static int signalmax;
441
442static int sigpipe [2];
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445
446static void
447signals_init (ANSIG *base, int count)
448{
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456}
457
458static void
459sighandler (int signum)
460{
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470}
471
472static void
473sigcb (EV_P_ struct ev_io *iow, int revents)
474{
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506}
507
508/*****************************************************************************/
509
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 2042static ev_signal childev;
2043
2044#ifndef WIFCONTINUED
2045# define WIFCONTINUED(status) 0
2046#endif
2047
2048/* handle a single child status event */
2049inline_speed void
2050child_reap (EV_P_ int chain, int pid, int status)
2051{
2052 ev_child *w;
2053 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2054
2055 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2056 {
2057 if ((w->pid == pid || !w->pid)
2058 && (!traced || (w->flags & 1)))
2059 {
2060 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2061 w->rpid = pid;
2062 w->rstatus = status;
2063 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2064 }
2065 }
2066}
514 2067
515#ifndef WCONTINUED 2068#ifndef WCONTINUED
516# define WCONTINUED 0 2069# define WCONTINUED 0
517#endif 2070#endif
518 2071
2072/* called on sigchld etc., calls waitpid */
519static void 2073static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 2074childcb (EV_P_ ev_signal *sw, int revents)
536{ 2075{
537 int pid, status; 2076 int pid, status;
538 2077
2078 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2079 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 2080 if (!WCONTINUED
2081 || errno != EINVAL
2082 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2083 return;
2084
541 /* make sure we are called again until all childs have been reaped */ 2085 /* make sure we are called again until all children have been reaped */
2086 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 2087 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 2088
544 child_reap (EV_A_ sw, pid, pid, status); 2089 child_reap (EV_A_ pid, pid, status);
2090 if ((EV_PID_HASHSIZE) > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2091 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 2092}
548 2093
549#endif 2094#endif
550 2095
551/*****************************************************************************/ 2096/*****************************************************************************/
552 2097
2098#if EV_USE_IOCP
2099# include "ev_iocp.c"
2100#endif
2101#if EV_USE_PORT
2102# include "ev_port.c"
2103#endif
553#if EV_USE_KQUEUE 2104#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 2105# include "ev_kqueue.c"
555#endif 2106#endif
556#if EV_USE_EPOLL 2107#if EV_USE_EPOLL
557# include "ev_epoll.c" 2108# include "ev_epoll.c"
561#endif 2112#endif
562#if EV_USE_SELECT 2113#if EV_USE_SELECT
563# include "ev_select.c" 2114# include "ev_select.c"
564#endif 2115#endif
565 2116
566int 2117int ecb_cold
567ev_version_major (void) 2118ev_version_major (void) EV_THROW
568{ 2119{
569 return EV_VERSION_MAJOR; 2120 return EV_VERSION_MAJOR;
570} 2121}
571 2122
572int 2123int ecb_cold
573ev_version_minor (void) 2124ev_version_minor (void) EV_THROW
574{ 2125{
575 return EV_VERSION_MINOR; 2126 return EV_VERSION_MINOR;
576} 2127}
577 2128
578/* return true if we are running with elevated privileges and should ignore env variables */ 2129/* return true if we are running with elevated privileges and should ignore env variables */
579static int 2130int inline_size ecb_cold
580enable_secure (void) 2131enable_secure (void)
581{ 2132{
582#ifdef WIN32 2133#ifdef _WIN32
583 return 0; 2134 return 0;
584#else 2135#else
585 return getuid () != geteuid () 2136 return getuid () != geteuid ()
586 || getgid () != getegid (); 2137 || getgid () != getegid ();
587#endif 2138#endif
588} 2139}
589 2140
2141unsigned int ecb_cold
2142ev_supported_backends (void) EV_THROW
2143{
2144 unsigned int flags = 0;
2145
2146 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2147 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2148 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2149 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2150 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2151
2152 return flags;
2153}
2154
2155unsigned int ecb_cold
2156ev_recommended_backends (void) EV_THROW
2157{
2158 unsigned int flags = ev_supported_backends ();
2159
2160#ifndef __NetBSD__
2161 /* kqueue is borked on everything but netbsd apparently */
2162 /* it usually doesn't work correctly on anything but sockets and pipes */
2163 flags &= ~EVBACKEND_KQUEUE;
2164#endif
2165#ifdef __APPLE__
2166 /* only select works correctly on that "unix-certified" platform */
2167 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2168 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2169#endif
2170#ifdef __FreeBSD__
2171 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2172#endif
2173
2174 return flags;
2175}
2176
2177unsigned int ecb_cold
2178ev_embeddable_backends (void) EV_THROW
2179{
2180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2181
2182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2184 flags &= ~EVBACKEND_EPOLL;
2185
2186 return flags;
2187}
2188
2189unsigned int
2190ev_backend (EV_P) EV_THROW
2191{
2192 return backend;
2193}
2194
2195#if EV_FEATURE_API
2196unsigned int
2197ev_iteration (EV_P) EV_THROW
2198{
2199 return loop_count;
2200}
2201
2202unsigned int
2203ev_depth (EV_P) EV_THROW
2204{
2205 return loop_depth;
2206}
2207
2208void
2209ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2210{
2211 io_blocktime = interval;
2212}
2213
2214void
2215ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2216{
2217 timeout_blocktime = interval;
2218}
2219
2220void
2221ev_set_userdata (EV_P_ void *data) EV_THROW
2222{
2223 userdata = data;
2224}
2225
2226void *
2227ev_userdata (EV_P) EV_THROW
2228{
2229 return userdata;
2230}
2231
2232void
2233ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2234{
2235 invoke_cb = invoke_pending_cb;
2236}
2237
2238void
2239ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2240{
2241 release_cb = release;
2242 acquire_cb = acquire;
2243}
2244#endif
2245
2246/* initialise a loop structure, must be zero-initialised */
2247static void noinline ecb_cold
2248loop_init (EV_P_ unsigned int flags) EV_THROW
2249{
2250 if (!backend)
2251 {
2252 origflags = flags;
2253
2254#if EV_USE_REALTIME
2255 if (!have_realtime)
2256 {
2257 struct timespec ts;
2258
2259 if (!clock_gettime (CLOCK_REALTIME, &ts))
2260 have_realtime = 1;
2261 }
2262#endif
2263
2264#if EV_USE_MONOTONIC
2265 if (!have_monotonic)
2266 {
2267 struct timespec ts;
2268
2269 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2270 have_monotonic = 1;
2271 }
2272#endif
2273
2274 /* pid check not overridable via env */
2275#ifndef _WIN32
2276 if (flags & EVFLAG_FORKCHECK)
2277 curpid = getpid ();
2278#endif
2279
2280 if (!(flags & EVFLAG_NOENV)
2281 && !enable_secure ()
2282 && getenv ("LIBEV_FLAGS"))
2283 flags = atoi (getenv ("LIBEV_FLAGS"));
2284
2285 ev_rt_now = ev_time ();
2286 mn_now = get_clock ();
2287 now_floor = mn_now;
2288 rtmn_diff = ev_rt_now - mn_now;
2289#if EV_FEATURE_API
2290 invoke_cb = ev_invoke_pending;
2291#endif
2292
2293 io_blocktime = 0.;
2294 timeout_blocktime = 0.;
2295 backend = 0;
2296 backend_fd = -1;
2297 sig_pending = 0;
2298#if EV_ASYNC_ENABLE
2299 async_pending = 0;
2300#endif
2301 pipe_write_skipped = 0;
2302 pipe_write_wanted = 0;
2303#if EV_USE_INOTIFY
2304 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2305#endif
2306#if EV_USE_SIGNALFD
2307 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2308#endif
2309
2310 if (!(flags & EVBACKEND_MASK))
2311 flags |= ev_recommended_backends ();
2312
2313#if EV_USE_IOCP
2314 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2315#endif
2316#if EV_USE_PORT
2317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2318#endif
2319#if EV_USE_KQUEUE
2320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2321#endif
2322#if EV_USE_EPOLL
2323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2324#endif
2325#if EV_USE_POLL
2326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2327#endif
2328#if EV_USE_SELECT
2329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2330#endif
2331
2332 ev_prepare_init (&pending_w, pendingcb);
2333
2334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2335 ev_init (&pipe_w, pipecb);
2336 ev_set_priority (&pipe_w, EV_MAXPRI);
2337#endif
2338 }
2339}
2340
2341/* free up a loop structure */
2342void ecb_cold
2343ev_loop_destroy (EV_P)
2344{
2345 int i;
2346
2347#if EV_MULTIPLICITY
2348 /* mimic free (0) */
2349 if (!EV_A)
2350 return;
2351#endif
2352
2353#if EV_CLEANUP_ENABLE
2354 /* queue cleanup watchers (and execute them) */
2355 if (expect_false (cleanupcnt))
2356 {
2357 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2358 EV_INVOKE_PENDING;
2359 }
2360#endif
2361
2362#if EV_CHILD_ENABLE
2363 if (ev_is_active (&childev))
2364 {
2365 ev_ref (EV_A); /* child watcher */
2366 ev_signal_stop (EV_A_ &childev);
2367 }
2368#endif
2369
2370 if (ev_is_active (&pipe_w))
2371 {
2372 /*ev_ref (EV_A);*/
2373 /*ev_io_stop (EV_A_ &pipe_w);*/
2374
2375#if EV_USE_EVENTFD
2376 if (evfd >= 0)
2377 close (evfd);
2378#endif
2379
2380 if (evpipe [0] >= 0)
2381 {
2382 EV_WIN32_CLOSE_FD (evpipe [0]);
2383 EV_WIN32_CLOSE_FD (evpipe [1]);
2384 }
2385 }
2386
2387#if EV_USE_SIGNALFD
2388 if (ev_is_active (&sigfd_w))
2389 close (sigfd);
2390#endif
2391
2392#if EV_USE_INOTIFY
2393 if (fs_fd >= 0)
2394 close (fs_fd);
2395#endif
2396
2397 if (backend_fd >= 0)
2398 close (backend_fd);
2399
2400#if EV_USE_IOCP
2401 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2402#endif
2403#if EV_USE_PORT
2404 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2405#endif
2406#if EV_USE_KQUEUE
2407 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2408#endif
2409#if EV_USE_EPOLL
2410 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2411#endif
2412#if EV_USE_POLL
2413 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2414#endif
2415#if EV_USE_SELECT
2416 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2417#endif
2418
2419 for (i = NUMPRI; i--; )
2420 {
2421 array_free (pending, [i]);
2422#if EV_IDLE_ENABLE
2423 array_free (idle, [i]);
2424#endif
2425 }
2426
2427 ev_free (anfds); anfds = 0; anfdmax = 0;
2428
2429 /* have to use the microsoft-never-gets-it-right macro */
2430 array_free (rfeed, EMPTY);
2431 array_free (fdchange, EMPTY);
2432 array_free (timer, EMPTY);
2433#if EV_PERIODIC_ENABLE
2434 array_free (periodic, EMPTY);
2435#endif
2436#if EV_FORK_ENABLE
2437 array_free (fork, EMPTY);
2438#endif
2439#if EV_CLEANUP_ENABLE
2440 array_free (cleanup, EMPTY);
2441#endif
2442 array_free (prepare, EMPTY);
2443 array_free (check, EMPTY);
2444#if EV_ASYNC_ENABLE
2445 array_free (async, EMPTY);
2446#endif
2447
2448 backend = 0;
2449
2450#if EV_MULTIPLICITY
2451 if (ev_is_default_loop (EV_A))
2452#endif
2453 ev_default_loop_ptr = 0;
2454#if EV_MULTIPLICITY
2455 else
2456 ev_free (EV_A);
2457#endif
2458}
2459
2460#if EV_USE_INOTIFY
2461inline_size void infy_fork (EV_P);
2462#endif
2463
2464inline_size void
2465loop_fork (EV_P)
2466{
2467#if EV_USE_PORT
2468 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2469#endif
2470#if EV_USE_KQUEUE
2471 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2472#endif
2473#if EV_USE_EPOLL
2474 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2475#endif
2476#if EV_USE_INOTIFY
2477 infy_fork (EV_A);
2478#endif
2479
2480 if (ev_is_active (&pipe_w))
2481 {
2482 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2483
2484 ev_ref (EV_A);
2485 ev_io_stop (EV_A_ &pipe_w);
2486
2487#if EV_USE_EVENTFD
2488 if (evfd >= 0)
2489 close (evfd);
2490#endif
2491
2492 if (evpipe [0] >= 0)
2493 {
2494 EV_WIN32_CLOSE_FD (evpipe [0]);
2495 EV_WIN32_CLOSE_FD (evpipe [1]);
2496 }
2497
2498#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2499 evpipe_init (EV_A);
2500 /* now iterate over everything, in case we missed something */
2501 pipecb (EV_A_ &pipe_w, EV_READ);
2502#endif
2503 }
2504
2505 postfork = 0;
2506}
2507
2508#if EV_MULTIPLICITY
2509
2510struct ev_loop * ecb_cold
2511ev_loop_new (unsigned int flags) EV_THROW
2512{
2513 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2514
2515 memset (EV_A, 0, sizeof (struct ev_loop));
2516 loop_init (EV_A_ flags);
2517
2518 if (ev_backend (EV_A))
2519 return EV_A;
2520
2521 ev_free (EV_A);
2522 return 0;
2523}
2524
2525#endif /* multiplicity */
2526
2527#if EV_VERIFY
2528static void noinline ecb_cold
2529verify_watcher (EV_P_ W w)
2530{
2531 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2532
2533 if (w->pending)
2534 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2535}
2536
2537static void noinline ecb_cold
2538verify_heap (EV_P_ ANHE *heap, int N)
2539{
2540 int i;
2541
2542 for (i = HEAP0; i < N + HEAP0; ++i)
2543 {
2544 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2545 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2546 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2547
2548 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2549 }
2550}
2551
2552static void noinline ecb_cold
2553array_verify (EV_P_ W *ws, int cnt)
2554{
2555 while (cnt--)
2556 {
2557 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2558 verify_watcher (EV_A_ ws [cnt]);
2559 }
2560}
2561#endif
2562
2563#if EV_FEATURE_API
2564void ecb_cold
2565ev_verify (EV_P) EV_THROW
2566{
2567#if EV_VERIFY
2568 int i, j;
2569 WL w, w2;
2570
2571 assert (activecnt >= -1);
2572
2573 assert (fdchangemax >= fdchangecnt);
2574 for (i = 0; i < fdchangecnt; ++i)
2575 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2576
2577 assert (anfdmax >= 0);
2578 for (i = j = 0; i < anfdmax; ++i)
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592
2593 assert (timermax >= timercnt);
2594 verify_heap (EV_A_ timers, timercnt);
2595
2596#if EV_PERIODIC_ENABLE
2597 assert (periodicmax >= periodiccnt);
2598 verify_heap (EV_A_ periodics, periodiccnt);
2599#endif
2600
2601 for (i = NUMPRI; i--; )
2602 {
2603 assert (pendingmax [i] >= pendingcnt [i]);
2604#if EV_IDLE_ENABLE
2605 assert (idleall >= 0);
2606 assert (idlemax [i] >= idlecnt [i]);
2607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608#endif
2609 }
2610
2611#if EV_FORK_ENABLE
2612 assert (forkmax >= forkcnt);
2613 array_verify (EV_A_ (W *)forks, forkcnt);
2614#endif
2615
2616#if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619#endif
2620
2621#if EV_ASYNC_ENABLE
2622 assert (asyncmax >= asynccnt);
2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
2624#endif
2625
2626#if EV_PREPARE_ENABLE
2627 assert (preparemax >= preparecnt);
2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629#endif
2630
2631#if EV_CHECK_ENABLE
2632 assert (checkmax >= checkcnt);
2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634#endif
2635
2636# if 0
2637#if EV_CHILD_ENABLE
2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640#endif
2641# endif
2642#endif
2643}
2644#endif
2645
2646#if EV_MULTIPLICITY
2647struct ev_loop * ecb_cold
2648#else
590int 2649int
591ev_method (EV_P) 2650#endif
2651ev_default_loop (unsigned int flags) EV_THROW
592{ 2652{
593 return method; 2653 if (!ev_default_loop_ptr)
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
601#if EV_USE_MONOTONIC
602 { 2654 {
603 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1;
606 }
607#endif
608
609 rt_now = ev_time ();
610 mn_now = get_clock ();
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY 2655#if EV_MULTIPLICITY
687struct ev_loop * 2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else 2657#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1; 2658 ev_default_loop_ptr = 1;
737#endif 2659#endif
738 2660
739 loop_init (EV_A_ methods); 2661 loop_init (EV_A_ flags);
740 2662
741 if (ev_method (EV_A)) 2663 if (ev_backend (EV_A))
742 { 2664 {
743 ev_watcher_init (&sigev, sigcb); 2665#if EV_CHILD_ENABLE
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A);
746
747#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 2666 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 2667 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 2668 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 2670#endif
753 } 2671 }
754 else 2672 else
755 default_loop = 0; 2673 ev_default_loop_ptr = 0;
756 } 2674 }
757 2675
758 return default_loop; 2676 return ev_default_loop_ptr;
759} 2677}
760 2678
761void 2679void
762ev_default_destroy (void) 2680ev_loop_fork (EV_P) EV_THROW
763{ 2681{
764#if EV_MULTIPLICITY 2682 postfork = 1; /* must be in line with ev_default_fork */
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778} 2683}
2684
2685/*****************************************************************************/
779 2686
780void 2687void
781ev_default_fork (void) 2688ev_invoke (EV_P_ void *w, int revents)
782{ 2689{
783#if EV_MULTIPLICITY 2690 EV_CB_INVOKE ((W)w, revents);
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 2691}
797 2692
798/*****************************************************************************/ 2693unsigned int
799 2694ev_pending_count (EV_P) EV_THROW
800static void
801call_pending (EV_P)
802{ 2695{
803 int pri; 2696 int pri;
2697 unsigned int count = 0;
804 2698
805 for (pri = NUMPRI; pri--; ) 2699 for (pri = NUMPRI; pri--; )
2700 count += pendingcnt [pri];
2701
2702 return count;
2703}
2704
2705void noinline
2706ev_invoke_pending (EV_P)
2707{
2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
806 while (pendingcnt [pri]) 2709 while (pendingcnt [pendingpri])
807 { 2710 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
809 2712
810 if (p->w)
811 {
812 p->w->pending = 0; 2713 p->w->pending = 0;
813 2714 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events); 2715 EV_FREQUENT_CHECK;
815 }
816 } 2716 }
817} 2717}
818 2718
819static void 2719#if EV_IDLE_ENABLE
2720/* make idle watchers pending. this handles the "call-idle */
2721/* only when higher priorities are idle" logic */
2722inline_size void
820timers_reify (EV_P) 2723idle_reify (EV_P)
821{ 2724{
822 while (timercnt && ((WT)timers [0])->at <= mn_now) 2725 if (expect_false (idleall))
823 { 2726 {
824 struct ev_timer *w = timers [0]; 2727 int pri;
825 2728
826 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2729 for (pri = NUMPRI; pri--; )
827
828 /* first reschedule or stop timer */
829 if (w->repeat)
830 { 2730 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2731 if (pendingcnt [pri])
832 ((WT)w)->at = mn_now + w->repeat; 2732 break;
833 downheap ((WT *)timers, timercnt, 0);
834 }
835 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 2733
838 event (EV_A_ (W)w, EV_TIMEOUT); 2734 if (idlecnt [pri])
839 }
840}
841
842static void
843periodics_reify (EV_P)
844{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
846 {
847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850
851 /* first reschedule or stop timer */
852 if (w->interval)
853 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0);
857 }
858 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860
861 event (EV_A_ (W)w, EV_PERIODIC);
862 }
863}
864
865static void
866periodics_reschedule (EV_P)
867{
868 int i;
869
870 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i)
872 {
873 struct ev_periodic *w = periodics [i];
874
875 if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 { 2735 {
881 ev_periodic_stop (EV_A_ w); 2736 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
882 ev_periodic_start (EV_A_ w); 2737 break;
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 } 2738 }
886 } 2739 }
887 } 2740 }
888} 2741}
2742#endif
889 2743
890inline int 2744/* make timers pending */
891time_update_monotonic (EV_P) 2745inline_size void
2746timers_reify (EV_P)
892{ 2747{
893 mn_now = get_clock (); 2748 EV_FREQUENT_CHECK;
894 2749
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 } 2751 {
900 else 2752 do
2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
2761 ev_at (w) += w->repeat;
2762 if (ev_at (w) < mn_now)
2763 ev_at (w) = mn_now;
2764
2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2766
2767 ANHE_at_cache (timers [HEAP0]);
2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
2775 }
2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2777
2778 feed_reverse_done (EV_A_ EV_TIMER);
901 { 2779 }
902 now_floor = mn_now; 2780}
903 rt_now = ev_time (); 2781
904 return 1; 2782#if EV_PERIODIC_ENABLE
2783
2784static void noinline
2785periodic_recalc (EV_P_ ev_periodic *w)
2786{
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
905 } 2792 {
906} 2793 ev_tstamp nat = at + w->interval;
907 2794
908static void 2795 /* when resolution fails us, we use ev_rt_now */
909time_update (EV_P) 2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806}
2807
2808/* make periodics pending */
2809inline_size void
2810periodics_reify (EV_P)
2811{
2812 EV_FREQUENT_CHECK;
2813
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2815 {
2816 int feed_count = 0;
2817
2818 do
2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823
2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828
2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830
2831 ANHE_at_cache (periodics [HEAP0]);
2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
2845 }
2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847
2848 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 }
2850}
2851
2852/* simply recalculate all periodics */
2853/* TODO: maybe ensure that at least one event happens when jumping forward? */
2854static void noinline ecb_cold
2855periodics_reschedule (EV_P)
910{ 2856{
911 int i; 2857 int i;
912 2858
2859 /* adjust periodics after time jump */
2860 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 {
2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863
2864 if (w->reschedule_cb)
2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 else if (w->interval)
2867 periodic_recalc (EV_A_ w);
2868
2869 ANHE_at_cache (periodics [i]);
2870 }
2871
2872 reheap (periodics, periodiccnt);
2873}
2874#endif
2875
2876/* adjust all timers by a given offset */
2877static void noinline ecb_cold
2878timers_reschedule (EV_P_ ev_tstamp adjust)
2879{
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888}
2889
2890/* fetch new monotonic and realtime times from the kernel */
2891/* also detect if there was a timejump, and act accordingly */
2892inline_speed void
2893time_update (EV_P_ ev_tstamp max_block)
2894{
913#if EV_USE_MONOTONIC 2895#if EV_USE_MONOTONIC
914 if (expect_true (have_monotonic)) 2896 if (expect_true (have_monotonic))
915 { 2897 {
916 if (time_update_monotonic (EV_A)) 2898 int i;
2899 ev_tstamp odiff = rtmn_diff;
2900
2901 mn_now = get_clock ();
2902
2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2904 /* interpolate in the meantime */
2905 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
917 { 2906 {
918 ev_tstamp odiff = rtmn_diff; 2907 ev_rt_now = rtmn_diff + mn_now;
2908 return;
2909 }
919 2910
2911 now_floor = mn_now;
2912 ev_rt_now = ev_time ();
2913
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2914 /* loop a few times, before making important decisions.
2915 * on the choice of "4": one iteration isn't enough,
2916 * in case we get preempted during the calls to
2917 * ev_time and get_clock. a second call is almost guaranteed
2918 * to succeed in that case, though. and looping a few more times
2919 * doesn't hurt either as we only do this on time-jumps or
2920 * in the unlikely event of having been preempted here.
2921 */
2922 for (i = 4; --i; )
921 { 2923 {
2924 ev_tstamp diff;
922 rtmn_diff = rt_now - mn_now; 2925 rtmn_diff = ev_rt_now - mn_now;
923 2926
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2927 diff = odiff - rtmn_diff;
2928
2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
925 return; /* all is well */ 2930 return; /* all is well */
926 2931
927 rt_now = ev_time (); 2932 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 2933 mn_now = get_clock ();
929 now_floor = mn_now; 2934 now_floor = mn_now;
930 } 2935 }
931 2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2939# if EV_PERIODIC_ENABLE
2940 periodics_reschedule (EV_A);
2941# endif
2942 }
2943 else
2944#endif
2945 {
2946 ev_rt_now = ev_time ();
2947
2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2952#if EV_PERIODIC_ENABLE
932 periodics_reschedule (EV_A); 2953 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */ 2954#endif
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 } 2955 }
936 }
937 else
938#endif
939 {
940 rt_now = ev_time ();
941 2956
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 {
944 periodics_reschedule (EV_A);
945
946 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now;
949 }
950
951 mn_now = rt_now; 2957 mn_now = ev_rt_now;
952 } 2958 }
953} 2959}
954 2960
955void 2961int
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
970ev_loop (EV_P_ int flags) 2962ev_run (EV_P_ int flags)
971{ 2963{
972 double block; 2964#if EV_FEATURE_API
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2965 ++loop_depth;
2966#endif
2967
2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
2970 loop_done = EVBREAK_CANCEL;
2971
2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
974 2973
975 do 2974 do
976 { 2975 {
2976#if EV_VERIFY >= 2
2977 ev_verify (EV_A);
2978#endif
2979
2980#ifndef _WIN32
2981 if (expect_false (curpid)) /* penalise the forking check even more */
2982 if (expect_false (getpid () != curpid))
2983 {
2984 curpid = getpid ();
2985 postfork = 1;
2986 }
2987#endif
2988
2989#if EV_FORK_ENABLE
2990 /* we might have forked, so queue fork handlers */
2991 if (expect_false (postfork))
2992 if (forkcnt)
2993 {
2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2995 EV_INVOKE_PENDING;
2996 }
2997#endif
2998
2999#if EV_PREPARE_ENABLE
977 /* queue check watchers (and execute them) */ 3000 /* queue prepare watchers (and execute them) */
978 if (expect_false (preparecnt)) 3001 if (expect_false (preparecnt))
979 { 3002 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 3004 EV_INVOKE_PENDING;
982 } 3005 }
3006#endif
3007
3008 if (expect_false (loop_done))
3009 break;
3010
3011 /* we might have forked, so reify kernel state if necessary */
3012 if (expect_false (postfork))
3013 loop_fork (EV_A);
983 3014
984 /* update fd-related kernel structures */ 3015 /* update fd-related kernel structures */
985 fd_reify (EV_A); 3016 fd_reify (EV_A);
986 3017
987 /* calculate blocking time */ 3018 /* calculate blocking time */
3019 {
3020 ev_tstamp waittime = 0.;
3021 ev_tstamp sleeptime = 0.;
988 3022
989 /* we only need this for !monotonic clockor timers, but as we basically 3023 /* remember old timestamp for io_blocktime calculation */
990 always have timers, we just calculate it always */ 3024 ev_tstamp prev_mn_now = mn_now;
991#if EV_USE_MONOTONIC 3025
992 if (expect_true (have_monotonic)) 3026 /* update time to cancel out callback processing overhead */
993 time_update_monotonic (EV_A); 3027 time_update (EV_A_ 1e100);
994 else 3028
995#endif 3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
996 { 3035 {
997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
1000
1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.;
1003 else
1004 {
1005 block = MAX_BLOCKTIME; 3036 waittime = MAX_BLOCKTIME;
1006 3037
1007 if (timercnt) 3038 if (timercnt)
1008 { 3039 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1010 if (block > to) block = to; 3041 if (waittime > to) waittime = to;
1011 } 3042 }
1012 3043
3044#if EV_PERIODIC_ENABLE
1013 if (periodiccnt) 3045 if (periodiccnt)
1014 { 3046 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1016 if (block > to) block = to; 3048 if (waittime > to) waittime = to;
1017 } 3049 }
3050#endif
1018 3051
1019 if (block < 0.) block = 0.; 3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
3053 if (expect_false (waittime < timeout_blocktime))
3054 waittime = timeout_blocktime;
3055
3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
3060
3061 /* extra check because io_blocktime is commonly 0 */
3062 if (expect_false (io_blocktime))
3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
3071 ev_sleep (sleeptime);
3072 waittime -= sleeptime;
3073 }
3074 }
1020 } 3075 }
1021 3076
1022 method_poll (EV_A_ block); 3077#if EV_FEATURE_API
3078 ++loop_count;
3079#endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1023 3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
3092
1024 /* update rt_now, do magic */ 3093 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 3094 time_update (EV_A_ waittime + sleeptime);
3095 }
1026 3096
1027 /* queue pending timers and reschedule them */ 3097 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 3098 timers_reify (EV_A); /* relative timers called last */
3099#if EV_PERIODIC_ENABLE
1029 periodics_reify (EV_A); /* absolute timers called first */ 3100 periodics_reify (EV_A); /* absolute timers called first */
3101#endif
1030 3102
3103#if EV_IDLE_ENABLE
1031 /* queue idle watchers unless io or timers are pending */ 3104 /* queue idle watchers unless other events are pending */
1032 if (!pendingcnt) 3105 idle_reify (EV_A);
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3106#endif
1034 3107
3108#if EV_CHECK_ENABLE
1035 /* queue check watchers, to be executed first */ 3109 /* queue check watchers, to be executed first */
1036 if (checkcnt) 3110 if (expect_false (checkcnt))
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112#endif
1038 3113
1039 call_pending (EV_A); 3114 EV_INVOKE_PENDING;
1040 } 3115 }
1041 while (activecnt && !loop_done); 3116 while (expect_true (
3117 activecnt
3118 && !loop_done
3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 ));
1042 3121
1043 if (loop_done != 2) 3122 if (loop_done == EVBREAK_ONE)
1044 loop_done = 0; 3123 loop_done = EVBREAK_CANCEL;
3124
3125#if EV_FEATURE_API
3126 --loop_depth;
3127#endif
3128
3129 return activecnt;
1045} 3130}
1046 3131
1047void 3132void
1048ev_unloop (EV_P_ int how) 3133ev_break (EV_P_ int how) EV_THROW
1049{ 3134{
1050 loop_done = how; 3135 loop_done = how;
1051} 3136}
1052 3137
3138void
3139ev_ref (EV_P) EV_THROW
3140{
3141 ++activecnt;
3142}
3143
3144void
3145ev_unref (EV_P) EV_THROW
3146{
3147 --activecnt;
3148}
3149
3150void
3151ev_now_update (EV_P) EV_THROW
3152{
3153 time_update (EV_A_ 1e100);
3154}
3155
3156void
3157ev_suspend (EV_P) EV_THROW
3158{
3159 ev_now_update (EV_A);
3160}
3161
3162void
3163ev_resume (EV_P) EV_THROW
3164{
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169#if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172#endif
3173}
3174
1053/*****************************************************************************/ 3175/*****************************************************************************/
3176/* singly-linked list management, used when the expected list length is short */
1054 3177
1055inline void 3178inline_size void
1056wlist_add (WL *head, WL elem) 3179wlist_add (WL *head, WL elem)
1057{ 3180{
1058 elem->next = *head; 3181 elem->next = *head;
1059 *head = elem; 3182 *head = elem;
1060} 3183}
1061 3184
1062inline void 3185inline_size void
1063wlist_del (WL *head, WL elem) 3186wlist_del (WL *head, WL elem)
1064{ 3187{
1065 while (*head) 3188 while (*head)
1066 { 3189 {
1067 if (*head == elem) 3190 if (expect_true (*head == elem))
1068 { 3191 {
1069 *head = elem->next; 3192 *head = elem->next;
1070 return; 3193 break;
1071 } 3194 }
1072 3195
1073 head = &(*head)->next; 3196 head = &(*head)->next;
1074 } 3197 }
1075} 3198}
1076 3199
3200/* internal, faster, version of ev_clear_pending */
1077inline void 3201inline_speed void
1078ev_clear_pending (EV_P_ W w) 3202clear_pending (EV_P_ W w)
1079{ 3203{
1080 if (w->pending) 3204 if (w->pending)
1081 { 3205 {
1082 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1083 w->pending = 0; 3207 w->pending = 0;
1084 } 3208 }
1085} 3209}
1086 3210
3211int
3212ev_clear_pending (EV_P_ void *w) EV_THROW
3213{
3214 W w_ = (W)w;
3215 int pending = w_->pending;
3216
3217 if (expect_true (pending))
3218 {
3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
3221 w_->pending = 0;
3222 return p->events;
3223 }
3224 else
3225 return 0;
3226}
3227
1087inline void 3228inline_size void
3229pri_adjust (EV_P_ W w)
3230{
3231 int pri = ev_priority (w);
3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3234 ev_set_priority (w, pri);
3235}
3236
3237inline_speed void
1088ev_start (EV_P_ W w, int active) 3238ev_start (EV_P_ W w, int active)
1089{ 3239{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3240 pri_adjust (EV_A_ w);
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
1093 w->active = active; 3241 w->active = active;
1094 ev_ref (EV_A); 3242 ev_ref (EV_A);
1095} 3243}
1096 3244
1097inline void 3245inline_size void
1098ev_stop (EV_P_ W w) 3246ev_stop (EV_P_ W w)
1099{ 3247{
1100 ev_unref (EV_A); 3248 ev_unref (EV_A);
1101 w->active = 0; 3249 w->active = 0;
1102} 3250}
1103 3251
1104/*****************************************************************************/ 3252/*****************************************************************************/
1105 3253
1106void 3254void noinline
1107ev_io_start (EV_P_ struct ev_io *w) 3255ev_io_start (EV_P_ ev_io *w) EV_THROW
1108{ 3256{
1109 int fd = w->fd; 3257 int fd = w->fd;
1110 3258
1111 if (ev_is_active (w)) 3259 if (expect_false (ev_is_active (w)))
1112 return; 3260 return;
1113 3261
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264
3265 EV_FREQUENT_CHECK;
1115 3266
1116 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3269 wlist_add (&anfds[fd].head, (WL)w);
1119 3270
1120 fd_change (EV_A_ fd); 3271 /* common bug, apparently */
1121} 3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1122 3273
1123void 3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3275 w->events &= ~EV__IOFDSET;
3276
3277 EV_FREQUENT_CHECK;
3278}
3279
3280void noinline
1124ev_io_stop (EV_P_ struct ev_io *w) 3281ev_io_stop (EV_P_ ev_io *w) EV_THROW
1125{ 3282{
1126 ev_clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 3284 if (expect_false (!ev_is_active (w)))
1128 return; 3285 return;
1129 3286
3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3288
3289 EV_FREQUENT_CHECK;
3290
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3291 wlist_del (&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
1132 3293
1133 fd_change (EV_A_ w->fd); 3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1134}
1135 3295
1136void 3296 EV_FREQUENT_CHECK;
3297}
3298
3299void noinline
1137ev_timer_start (EV_P_ struct ev_timer *w) 3300ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1138{ 3301{
1139 if (ev_is_active (w)) 3302 if (expect_false (ev_is_active (w)))
1140 return; 3303 return;
1141 3304
1142 ((WT)w)->at += mn_now; 3305 ev_at (w) += mn_now;
1143 3306
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 3308
3309 EV_FREQUENT_CHECK;
3310
3311 ++timercnt;
1146 ev_start (EV_A_ (W)w, ++timercnt); 3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1147 array_needsize (timers, timermax, timercnt, ); 3313 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1148 timers [timercnt - 1] = w; 3314 ANHE_w (timers [ev_active (w)]) = (WT)w;
1149 upheap ((WT *)timers, timercnt - 1); 3315 ANHE_at_cache (timers [ev_active (w)]);
3316 upheap (timers, ev_active (w));
1150 3317
3318 EV_FREQUENT_CHECK;
3319
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1152} 3321}
1153 3322
1154void 3323void noinline
1155ev_timer_stop (EV_P_ struct ev_timer *w) 3324ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1156{ 3325{
1157 ev_clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w)) 3327 if (expect_false (!ev_is_active (w)))
1159 return; 3328 return;
1160 3329
3330 EV_FREQUENT_CHECK;
3331
3332 {
3333 int active = ev_active (w);
3334
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1162 3336
1163 if (((W)w)->active < timercnt--) 3337 --timercnt;
3338
3339 if (expect_true (active < timercnt + HEAP0))
1164 { 3340 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 3341 timers [active] = timers [timercnt + HEAP0];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3342 adjustheap (timers, timercnt, active);
1167 } 3343 }
3344 }
1168 3345
1169 ((WT)w)->at = w->repeat; 3346 ev_at (w) -= mn_now;
1170 3347
1171 ev_stop (EV_A_ (W)w); 3348 ev_stop (EV_A_ (W)w);
1172}
1173 3349
1174void 3350 EV_FREQUENT_CHECK;
3351}
3352
3353void noinline
1175ev_timer_again (EV_P_ struct ev_timer *w) 3354ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1176{ 3355{
3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
3359
1177 if (ev_is_active (w)) 3360 if (ev_is_active (w))
1178 { 3361 {
1179 if (w->repeat) 3362 if (w->repeat)
1180 { 3363 {
1181 ((WT)w)->at = mn_now + w->repeat; 3364 ev_at (w) = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3365 ANHE_at_cache (timers [ev_active (w)]);
3366 adjustheap (timers, timercnt, ev_active (w));
1183 } 3367 }
1184 else 3368 else
1185 ev_timer_stop (EV_A_ w); 3369 ev_timer_stop (EV_A_ w);
1186 } 3370 }
1187 else if (w->repeat) 3371 else if (w->repeat)
3372 {
3373 ev_at (w) = w->repeat;
1188 ev_timer_start (EV_A_ w); 3374 ev_timer_start (EV_A_ w);
1189} 3375 }
1190 3376
1191void 3377 EV_FREQUENT_CHECK;
3378}
3379
3380ev_tstamp
3381ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382{
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3384}
3385
3386#if EV_PERIODIC_ENABLE
3387void noinline
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 3388ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1193{ 3389{
1194 if (ev_is_active (w)) 3390 if (expect_false (ev_is_active (w)))
1195 return; 3391 return;
1196 3392
3393 if (w->reschedule_cb)
3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3395 else if (w->interval)
3396 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3398 periodic_recalc (EV_A_ w);
3399 }
3400 else
3401 ev_at (w) = w->offset;
1198 3402
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 3403 EV_FREQUENT_CHECK;
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1202 3404
3405 ++periodiccnt;
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 3406 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 3407 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 3408 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 3409 ANHE_at_cache (periodics [ev_active (w)]);
3410 upheap (periodics, ev_active (w));
1207 3411
3412 EV_FREQUENT_CHECK;
3413
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1209} 3415}
1210 3416
1211void 3417void noinline
1212ev_periodic_stop (EV_P_ struct ev_periodic *w) 3418ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1213{ 3419{
1214 ev_clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
1215 if (!ev_is_active (w)) 3421 if (expect_false (!ev_is_active (w)))
1216 return; 3422 return;
1217 3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ev_active (w);
3428
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1219 3430
1220 if (((W)w)->active < periodiccnt--) 3431 --periodiccnt;
3432
3433 if (expect_true (active < periodiccnt + HEAP0))
1221 { 3434 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3435 periodics [active] = periodics [periodiccnt + HEAP0];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3436 adjustheap (periodics, periodiccnt, active);
1224 } 3437 }
3438 }
1225 3439
1226 ev_stop (EV_A_ (W)w); 3440 ev_stop (EV_A_ (W)w);
1227}
1228 3441
1229void 3442 EV_FREQUENT_CHECK;
1230ev_idle_start (EV_P_ struct ev_idle *w)
1231{
1232 if (ev_is_active (w))
1233 return;
1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238} 3443}
1239 3444
1240void 3445void noinline
1241ev_idle_stop (EV_P_ struct ev_idle *w) 3446ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1242{ 3447{
1243 ev_clear_pending (EV_A_ (W)w); 3448 /* TODO: use adjustheap and recalculation */
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w); 3449 ev_periodic_stop (EV_A_ w);
3450 ev_periodic_start (EV_A_ w);
1249} 3451}
1250 3452#endif
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294 3453
1295#ifndef SA_RESTART 3454#ifndef SA_RESTART
1296# define SA_RESTART 0 3455# define SA_RESTART 0
1297#endif 3456#endif
1298 3457
3458#if EV_SIGNAL_ENABLE
3459
3460void noinline
3461ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3462{
3463 if (expect_false (ev_is_active (w)))
3464 return;
3465
3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3467
3468#if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3471
3472 signals [w->signum - 1].loop = EV_A;
3473#endif
3474
3475 EV_FREQUENT_CHECK;
3476
3477#if EV_USE_SIGNALFD
3478 if (sigfd == -2)
3479 {
3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3481 if (sigfd < 0 && errno == EINVAL)
3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3483
3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
3487
3488 sigemptyset (&sigfd_set);
3489
3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505#endif
3506
3507 ev_start (EV_A_ (W)w, 1);
3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
3509
3510 if (!((WL)w)->next)
3511# if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513# endif
3514 {
3515# ifdef _WIN32
3516 evpipe_init (EV_A);
3517
3518 signal (w->signum, ev_sighandler);
3519# else
3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
3524 sa.sa_handler = ev_sighandler;
3525 sigfillset (&sa.sa_mask);
3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
3535#endif
3536 }
3537
3538 EV_FREQUENT_CHECK;
3539}
3540
3541void noinline
3542ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3543{
3544 clear_pending (EV_A_ (W)w);
3545 if (expect_false (!ev_is_active (w)))
3546 return;
3547
3548 EV_FREQUENT_CHECK;
3549
3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
3551 ev_stop (EV_A_ (W)w);
3552
3553 if (!signals [w->signum - 1].head)
3554 {
3555#if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557#endif
3558#if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571#endif
3572 signal (w->signum, SIG_DFL);
3573 }
3574
3575 EV_FREQUENT_CHECK;
3576}
3577
3578#endif
3579
3580#if EV_CHILD_ENABLE
3581
1299void 3582void
1300ev_signal_start (EV_P_ struct ev_signal *w) 3583ev_child_start (EV_P_ ev_child *w) EV_THROW
1301{ 3584{
1302#if EV_MULTIPLICITY 3585#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 3587#endif
1305 if (ev_is_active (w)) 3588 if (expect_false (ev_is_active (w)))
1306 return; 3589 return;
1307 3590
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3591 EV_FREQUENT_CHECK;
1309 3592
1310 ev_start (EV_A_ (W)w, 1); 3593 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 3595
1314 if (!((WL)w)->next) 3596 EV_FREQUENT_CHECK;
1315 {
1316 struct sigaction sa;
1317 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0);
1321 }
1322} 3597}
1323 3598
1324void 3599void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 3600ev_child_stop (EV_P_ ev_child *w) EV_THROW
1326{ 3601{
1327 ev_clear_pending (EV_A_ (W)w); 3602 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 3603 if (expect_false (!ev_is_active (w)))
1329 return; 3604 return;
1330 3605
1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3606 EV_FREQUENT_CHECK;
3607
3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1332 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
1333 3610
1334 if (!signals [w->signum - 1].head) 3611 EV_FREQUENT_CHECK;
1335 signal (w->signum, SIG_DFL);
1336} 3612}
3613
3614#endif
3615
3616#if EV_STAT_ENABLE
3617
3618# ifdef _WIN32
3619# undef lstat
3620# define lstat(a,b) _stati64 (a,b)
3621# endif
3622
3623#define DEF_STAT_INTERVAL 5.0074891
3624#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3625#define MIN_STAT_INTERVAL 0.1074891
3626
3627static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3628
3629#if EV_USE_INOTIFY
3630
3631/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3633
3634static void noinline
3635infy_add (EV_P_ ev_stat *w)
3636{
3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3638
3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3659 }
3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3664
3665 /* if path is not there, monitor some parent directory for speedup hints */
3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 /* but an efficiency issue only */
3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3669 {
3670 char path [4096];
3671 strcpy (path, w->path);
3672
3673 do
3674 {
3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3677
3678 char *pend = strrchr (path, '/');
3679
3680 if (!pend || pend == path)
3681 break;
3682
3683 *pend = 0;
3684 w->wd = inotify_add_watch (fs_fd, path, mask);
3685 }
3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3687 }
3688 }
3689
3690 if (w->wd >= 0)
3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3697}
3698
3699static void noinline
3700infy_del (EV_P_ ev_stat *w)
3701{
3702 int slot;
3703 int wd = w->wd;
3704
3705 if (wd < 0)
3706 return;
3707
3708 w->wd = -2;
3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3710 wlist_del (&fs_hash [slot].head, (WL)w);
3711
3712 /* remove this watcher, if others are watching it, they will rearm */
3713 inotify_rm_watch (fs_fd, wd);
3714}
3715
3716static void noinline
3717infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3718{
3719 if (slot < 0)
3720 /* overflow, need to check for all hash slots */
3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3722 infy_wd (EV_A_ slot, wd, ev);
3723 else
3724 {
3725 WL w_;
3726
3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3728 {
3729 ev_stat *w = (ev_stat *)w_;
3730 w_ = w_->next; /* lets us remove this watcher and all before it */
3731
3732 if (w->wd == wd || wd == -1)
3733 {
3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3737 w->wd = -1;
3738 infy_add (EV_A_ w); /* re-add, no matter what */
3739 }
3740
3741 stat_timer_cb (EV_A_ &w->timer, 0);
3742 }
3743 }
3744 }
3745}
3746
3747static void
3748infy_cb (EV_P_ ev_io *w, int revents)
3749{
3750 char buf [EV_INOTIFY_BUFSIZE];
3751 int ofs;
3752 int len = read (fs_fd, buf, sizeof (buf));
3753
3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
3760}
3761
3762inline_size void ecb_cold
3763ev_check_2625 (EV_P)
3764{
3765 /* kernels < 2.6.25 are borked
3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767 */
3768 if (ev_linux_version () < 0x020619)
3769 return;
3770
3771 fs_2625 = 1;
3772}
3773
3774inline_size int
3775infy_newfd (void)
3776{
3777#if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781#endif
3782 return inotify_init ();
3783}
3784
3785inline_size void
3786infy_init (EV_P)
3787{
3788 if (fs_fd != -2)
3789 return;
3790
3791 fs_fd = -1;
3792
3793 ev_check_2625 (EV_A);
3794
3795 fs_fd = infy_newfd ();
3796
3797 if (fs_fd >= 0)
3798 {
3799 fd_intern (fs_fd);
3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3801 ev_set_priority (&fs_w, EV_MAXPRI);
3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
3804 }
3805}
3806
3807inline_size void
3808infy_fork (EV_P)
3809{
3810 int slot;
3811
3812 if (fs_fd < 0)
3813 return;
3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
3817 close (fs_fd);
3818 fs_fd = infy_newfd ();
3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3829 {
3830 WL w_ = fs_hash [slot].head;
3831 fs_hash [slot].head = 0;
3832
3833 while (w_)
3834 {
3835 ev_stat *w = (ev_stat *)w_;
3836 w_ = w_->next; /* lets us add this watcher */
3837
3838 w->wd = -1;
3839
3840 if (fs_fd >= 0)
3841 infy_add (EV_A_ w); /* re-add, no matter what */
3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
3849 }
3850 }
3851}
3852
3853#endif
3854
3855#ifdef _WIN32
3856# define EV_LSTAT(p,b) _stati64 (p, b)
3857#else
3858# define EV_LSTAT(p,b) lstat (p, b)
3859#endif
1337 3860
1338void 3861void
1339ev_child_start (EV_P_ struct ev_child *w) 3862ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1340{ 3863{
1341#if EV_MULTIPLICITY 3864 if (lstat (w->path, &w->attr) < 0)
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 3865 w->attr.st_nlink = 0;
1343#endif 3866 else if (!w->attr.st_nlink)
3867 w->attr.st_nlink = 1;
3868}
3869
3870static void noinline
3871stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3872{
3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3874
3875 ev_statdata prev = w->attr;
3876 ev_stat_stat (EV_A_ w);
3877
3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3879 if (
3880 prev.st_dev != w->attr.st_dev
3881 || prev.st_ino != w->attr.st_ino
3882 || prev.st_mode != w->attr.st_mode
3883 || prev.st_nlink != w->attr.st_nlink
3884 || prev.st_uid != w->attr.st_uid
3885 || prev.st_gid != w->attr.st_gid
3886 || prev.st_rdev != w->attr.st_rdev
3887 || prev.st_size != w->attr.st_size
3888 || prev.st_atime != w->attr.st_atime
3889 || prev.st_mtime != w->attr.st_mtime
3890 || prev.st_ctime != w->attr.st_ctime
3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
3897 #if EV_USE_INOTIFY
3898 if (fs_fd >= 0)
3899 {
3900 infy_del (EV_A_ w);
3901 infy_add (EV_A_ w);
3902 ev_stat_stat (EV_A_ w); /* avoid race... */
3903 }
3904 #endif
3905
3906 ev_feed_event (EV_A_ w, EV_STAT);
3907 }
3908}
3909
3910void
3911ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3912{
1344 if (ev_is_active (w)) 3913 if (expect_false (ev_is_active (w)))
1345 return; 3914 return;
1346 3915
3916 ev_stat_stat (EV_A_ w);
3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3919 w->interval = MIN_STAT_INTERVAL;
3920
3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3922 ev_set_priority (&w->timer, ev_priority (w));
3923
3924#if EV_USE_INOTIFY
3925 infy_init (EV_A);
3926
3927 if (fs_fd >= 0)
3928 infy_add (EV_A_ w);
3929 else
3930#endif
3931 {
3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
3935
1347 ev_start (EV_A_ (W)w, 1); 3936 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3937
3938 EV_FREQUENT_CHECK;
1349} 3939}
1350 3940
1351void 3941void
1352ev_child_stop (EV_P_ struct ev_child *w) 3942ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1353{ 3943{
1354 ev_clear_pending (EV_A_ (W)w); 3944 clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 3945 if (expect_false (!ev_is_active (w)))
1356 return; 3946 return;
1357 3947
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3948 EV_FREQUENT_CHECK;
3949
3950#if EV_USE_INOTIFY
3951 infy_del (EV_A_ w);
3952#endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
3959
1359 ev_stop (EV_A_ (W)w); 3960 ev_stop (EV_A_ (W)w);
3961
3962 EV_FREQUENT_CHECK;
1360} 3963}
3964#endif
3965
3966#if EV_IDLE_ENABLE
3967void
3968ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3969{
3970 if (expect_false (ev_is_active (w)))
3971 return;
3972
3973 pri_adjust (EV_A_ (W)w);
3974
3975 EV_FREQUENT_CHECK;
3976
3977 {
3978 int active = ++idlecnt [ABSPRI (w)];
3979
3980 ++idleall;
3981 ev_start (EV_A_ (W)w, active);
3982
3983 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3984 idles [ABSPRI (w)][active - 1] = w;
3985 }
3986
3987 EV_FREQUENT_CHECK;
3988}
3989
3990void
3991ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3992{
3993 clear_pending (EV_A_ (W)w);
3994 if (expect_false (!ev_is_active (w)))
3995 return;
3996
3997 EV_FREQUENT_CHECK;
3998
3999 {
4000 int active = ev_active (w);
4001
4002 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4003 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4004
4005 ev_stop (EV_A_ (W)w);
4006 --idleall;
4007 }
4008
4009 EV_FREQUENT_CHECK;
4010}
4011#endif
4012
4013#if EV_PREPARE_ENABLE
4014void
4015ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4016{
4017 if (expect_false (ev_is_active (w)))
4018 return;
4019
4020 EV_FREQUENT_CHECK;
4021
4022 ev_start (EV_A_ (W)w, ++preparecnt);
4023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4024 prepares [preparecnt - 1] = w;
4025
4026 EV_FREQUENT_CHECK;
4027}
4028
4029void
4030ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4031{
4032 clear_pending (EV_A_ (W)w);
4033 if (expect_false (!ev_is_active (w)))
4034 return;
4035
4036 EV_FREQUENT_CHECK;
4037
4038 {
4039 int active = ev_active (w);
4040
4041 prepares [active - 1] = prepares [--preparecnt];
4042 ev_active (prepares [active - 1]) = active;
4043 }
4044
4045 ev_stop (EV_A_ (W)w);
4046
4047 EV_FREQUENT_CHECK;
4048}
4049#endif
4050
4051#if EV_CHECK_ENABLE
4052void
4053ev_check_start (EV_P_ ev_check *w) EV_THROW
4054{
4055 if (expect_false (ev_is_active (w)))
4056 return;
4057
4058 EV_FREQUENT_CHECK;
4059
4060 ev_start (EV_A_ (W)w, ++checkcnt);
4061 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4062 checks [checkcnt - 1] = w;
4063
4064 EV_FREQUENT_CHECK;
4065}
4066
4067void
4068ev_check_stop (EV_P_ ev_check *w) EV_THROW
4069{
4070 clear_pending (EV_A_ (W)w);
4071 if (expect_false (!ev_is_active (w)))
4072 return;
4073
4074 EV_FREQUENT_CHECK;
4075
4076 {
4077 int active = ev_active (w);
4078
4079 checks [active - 1] = checks [--checkcnt];
4080 ev_active (checks [active - 1]) = active;
4081 }
4082
4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
4086}
4087#endif
4088
4089#if EV_EMBED_ENABLE
4090void noinline
4091ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4092{
4093 ev_run (w->other, EVRUN_NOWAIT);
4094}
4095
4096static void
4097embed_io_cb (EV_P_ ev_io *io, int revents)
4098{
4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4100
4101 if (ev_cb (w))
4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4103 else
4104 ev_run (w->other, EVRUN_NOWAIT);
4105}
4106
4107static void
4108embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4109{
4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4111
4112 {
4113 EV_P = w->other;
4114
4115 while (fdchangecnt)
4116 {
4117 fd_reify (EV_A);
4118 ev_run (EV_A_ EVRUN_NOWAIT);
4119 }
4120 }
4121}
4122
4123static void
4124embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125{
4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127
4128 ev_embed_stop (EV_A_ w);
4129
4130 {
4131 EV_P = w->other;
4132
4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
4135 }
4136
4137 ev_embed_start (EV_A_ w);
4138}
4139
4140#if 0
4141static void
4142embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4143{
4144 ev_idle_stop (EV_A_ idle);
4145}
4146#endif
4147
4148void
4149ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4150{
4151 if (expect_false (ev_is_active (w)))
4152 return;
4153
4154 {
4155 EV_P = w->other;
4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4158 }
4159
4160 EV_FREQUENT_CHECK;
4161
4162 ev_set_priority (&w->io, ev_priority (w));
4163 ev_io_start (EV_A_ &w->io);
4164
4165 ev_prepare_init (&w->prepare, embed_prepare_cb);
4166 ev_set_priority (&w->prepare, EV_MINPRI);
4167 ev_prepare_start (EV_A_ &w->prepare);
4168
4169 ev_fork_init (&w->fork, embed_fork_cb);
4170 ev_fork_start (EV_A_ &w->fork);
4171
4172 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4173
4174 ev_start (EV_A_ (W)w, 1);
4175
4176 EV_FREQUENT_CHECK;
4177}
4178
4179void
4180ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4181{
4182 clear_pending (EV_A_ (W)w);
4183 if (expect_false (!ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 ev_io_stop (EV_A_ &w->io);
4189 ev_prepare_stop (EV_A_ &w->prepare);
4190 ev_fork_stop (EV_A_ &w->fork);
4191
4192 ev_stop (EV_A_ (W)w);
4193
4194 EV_FREQUENT_CHECK;
4195}
4196#endif
4197
4198#if EV_FORK_ENABLE
4199void
4200ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4201{
4202 if (expect_false (ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206
4207 ev_start (EV_A_ (W)w, ++forkcnt);
4208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4209 forks [forkcnt - 1] = w;
4210
4211 EV_FREQUENT_CHECK;
4212}
4213
4214void
4215ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4216{
4217 clear_pending (EV_A_ (W)w);
4218 if (expect_false (!ev_is_active (w)))
4219 return;
4220
4221 EV_FREQUENT_CHECK;
4222
4223 {
4224 int active = ev_active (w);
4225
4226 forks [active - 1] = forks [--forkcnt];
4227 ev_active (forks [active - 1]) = active;
4228 }
4229
4230 ev_stop (EV_A_ (W)w);
4231
4232 EV_FREQUENT_CHECK;
4233}
4234#endif
4235
4236#if EV_CLEANUP_ENABLE
4237void
4238ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239{
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252}
4253
4254void
4255ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256{
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
4274}
4275#endif
4276
4277#if EV_ASYNC_ENABLE
4278void
4279ev_async_start (EV_P_ ev_async *w) EV_THROW
4280{
4281 if (expect_false (ev_is_active (w)))
4282 return;
4283
4284 w->sent = 0;
4285
4286 evpipe_init (EV_A);
4287
4288 EV_FREQUENT_CHECK;
4289
4290 ev_start (EV_A_ (W)w, ++asynccnt);
4291 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4292 asyncs [asynccnt - 1] = w;
4293
4294 EV_FREQUENT_CHECK;
4295}
4296
4297void
4298ev_async_stop (EV_P_ ev_async *w) EV_THROW
4299{
4300 clear_pending (EV_A_ (W)w);
4301 if (expect_false (!ev_is_active (w)))
4302 return;
4303
4304 EV_FREQUENT_CHECK;
4305
4306 {
4307 int active = ev_active (w);
4308
4309 asyncs [active - 1] = asyncs [--asynccnt];
4310 ev_active (asyncs [active - 1]) = active;
4311 }
4312
4313 ev_stop (EV_A_ (W)w);
4314
4315 EV_FREQUENT_CHECK;
4316}
4317
4318void
4319ev_async_send (EV_P_ ev_async *w) EV_THROW
4320{
4321 w->sent = 1;
4322 evpipe_write (EV_A_ &async_pending);
4323}
4324#endif
1361 4325
1362/*****************************************************************************/ 4326/*****************************************************************************/
1363 4327
1364struct ev_once 4328struct ev_once
1365{ 4329{
1366 struct ev_io io; 4330 ev_io io;
1367 struct ev_timer to; 4331 ev_timer to;
1368 void (*cb)(int revents, void *arg); 4332 void (*cb)(int revents, void *arg);
1369 void *arg; 4333 void *arg;
1370}; 4334};
1371 4335
1372static void 4336static void
1373once_cb (EV_P_ struct ev_once *once, int revents) 4337once_cb (EV_P_ struct ev_once *once, int revents)
1374{ 4338{
1375 void (*cb)(int revents, void *arg) = once->cb; 4339 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 4340 void *arg = once->arg;
1377 4341
1378 ev_io_stop (EV_A_ &once->io); 4342 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 4343 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 4344 ev_free (once);
1381 4345
1382 cb (revents, arg); 4346 cb (revents, arg);
1383} 4347}
1384 4348
1385static void 4349static void
1386once_cb_io (EV_P_ struct ev_io *w, int revents) 4350once_cb_io (EV_P_ ev_io *w, int revents)
1387{ 4351{
1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4352 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353
4354 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1389} 4355}
1390 4356
1391static void 4357static void
1392once_cb_to (EV_P_ struct ev_timer *w, int revents) 4358once_cb_to (EV_P_ ev_timer *w, int revents)
1393{ 4359{
1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4360 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361
4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1395} 4363}
1396 4364
1397void 4365void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4366ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1399{ 4367{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 4369
1402 if (!once) 4370 if (expect_false (!once))
4371 {
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1404 else 4373 return;
1405 { 4374 }
4375
1406 once->cb = cb; 4376 once->cb = cb;
1407 once->arg = arg; 4377 once->arg = arg;
1408 4378
1409 ev_watcher_init (&once->io, once_cb_io); 4379 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 4380 if (fd >= 0)
4381 {
4382 ev_io_set (&once->io, fd, events);
4383 ev_io_start (EV_A_ &once->io);
4384 }
4385
4386 ev_init (&once->to, once_cb_to);
4387 if (timeout >= 0.)
4388 {
4389 ev_timer_set (&once->to, timeout, 0.);
4390 ev_timer_start (EV_A_ &once->to);
4391 }
4392}
4393
4394/*****************************************************************************/
4395
4396#if EV_WALK_ENABLE
4397void ecb_cold
4398ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399{
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
1411 { 4406 {
1412 ev_io_set (&once->io, fd, events); 4407 wn = wl->next;
1413 ev_io_start (EV_A_ &once->io); 4408
4409#if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416#endif
4417#if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421#endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
1414 } 4427 }
1415 4428
1416 ev_watcher_init (&once->to, once_cb_to); 4429 if (types & (EV_TIMER | EV_STAT))
1417 if (timeout >= 0.) 4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431#if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1418 { 4434 {
1419 ev_timer_set (&once->to, timeout, 0.); 4435 if (types & EV_STAT)
1420 ev_timer_start (EV_A_ &once->to); 4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1421 } 4437 }
1422 } 4438 else
1423} 4439#endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1424 4442
4443#if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447#endif
4448
4449#if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454#endif
4455
4456#if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461#endif
4462
4463#if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467#endif
4468
4469#if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472# if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
4474# endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476#endif
4477
4478#if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482#endif
4483
4484#if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493#endif
4494
4495#if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504#endif
4505/* EV_STAT 0x00001000 /* stat data changed */
4506/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507}
4508#endif
4509
4510#if EV_MULTIPLICITY
4511 #include "ev_wrap.h"
4512#endif
4513

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines