ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.48 by root, Sat Nov 3 12:19:31 2007 UTC vs.
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
73#endif 95#endif
74 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
78 108
79/**/ 109/**/
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 149
128/*****************************************************************************/ 150/*****************************************************************************/
129 151
130ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
131ev_time (void) 186ev_time (void)
132{ 187{
133#if EV_USE_REALTIME 188#if EV_USE_REALTIME
134 struct timespec ts; 189 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 196#endif
142} 197}
143 198
144static ev_tstamp 199inline ev_tstamp
145get_clock (void) 200get_clock (void)
146{ 201{
147#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
149 { 204 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 208 }
154#endif 209#endif
155 210
156 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
157} 218}
158 219
159#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
160 221
161#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 234 cur = newcnt; \
174 } 235 }
175 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
176/*****************************************************************************/ 240/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 241
188static void 242static void
189anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
190{ 244{
191 while (count--) 245 while (count--)
196 250
197 ++base; 251 ++base;
198 } 252 }
199} 253}
200 254
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 255static void
211event (W w, int events) 256event (EV_P_ W w, int events)
212{ 257{
213 if (w->pending) 258 if (w->pending)
214 { 259 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 261 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 268}
224 269
225static void 270static void
226queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 272{
228 int i; 273 int i;
229 274
230 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 276 event (EV_A_ events [i], type);
232} 277}
233 278
234static void 279static void
235fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
236{ 281{
237 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 283 struct ev_io *w;
239 284
240 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 286 {
242 int ev = w->events & events; 287 int ev = w->events & events;
243 288
244 if (ev) 289 if (ev)
245 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
246 } 291 }
247} 292}
248 293
249/*****************************************************************************/ 294/*****************************************************************************/
250 295
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 296static void
255fd_reify (void) 297fd_reify (EV_P)
256{ 298{
257 int i; 299 int i;
258 300
259 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
260 { 302 {
262 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 305 struct ev_io *w;
264 306
265 int events = 0; 307 int events = 0;
266 308
267 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 310 events |= w->events;
269 311
270 anfd->reify = 0; 312 anfd->reify = 0;
271 313
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 315 anfd->events = events;
276 }
277 } 316 }
278 317
279 fdchangecnt = 0; 318 fdchangecnt = 0;
280} 319}
281 320
282static void 321static void
283fd_change (int fd) 322fd_change (EV_P_ int fd)
284{ 323{
285 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 325 return;
287 326
288 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
293} 332}
294 333
295static void 334static void
296fd_kill (int fd) 335fd_kill (EV_P_ int fd)
297{ 336{
298 struct ev_io *w; 337 struct ev_io *w;
299 338
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
302 { 340 {
303 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 343 }
306} 344}
307 345
308/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
309static void 347static void
310fd_ebadf (void) 348fd_ebadf (EV_P)
311{ 349{
312 int fd; 350 int fd;
313 351
314 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 353 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 355 fd_kill (EV_A_ fd);
318} 356}
319 357
320/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 359static void
322fd_enomem (void) 360fd_enomem (EV_P)
323{ 361{
324 int fd = anfdmax; 362 int fd;
325 363
326 while (fd--) 364 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 365 if (anfds [fd].events)
328 { 366 {
329 close (fd); 367 close (fd);
330 fd_kill (fd); 368 fd_kill (EV_A_ fd);
331 return; 369 return;
332 } 370 }
333} 371}
334 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
335/*****************************************************************************/ 388/*****************************************************************************/
336 389
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 390static void
344upheap (WT *timers, int k) 391upheap (WT *heap, int k)
345{ 392{
346 WT w = timers [k]; 393 WT w = heap [k];
347 394
348 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
349 { 396 {
350 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
352 k >>= 1; 399 k >>= 1;
353 } 400 }
354 401
355 timers [k] = w; 402 heap [k] = w;
356 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
357 404
358} 405}
359 406
360static void 407static void
361downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
362{ 409{
363 WT w = timers [k]; 410 WT w = heap [k];
364 411
365 while (k < (N >> 1)) 412 while (k < (N >> 1))
366 { 413 {
367 int j = k << 1; 414 int j = k << 1;
368 415
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 417 ++j;
371 418
372 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
373 break; 420 break;
374 421
375 timers [k] = timers [j]; 422 heap [k] = heap [j];
376 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
377 k = j; 424 k = j;
378 } 425 }
379 426
380 timers [k] = w; 427 heap [k] = w;
381 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
382} 429}
383 430
384/*****************************************************************************/ 431/*****************************************************************************/
385 432
386typedef struct 433typedef struct
387{ 434{
388 struct ev_signal *head; 435 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
390} ANSIG; 437} ANSIG;
391 438
392static ANSIG *signals; 439static ANSIG *signals;
393static int signalmax; 440static int signalmax;
421 errno = old_errno; 468 errno = old_errno;
422 } 469 }
423} 470}
424 471
425static void 472static void
426sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 474{
428 struct ev_signal *w; 475 struct ev_watcher_list *w;
429 int signum; 476 int signum;
430 477
431 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
432 gotsig = 0; 479 gotsig = 0;
433 480
435 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
436 { 483 {
437 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
438 485
439 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
441 } 488 }
442} 489}
443 490
444static void 491static void
445siginit (void) 492siginit (EV_P)
446{ 493{
447#ifndef WIN32 494#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 497
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 501#endif
455 502
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 506}
459 507
460/*****************************************************************************/ 508/*****************************************************************************/
461 509
462static struct ev_idle **idles; 510#ifndef WIN32
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472 511
473static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev; 513static struct ev_signal childev;
475 514
476#ifndef WIN32
477
478#ifndef WCONTINUED 515#ifndef WCONTINUED
479# define WCONTINUED 0 516# define WCONTINUED 0
480#endif 517#endif
481 518
482static void 519static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 521{
485 struct ev_child *w; 522 struct ev_child *w;
486 523
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 525 if (w->pid == pid || !w->pid)
489 { 526 {
490 w->priority = sw->priority; /* need to do it *now* */ 527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
491 w->rpid = pid; 528 w->rpid = pid;
492 w->rstatus = status; 529 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 530 event (EV_A_ (W)w, EV_CHILD);
495 } 531 }
496} 532}
497 533
498static void 534static void
499childcb (struct ev_signal *sw, int revents) 535childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 536{
501 int pid, status; 537 int pid, status;
502 538
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 540 {
506 /* make sure we are called again until all childs have been reaped */ 541 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 542 event (EV_A_ (W)sw, EV_SIGNAL);
508 543
509 child_reap (sw, pid, pid, status); 544 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 546 }
512} 547}
513 548
514#endif 549#endif
515 550
538ev_version_minor (void) 573ev_version_minor (void)
539{ 574{
540 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
541} 576}
542 577
543/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
544static int 579static int
545enable_secure () 580enable_secure (void)
546{ 581{
582#ifdef WIN32
583 return 0;
584#else
547 return getuid () != geteuid () 585 return getuid () != geteuid ()
548 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
549} 588}
550 589
551int ev_init (int methods) 590int
591ev_method (EV_P)
552{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
553 if (!ev_method) 599 if (!method)
554 { 600 {
555#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
556 { 602 {
557 struct timespec ts; 603 struct timespec ts;
558 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
559 have_monotonic = 1; 605 have_monotonic = 1;
560 } 606 }
561#endif 607#endif
562 608
563 ev_now = ev_time (); 609 rt_now = ev_time ();
564 now = get_clock (); 610 mn_now = get_clock ();
565 now_floor = now; 611 now_floor = mn_now;
566 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
567
568 if (pipe (sigpipe))
569 return 0;
570 613
571 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
572 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
573 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
574 else 617 else
575 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
576 619
577 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
578#if EV_USE_KQUEUE 624#if EV_USE_KQUEUE
579 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
580#endif 626#endif
581#if EV_USE_EPOLL 627#if EV_USE_EPOLL
582 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
583#endif 629#endif
584#if EV_USE_POLL 630#if EV_USE_POLL
585 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
586#endif 632#endif
587#if EV_USE_SELECT 633#if EV_USE_SELECT
588 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
589#endif 635#endif
636 }
637}
590 638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
591 if (ev_method) 741 if (ev_method (EV_A))
592 { 742 {
593 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
594 ev_set_priority (&sigev, EV_MAXPRI); 744 ev_set_priority (&sigev, EV_MAXPRI);
595 siginit (); 745 siginit (EV_A);
596 746
597#ifndef WIN32 747#ifndef WIN32
598 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
599 ev_set_priority (&childev, EV_MAXPRI); 749 ev_set_priority (&childev, EV_MAXPRI);
600 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
601#endif 752#endif
602 } 753 }
754 else
755 default_loop = 0;
603 } 756 }
604 757
605 return ev_method; 758 return default_loop;
606} 759}
607 760
608/*****************************************************************************/
609
610void 761void
611ev_fork_prepare (void) 762ev_default_destroy (void)
612{ 763{
613 /* nop */ 764#if EV_MULTIPLICITY
614} 765 struct ev_loop *loop = default_loop;
615
616void
617ev_fork_parent (void)
618{
619 /* nop */
620}
621
622void
623ev_fork_child (void)
624{
625#if EV_USE_EPOLL
626 if (ev_method == EVMETHOD_EPOLL)
627 epoll_postfork_child ();
628#endif 766#endif
629 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
630 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
631 close (sigpipe [0]); 790 close (sigpipe [0]);
632 close (sigpipe [1]); 791 close (sigpipe [1]);
633 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
634 siginit (); 795 siginit (EV_A);
635} 796}
636 797
637/*****************************************************************************/ 798/*****************************************************************************/
638 799
639static void 800static void
640call_pending (void) 801call_pending (EV_P)
641{ 802{
642 int pri; 803 int pri;
643 804
644 for (pri = NUMPRI; pri--; ) 805 for (pri = NUMPRI; pri--; )
645 while (pendingcnt [pri]) 806 while (pendingcnt [pri])
647 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648 809
649 if (p->w) 810 if (p->w)
650 { 811 {
651 p->w->pending = 0; 812 p->w->pending = 0;
652 p->w->cb (p->w, p->events); 813
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
653 } 815 }
654 } 816 }
655} 817}
656 818
657static void 819static void
658timers_reify (void) 820timers_reify (EV_P)
659{ 821{
660 while (timercnt && timers [0]->at <= now) 822 while (timercnt && ((WT)timers [0])->at <= mn_now)
661 { 823 {
662 struct ev_timer *w = timers [0]; 824 struct ev_timer *w = timers [0];
825
826 assert (("inactive timer on timer heap detected", ev_is_active (w)));
663 827
664 /* first reschedule or stop timer */ 828 /* first reschedule or stop timer */
665 if (w->repeat) 829 if (w->repeat)
666 { 830 {
667 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668 w->at = now + w->repeat; 832 ((WT)w)->at = mn_now + w->repeat;
669 downheap ((WT *)timers, timercnt, 0); 833 downheap ((WT *)timers, timercnt, 0);
670 } 834 }
671 else 835 else
672 ev_timer_stop (w); /* nonrepeating: stop timer */ 836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
673 837
674 event ((W)w, EV_TIMEOUT); 838 event (EV_A_ (W)w, EV_TIMEOUT);
675 } 839 }
676} 840}
677 841
678static void 842static void
679periodics_reify (void) 843periodics_reify (EV_P)
680{ 844{
681 while (periodiccnt && periodics [0]->at <= ev_now) 845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
682 { 846 {
683 struct ev_periodic *w = periodics [0]; 847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
684 850
685 /* first reschedule or stop timer */ 851 /* first reschedule or stop timer */
686 if (w->interval) 852 if (w->interval)
687 { 853 {
688 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
689 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
690 downheap ((WT *)periodics, periodiccnt, 0); 856 downheap ((WT *)periodics, periodiccnt, 0);
691 } 857 }
692 else 858 else
693 ev_periodic_stop (w); /* nonrepeating: stop timer */ 859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
694 860
695 event ((W)w, EV_PERIODIC); 861 event (EV_A_ (W)w, EV_PERIODIC);
696 } 862 }
697} 863}
698 864
699static void 865static void
700periodics_reschedule (ev_tstamp diff) 866periodics_reschedule (EV_P)
701{ 867{
702 int i; 868 int i;
703 869
704 /* adjust periodics after time jump */ 870 /* adjust periodics after time jump */
705 for (i = 0; i < periodiccnt; ++i) 871 for (i = 0; i < periodiccnt; ++i)
706 { 872 {
707 struct ev_periodic *w = periodics [i]; 873 struct ev_periodic *w = periodics [i];
708 874
709 if (w->interval) 875 if (w->interval)
710 { 876 {
711 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
712 878
713 if (fabs (diff) >= 1e-4) 879 if (fabs (diff) >= 1e-4)
714 { 880 {
715 ev_periodic_stop (w); 881 ev_periodic_stop (EV_A_ w);
716 ev_periodic_start (w); 882 ev_periodic_start (EV_A_ w);
717 883
718 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
719 } 885 }
720 } 886 }
721 } 887 }
722} 888}
723 889
724static int 890inline int
725time_update_monotonic (void) 891time_update_monotonic (EV_P)
726{ 892{
727 now = get_clock (); 893 mn_now = get_clock ();
728 894
729 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
730 { 896 {
731 ev_now = now + diff; 897 rt_now = rtmn_diff + mn_now;
732 return 0; 898 return 0;
733 } 899 }
734 else 900 else
735 { 901 {
736 now_floor = now; 902 now_floor = mn_now;
737 ev_now = ev_time (); 903 rt_now = ev_time ();
738 return 1; 904 return 1;
739 } 905 }
740} 906}
741 907
742static void 908static void
743time_update (void) 909time_update (EV_P)
744{ 910{
745 int i; 911 int i;
746 912
747#if EV_USE_MONOTONIC 913#if EV_USE_MONOTONIC
748 if (expect_true (have_monotonic)) 914 if (expect_true (have_monotonic))
749 { 915 {
750 if (time_update_monotonic ()) 916 if (time_update_monotonic (EV_A))
751 { 917 {
752 ev_tstamp odiff = diff; 918 ev_tstamp odiff = rtmn_diff;
753 919
754 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
755 { 921 {
756 diff = ev_now - now; 922 rtmn_diff = rt_now - mn_now;
757 923
758 if (fabs (odiff - diff) < MIN_TIMEJUMP) 924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
759 return; /* all is well */ 925 return; /* all is well */
760 926
761 ev_now = ev_time (); 927 rt_now = ev_time ();
762 now = get_clock (); 928 mn_now = get_clock ();
763 now_floor = now; 929 now_floor = mn_now;
764 } 930 }
765 931
766 periodics_reschedule (diff - odiff); 932 periodics_reschedule (EV_A);
767 /* no timer adjustment, as the monotonic clock doesn't jump */ 933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
768 } 935 }
769 } 936 }
770 else 937 else
771#endif 938#endif
772 { 939 {
773 ev_now = ev_time (); 940 rt_now = ev_time ();
774 941
775 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
776 { 943 {
777 periodics_reschedule (ev_now - now); 944 periodics_reschedule (EV_A);
778 945
779 /* adjust timers. this is easy, as the offset is the same for all */ 946 /* adjust timers. this is easy, as the offset is the same for all */
780 for (i = 0; i < timercnt; ++i) 947 for (i = 0; i < timercnt; ++i)
781 timers [i]->at += diff; 948 ((WT)timers [i])->at += rt_now - mn_now;
782 } 949 }
783 950
784 now = ev_now; 951 mn_now = rt_now;
785 } 952 }
786} 953}
787 954
788int ev_loop_done; 955void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
789 960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
790void ev_loop (int flags) 970ev_loop (EV_P_ int flags)
791{ 971{
792 double block; 972 double block;
793 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794 974
795 do 975 do
796 { 976 {
797 /* queue check watchers (and execute them) */ 977 /* queue check watchers (and execute them) */
798 if (expect_false (preparecnt)) 978 if (expect_false (preparecnt))
799 { 979 {
800 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
801 call_pending (); 981 call_pending (EV_A);
802 } 982 }
803 983
804 /* update fd-related kernel structures */ 984 /* update fd-related kernel structures */
805 fd_reify (); 985 fd_reify (EV_A);
806 986
807 /* calculate blocking time */ 987 /* calculate blocking time */
808 988
809 /* we only need this for !monotonic clockor timers, but as we basically 989 /* we only need this for !monotonic clockor timers, but as we basically
810 always have timers, we just calculate it always */ 990 always have timers, we just calculate it always */
811#if EV_USE_MONOTONIC 991#if EV_USE_MONOTONIC
812 if (expect_true (have_monotonic)) 992 if (expect_true (have_monotonic))
813 time_update_monotonic (); 993 time_update_monotonic (EV_A);
814 else 994 else
815#endif 995#endif
816 { 996 {
817 ev_now = ev_time (); 997 rt_now = ev_time ();
818 now = ev_now; 998 mn_now = rt_now;
819 } 999 }
820 1000
821 if (flags & EVLOOP_NONBLOCK || idlecnt) 1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
822 block = 0.; 1002 block = 0.;
823 else 1003 else
824 { 1004 {
825 block = MAX_BLOCKTIME; 1005 block = MAX_BLOCKTIME;
826 1006
827 if (timercnt) 1007 if (timercnt)
828 { 1008 {
829 ev_tstamp to = timers [0]->at - now + method_fudge; 1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
830 if (block > to) block = to; 1010 if (block > to) block = to;
831 } 1011 }
832 1012
833 if (periodiccnt) 1013 if (periodiccnt)
834 { 1014 {
835 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
836 if (block > to) block = to; 1016 if (block > to) block = to;
837 } 1017 }
838 1018
839 if (block < 0.) block = 0.; 1019 if (block < 0.) block = 0.;
840 } 1020 }
841 1021
842 method_poll (block); 1022 method_poll (EV_A_ block);
843 1023
844 /* update ev_now, do magic */ 1024 /* update rt_now, do magic */
845 time_update (); 1025 time_update (EV_A);
846 1026
847 /* queue pending timers and reschedule them */ 1027 /* queue pending timers and reschedule them */
848 timers_reify (); /* relative timers called last */ 1028 timers_reify (EV_A); /* relative timers called last */
849 periodics_reify (); /* absolute timers called first */ 1029 periodics_reify (EV_A); /* absolute timers called first */
850 1030
851 /* queue idle watchers unless io or timers are pending */ 1031 /* queue idle watchers unless io or timers are pending */
852 if (!pendingcnt) 1032 if (!pendingcnt)
853 queue_events ((W *)idles, idlecnt, EV_IDLE); 1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
854 1034
855 /* queue check watchers, to be executed first */ 1035 /* queue check watchers, to be executed first */
856 if (checkcnt) 1036 if (checkcnt)
857 queue_events ((W *)checks, checkcnt, EV_CHECK); 1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
858 1038
859 call_pending (); 1039 call_pending (EV_A);
860 } 1040 }
861 while (!ev_loop_done); 1041 while (activecnt && !loop_done);
862 1042
863 if (ev_loop_done != 2) 1043 if (loop_done != 2)
864 ev_loop_done = 0; 1044 loop_done = 0;
1045}
1046
1047void
1048ev_unloop (EV_P_ int how)
1049{
1050 loop_done = how;
865} 1051}
866 1052
867/*****************************************************************************/ 1053/*****************************************************************************/
868 1054
869static void 1055inline void
870wlist_add (WL *head, WL elem) 1056wlist_add (WL *head, WL elem)
871{ 1057{
872 elem->next = *head; 1058 elem->next = *head;
873 *head = elem; 1059 *head = elem;
874} 1060}
875 1061
876static void 1062inline void
877wlist_del (WL *head, WL elem) 1063wlist_del (WL *head, WL elem)
878{ 1064{
879 while (*head) 1065 while (*head)
880 { 1066 {
881 if (*head == elem) 1067 if (*head == elem)
886 1072
887 head = &(*head)->next; 1073 head = &(*head)->next;
888 } 1074 }
889} 1075}
890 1076
891static void 1077inline void
892ev_clear_pending (W w) 1078ev_clear_pending (EV_P_ W w)
893{ 1079{
894 if (w->pending) 1080 if (w->pending)
895 { 1081 {
896 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1082 pendings [ABSPRI (w)][w->pending - 1].w = 0;
897 w->pending = 0; 1083 w->pending = 0;
898 } 1084 }
899} 1085}
900 1086
901static void 1087inline void
902ev_start (W w, int active) 1088ev_start (EV_P_ W w, int active)
903{ 1089{
904 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906 1092
907 w->active = active; 1093 w->active = active;
1094 ev_ref (EV_A);
908} 1095}
909 1096
910static void 1097inline void
911ev_stop (W w) 1098ev_stop (EV_P_ W w)
912{ 1099{
1100 ev_unref (EV_A);
913 w->active = 0; 1101 w->active = 0;
914} 1102}
915 1103
916/*****************************************************************************/ 1104/*****************************************************************************/
917 1105
918void 1106void
919ev_io_start (struct ev_io *w) 1107ev_io_start (EV_P_ struct ev_io *w)
920{ 1108{
921 int fd = w->fd; 1109 int fd = w->fd;
922 1110
923 if (ev_is_active (w)) 1111 if (ev_is_active (w))
924 return; 1112 return;
925 1113
926 assert (("ev_io_start called with negative fd", fd >= 0)); 1114 assert (("ev_io_start called with negative fd", fd >= 0));
927 1115
928 ev_start ((W)w, 1); 1116 ev_start (EV_A_ (W)w, 1);
929 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
930 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1118 wlist_add ((WL *)&anfds[fd].head, (WL)w);
931 1119
932 fd_change (fd); 1120 fd_change (EV_A_ fd);
933} 1121}
934 1122
935void 1123void
936ev_io_stop (struct ev_io *w) 1124ev_io_stop (EV_P_ struct ev_io *w)
937{ 1125{
938 ev_clear_pending ((W)w); 1126 ev_clear_pending (EV_A_ (W)w);
939 if (!ev_is_active (w)) 1127 if (!ev_is_active (w))
940 return; 1128 return;
941 1129
942 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943 ev_stop ((W)w); 1131 ev_stop (EV_A_ (W)w);
944 1132
945 fd_change (w->fd); 1133 fd_change (EV_A_ w->fd);
946} 1134}
947 1135
948void 1136void
949ev_timer_start (struct ev_timer *w) 1137ev_timer_start (EV_P_ struct ev_timer *w)
950{ 1138{
951 if (ev_is_active (w)) 1139 if (ev_is_active (w))
952 return; 1140 return;
953 1141
954 w->at += now; 1142 ((WT)w)->at += mn_now;
955 1143
956 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957 1145
958 ev_start ((W)w, ++timercnt); 1146 ev_start (EV_A_ (W)w, ++timercnt);
959 array_needsize (timers, timermax, timercnt, ); 1147 array_needsize (timers, timermax, timercnt, );
960 timers [timercnt - 1] = w; 1148 timers [timercnt - 1] = w;
961 upheap ((WT *)timers, timercnt - 1); 1149 upheap ((WT *)timers, timercnt - 1);
962}
963 1150
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152}
1153
964void 1154void
965ev_timer_stop (struct ev_timer *w) 1155ev_timer_stop (EV_P_ struct ev_timer *w)
966{ 1156{
967 ev_clear_pending ((W)w); 1157 ev_clear_pending (EV_A_ (W)w);
968 if (!ev_is_active (w)) 1158 if (!ev_is_active (w))
969 return; 1159 return;
970 1160
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162
971 if (w->active < timercnt--) 1163 if (((W)w)->active < timercnt--)
972 { 1164 {
973 timers [w->active - 1] = timers [timercnt]; 1165 timers [((W)w)->active - 1] = timers [timercnt];
974 downheap ((WT *)timers, timercnt, w->active - 1); 1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
975 } 1167 }
976 1168
977 w->at = w->repeat; 1169 ((WT)w)->at = w->repeat;
978 1170
979 ev_stop ((W)w); 1171 ev_stop (EV_A_ (W)w);
980} 1172}
981 1173
982void 1174void
983ev_timer_again (struct ev_timer *w) 1175ev_timer_again (EV_P_ struct ev_timer *w)
984{ 1176{
985 if (ev_is_active (w)) 1177 if (ev_is_active (w))
986 { 1178 {
987 if (w->repeat) 1179 if (w->repeat)
988 { 1180 {
989 w->at = now + w->repeat; 1181 ((WT)w)->at = mn_now + w->repeat;
990 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
991 } 1183 }
992 else 1184 else
993 ev_timer_stop (w); 1185 ev_timer_stop (EV_A_ w);
994 } 1186 }
995 else if (w->repeat) 1187 else if (w->repeat)
996 ev_timer_start (w); 1188 ev_timer_start (EV_A_ w);
997} 1189}
998 1190
999void 1191void
1000ev_periodic_start (struct ev_periodic *w) 1192ev_periodic_start (EV_P_ struct ev_periodic *w)
1001{ 1193{
1002 if (ev_is_active (w)) 1194 if (ev_is_active (w))
1003 return; 1195 return;
1004 1196
1005 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006 1198
1007 /* this formula differs from the one in periodic_reify because we do not always round up */ 1199 /* this formula differs from the one in periodic_reify because we do not always round up */
1008 if (w->interval) 1200 if (w->interval)
1009 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1010 1202
1011 ev_start ((W)w, ++periodiccnt); 1203 ev_start (EV_A_ (W)w, ++periodiccnt);
1012 array_needsize (periodics, periodicmax, periodiccnt, ); 1204 array_needsize (periodics, periodicmax, periodiccnt, );
1013 periodics [periodiccnt - 1] = w; 1205 periodics [periodiccnt - 1] = w;
1014 upheap ((WT *)periodics, periodiccnt - 1); 1206 upheap ((WT *)periodics, periodiccnt - 1);
1015}
1016 1207
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209}
1210
1017void 1211void
1018ev_periodic_stop (struct ev_periodic *w) 1212ev_periodic_stop (EV_P_ struct ev_periodic *w)
1019{ 1213{
1020 ev_clear_pending ((W)w); 1214 ev_clear_pending (EV_A_ (W)w);
1021 if (!ev_is_active (w)) 1215 if (!ev_is_active (w))
1022 return; 1216 return;
1023 1217
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219
1024 if (w->active < periodiccnt--) 1220 if (((W)w)->active < periodiccnt--)
1025 { 1221 {
1026 periodics [w->active - 1] = periodics [periodiccnt]; 1222 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1027 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1028 } 1224 }
1029 1225
1030 ev_stop ((W)w); 1226 ev_stop (EV_A_ (W)w);
1227}
1228
1229void
1230ev_idle_start (EV_P_ struct ev_idle *w)
1231{
1232 if (ev_is_active (w))
1233 return;
1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w);
1249}
1250
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1031} 1293}
1032 1294
1033#ifndef SA_RESTART 1295#ifndef SA_RESTART
1034# define SA_RESTART 0 1296# define SA_RESTART 0
1035#endif 1297#endif
1036 1298
1037void 1299void
1038ev_signal_start (struct ev_signal *w) 1300ev_signal_start (EV_P_ struct ev_signal *w)
1039{ 1301{
1302#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304#endif
1040 if (ev_is_active (w)) 1305 if (ev_is_active (w))
1041 return; 1306 return;
1042 1307
1043 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044 1309
1045 ev_start ((W)w, 1); 1310 ev_start (EV_A_ (W)w, 1);
1046 array_needsize (signals, signalmax, w->signum, signals_init); 1311 array_needsize (signals, signalmax, w->signum, signals_init);
1047 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048 1313
1049 if (!w->next) 1314 if (!((WL)w)->next)
1050 { 1315 {
1051 struct sigaction sa; 1316 struct sigaction sa;
1052 sa.sa_handler = sighandler; 1317 sa.sa_handler = sighandler;
1053 sigfillset (&sa.sa_mask); 1318 sigfillset (&sa.sa_mask);
1054 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1055 sigaction (w->signum, &sa, 0); 1320 sigaction (w->signum, &sa, 0);
1056 } 1321 }
1057} 1322}
1058 1323
1059void 1324void
1060ev_signal_stop (struct ev_signal *w) 1325ev_signal_stop (EV_P_ struct ev_signal *w)
1061{ 1326{
1062 ev_clear_pending ((W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1063 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1064 return; 1329 return;
1065 1330
1066 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067 ev_stop ((W)w); 1332 ev_stop (EV_A_ (W)w);
1068 1333
1069 if (!signals [w->signum - 1].head) 1334 if (!signals [w->signum - 1].head)
1070 signal (w->signum, SIG_DFL); 1335 signal (w->signum, SIG_DFL);
1071} 1336}
1072 1337
1073void 1338void
1074ev_idle_start (struct ev_idle *w) 1339ev_child_start (EV_P_ struct ev_child *w)
1075{ 1340{
1341#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop));
1343#endif
1076 if (ev_is_active (w)) 1344 if (ev_is_active (w))
1077 return; 1345 return;
1078 1346
1079 ev_start ((W)w, ++idlecnt); 1347 ev_start (EV_A_ (W)w, 1);
1080 array_needsize (idles, idlemax, idlecnt, ); 1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1081 idles [idlecnt - 1] = w;
1082} 1349}
1083 1350
1084void 1351void
1085ev_idle_stop (struct ev_idle *w) 1352ev_child_stop (EV_P_ struct ev_child *w)
1086{ 1353{
1087 ev_clear_pending ((W)w); 1354 ev_clear_pending (EV_A_ (W)w);
1088 if (ev_is_active (w)) 1355 if (ev_is_active (w))
1089 return; 1356 return;
1090 1357
1091 idles [w->active - 1] = idles [--idlecnt];
1092 ev_stop ((W)w);
1093}
1094
1095void
1096ev_prepare_start (struct ev_prepare *w)
1097{
1098 if (ev_is_active (w))
1099 return;
1100
1101 ev_start ((W)w, ++preparecnt);
1102 array_needsize (prepares, preparemax, preparecnt, );
1103 prepares [preparecnt - 1] = w;
1104}
1105
1106void
1107ev_prepare_stop (struct ev_prepare *w)
1108{
1109 ev_clear_pending ((W)w);
1110 if (ev_is_active (w))
1111 return;
1112
1113 prepares [w->active - 1] = prepares [--preparecnt];
1114 ev_stop ((W)w);
1115}
1116
1117void
1118ev_check_start (struct ev_check *w)
1119{
1120 if (ev_is_active (w))
1121 return;
1122
1123 ev_start ((W)w, ++checkcnt);
1124 array_needsize (checks, checkmax, checkcnt, );
1125 checks [checkcnt - 1] = w;
1126}
1127
1128void
1129ev_check_stop (struct ev_check *w)
1130{
1131 ev_clear_pending ((W)w);
1132 if (ev_is_active (w))
1133 return;
1134
1135 checks [w->active - 1] = checks [--checkcnt];
1136 ev_stop ((W)w);
1137}
1138
1139void
1140ev_child_start (struct ev_child *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start ((W)w, 1);
1146 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147}
1148
1149void
1150ev_child_stop (struct ev_child *w)
1151{
1152 ev_clear_pending ((W)w);
1153 if (ev_is_active (w))
1154 return;
1155
1156 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157 ev_stop ((W)w); 1359 ev_stop (EV_A_ (W)w);
1158} 1360}
1159 1361
1160/*****************************************************************************/ 1362/*****************************************************************************/
1161 1363
1162struct ev_once 1364struct ev_once
1166 void (*cb)(int revents, void *arg); 1368 void (*cb)(int revents, void *arg);
1167 void *arg; 1369 void *arg;
1168}; 1370};
1169 1371
1170static void 1372static void
1171once_cb (struct ev_once *once, int revents) 1373once_cb (EV_P_ struct ev_once *once, int revents)
1172{ 1374{
1173 void (*cb)(int revents, void *arg) = once->cb; 1375 void (*cb)(int revents, void *arg) = once->cb;
1174 void *arg = once->arg; 1376 void *arg = once->arg;
1175 1377
1176 ev_io_stop (&once->io); 1378 ev_io_stop (EV_A_ &once->io);
1177 ev_timer_stop (&once->to); 1379 ev_timer_stop (EV_A_ &once->to);
1178 free (once); 1380 free (once);
1179 1381
1180 cb (revents, arg); 1382 cb (revents, arg);
1181} 1383}
1182 1384
1183static void 1385static void
1184once_cb_io (struct ev_io *w, int revents) 1386once_cb_io (EV_P_ struct ev_io *w, int revents)
1185{ 1387{
1186 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1187} 1389}
1188 1390
1189static void 1391static void
1190once_cb_to (struct ev_timer *w, int revents) 1392once_cb_to (EV_P_ struct ev_timer *w, int revents)
1191{ 1393{
1192 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1193} 1395}
1194 1396
1195void 1397void
1196ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197{ 1399{
1198 struct ev_once *once = malloc (sizeof (struct ev_once)); 1400 struct ev_once *once = malloc (sizeof (struct ev_once));
1199 1401
1200 if (!once) 1402 if (!once)
1201 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1206 1408
1207 ev_watcher_init (&once->io, once_cb_io); 1409 ev_watcher_init (&once->io, once_cb_io);
1208 if (fd >= 0) 1410 if (fd >= 0)
1209 { 1411 {
1210 ev_io_set (&once->io, fd, events); 1412 ev_io_set (&once->io, fd, events);
1211 ev_io_start (&once->io); 1413 ev_io_start (EV_A_ &once->io);
1212 } 1414 }
1213 1415
1214 ev_watcher_init (&once->to, once_cb_to); 1416 ev_watcher_init (&once->to, once_cb_to);
1215 if (timeout >= 0.) 1417 if (timeout >= 0.)
1216 { 1418 {
1217 ev_timer_set (&once->to, timeout, 0.); 1419 ev_timer_set (&once->to, timeout, 0.);
1218 ev_timer_start (&once->to); 1420 ev_timer_start (EV_A_ &once->to);
1219 } 1421 }
1220 } 1422 }
1221} 1423}
1222 1424
1223/*****************************************************************************/
1224
1225#if 0
1226
1227struct ev_io wio;
1228
1229static void
1230sin_cb (struct ev_io *w, int revents)
1231{
1232 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1233}
1234
1235static void
1236ocb (struct ev_timer *w, int revents)
1237{
1238 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1239 ev_timer_stop (w);
1240 ev_timer_start (w);
1241}
1242
1243static void
1244scb (struct ev_signal *w, int revents)
1245{
1246 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247 ev_io_stop (&wio);
1248 ev_io_start (&wio);
1249}
1250
1251static void
1252gcb (struct ev_signal *w, int revents)
1253{
1254 fprintf (stderr, "generic %x\n", revents);
1255
1256}
1257
1258int main (void)
1259{
1260 ev_init (0);
1261
1262 ev_io_init (&wio, sin_cb, 0, EV_READ);
1263 ev_io_start (&wio);
1264
1265 struct ev_timer t[10000];
1266
1267#if 0
1268 int i;
1269 for (i = 0; i < 10000; ++i)
1270 {
1271 struct ev_timer *w = t + i;
1272 ev_watcher_init (w, ocb, i);
1273 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1274 ev_timer_start (w);
1275 if (drand48 () < 0.5)
1276 ev_timer_stop (w);
1277 }
1278#endif
1279
1280 struct ev_timer t1;
1281 ev_timer_init (&t1, ocb, 5, 10);
1282 ev_timer_start (&t1);
1283
1284 struct ev_signal sig;
1285 ev_signal_init (&sig, scb, SIGQUIT);
1286 ev_signal_start (&sig);
1287
1288 struct ev_check cw;
1289 ev_check_init (&cw, gcb);
1290 ev_check_start (&cw);
1291
1292 struct ev_idle iw;
1293 ev_idle_init (&iw, gcb);
1294 ev_idle_start (&iw);
1295
1296 ev_loop (0);
1297
1298 return 0;
1299}
1300
1301#endif
1302
1303
1304
1305

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines