ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.7 by root, Wed Oct 31 00:24:16 2007 UTC vs.
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
75/**/
76
77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
14#ifdef CLOCK_MONOTONIC 111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
15# define HAVE_MONOTONIC 1 113# define EV_USE_MONOTONIC 0
16#endif 114#endif
17 115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
18#define HAVE_REALTIME 1 118# define EV_USE_REALTIME 0
19#define HAVE_EPOLL 1 119#endif
20#define HAVE_SELECT 1 120
121/**/
21 122
22#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
23#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
24 127
25#include "ev.h" 128#include "ev.h"
26 129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
27struct ev_watcher { 144typedef struct ev_watcher *W;
28 EV_WATCHER (ev_watcher); 145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
147
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150/*****************************************************************************/
151
152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
29}; 171};
172# undef VAR
173# include "ev_wrap.h"
30 174
31struct ev_watcher_list { 175#else
32 EV_WATCHER_LIST (ev_watcher_list);
33};
34 176
35static ev_tstamp now, diff; /* monotonic clock */ 177# define VAR(name,decl) static decl;
36ev_tstamp ev_now; 178# include "ev_vars.h"
37int ev_method; 179# undef VAR
38 180
39static int have_monotonic; /* runtime */ 181#endif
40 182
41static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 183/*****************************************************************************/
42static void (*method_modify)(int fd, int oev, int nev);
43static void (*method_poll)(ev_tstamp timeout);
44 184
45ev_tstamp 185inline ev_tstamp
46ev_time (void) 186ev_time (void)
47{ 187{
48#if HAVE_REALTIME 188#if EV_USE_REALTIME
49 struct timespec ts; 189 struct timespec ts;
50 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
51 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
52#else 192#else
53 struct timeval tv; 193 struct timeval tv;
54 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
55 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
56#endif 196#endif
57} 197}
58 198
59static ev_tstamp 199inline ev_tstamp
60get_clock (void) 200get_clock (void)
61{ 201{
62#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
63 if (have_monotonic) 203 if (expect_true (have_monotonic))
64 { 204 {
65 struct timespec ts; 205 struct timespec ts;
66 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
67 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
68 } 208 }
69#endif 209#endif
70 210
71 return ev_time (); 211 return ev_time ();
72} 212}
73 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
74#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
75 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
76 { \ 224 { \
77 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
78 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
79 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
80 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
81 cur = newcnt; \ 234 cur = newcnt; \
82 } 235 }
83 236
84typedef struct 237#define array_free(stem, idx) \
85{ 238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
86 struct ev_io *head;
87 unsigned char wev, rev; /* want, received event set */
88} ANFD;
89 239
90static ANFD *anfds; 240/*****************************************************************************/
91static int anfdmax;
92
93static int *fdchanges;
94static int fdchangemax, fdchangecnt;
95 241
96static void 242static void
97anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
98{ 244{
99 while (count--) 245 while (count--)
100 { 246 {
101 base->head = 0; 247 base->head = 0;
102 base->wev = base->rev = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
103 ++base; 251 ++base;
104 } 252 }
105} 253}
106 254
107typedef struct
108{
109 struct ev_watcher *w;
110 int events;
111} ANPENDING;
112
113static ANPENDING *pendings;
114static int pendingmax, pendingcnt;
115
116static void 255static void
117event (struct ev_watcher *w, int events) 256event (EV_P_ W w, int events)
118{ 257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
262 }
263
119 w->pending = ++pendingcnt; 264 w->pending = ++pendingcnt [ABSPRI (w)];
120 array_needsize (pendings, pendingmax, pendingcnt, ); 265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
121 pendings [pendingcnt - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
122 pendings [pendingcnt - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
123} 268}
124 269
125static void 270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
126fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
127{ 281{
128 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
129 struct ev_io *w; 283 struct ev_io *w;
130 284
131 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
132 { 286 {
133 int ev = w->events & events; 287 int ev = w->events & events;
134 288
135 if (ev) 289 if (ev)
136 event ((struct ev_watcher *)w, ev); 290 event (EV_A_ (W)w, ev);
291 }
292}
293
294/*****************************************************************************/
295
296static void
297fd_reify (EV_P)
298{
299 int i;
300
301 for (i = 0; i < fdchangecnt; ++i)
302 {
303 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd;
305 struct ev_io *w;
306
307 int events = 0;
308
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events;
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
346/* called on EBADF to verify fds */
347static void
348fd_ebadf (EV_P)
349{
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
137 } 370 }
138} 371}
139 372
140static struct ev_timer **atimers; 373/* susually called after fork if method needs to re-arm all fds from scratch */
141static int atimermax, atimercnt;
142
143static struct ev_timer **rtimers;
144static int rtimermax, rtimercnt;
145
146static void 374static void
147upheap (struct ev_timer **timers, int k) 375fd_rearm_all (EV_P)
148{ 376{
149 struct ev_timer *w = timers [k]; 377 int fd;
150 378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
388/*****************************************************************************/
389
390static void
391upheap (WT *heap, int k)
392{
393 WT w = heap [k];
394
151 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
152 { 396 {
153 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
154 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
155 k >>= 1; 399 k >>= 1;
156 } 400 }
157 401
158 timers [k] = w; 402 heap [k] = w;
159 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
160 404
161} 405}
162 406
163static void 407static void
164downheap (struct ev_timer **timers, int N, int k) 408downheap (WT *heap, int N, int k)
165{ 409{
166 struct ev_timer *w = timers [k]; 410 WT w = heap [k];
167 411
168 while (k < (N >> 1)) 412 while (k < (N >> 1))
169 { 413 {
170 int j = k << 1; 414 int j = k << 1;
171 415
172 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
173 ++j; 417 ++j;
174 418
175 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
176 break; 420 break;
177 421
178 timers [k] = timers [j]; 422 heap [k] = heap [j];
179 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
180 k = j; 424 k = j;
181 } 425 }
182 426
183 timers [k] = w; 427 heap [k] = w;
184 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
185} 429}
430
431/*****************************************************************************/
186 432
187typedef struct 433typedef struct
188{ 434{
189 struct ev_signal *head; 435 struct ev_watcher_list *head;
190 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
191} ANSIG; 437} ANSIG;
192 438
193static ANSIG *signals; 439static ANSIG *signals;
194static int signalmax; 440static int signalmax;
195 441
196static int sigpipe [2]; 442static int sigpipe [2];
197static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
198static struct ev_io sigev; 444static struct ev_io sigev;
199 445
200static void 446static void
201signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
202{ 448{
203 while (count--) 449 while (count--)
204 { 450 {
205 base->head = 0; 451 base->head = 0;
206 base->gotsig = 0; 452 base->gotsig = 0;
453
207 ++base; 454 ++base;
208 } 455 }
209} 456}
210 457
211static void 458static void
213{ 460{
214 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
215 462
216 if (!gotsig) 463 if (!gotsig)
217 { 464 {
465 int old_errno = errno;
218 gotsig = 1; 466 gotsig = 1;
219 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
220 } 469 }
221} 470}
222 471
223static void 472static void
224sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
225{ 474{
226 struct ev_signal *w; 475 struct ev_watcher_list *w;
227 int sig; 476 int signum;
228 477
478 read (sigpipe [0], &revents, 1);
229 gotsig = 0; 479 gotsig = 0;
230 read (sigpipe [0], &revents, 1);
231 480
232 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
233 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
234 { 483 {
235 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
236 485
237 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
238 event ((struct ev_watcher *)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
239 } 488 }
240} 489}
241 490
242static void 491static void
243siginit (void) 492siginit (EV_P)
244{ 493{
494#ifndef WIN32
245 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
246 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
247 497
248 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
249 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
250 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
251 502
252 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
253 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
254} 506}
255 507
508/*****************************************************************************/
509
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev;
514
515#ifndef WCONTINUED
516# define WCONTINUED 0
517#endif
518
519static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
550
551/*****************************************************************************/
552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
256#if HAVE_EPOLL 556#if EV_USE_EPOLL
257# include "ev_epoll.c" 557# include "ev_epoll.c"
258#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
259#if HAVE_SELECT 562#if EV_USE_SELECT
260# include "ev_select.c" 563# include "ev_select.c"
261#endif 564#endif
262 565
263int ev_init (int flags) 566int
567ev_version_major (void)
264{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
265#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
266 { 602 {
267 struct timespec ts; 603 struct timespec ts;
268 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
269 have_monotonic = 1; 605 have_monotonic = 1;
270 } 606 }
271#endif 607#endif
272 608
273 ev_now = ev_time (); 609 rt_now = ev_time ();
274 now = get_clock (); 610 mn_now = get_clock ();
275 diff = ev_now - now; 611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
276 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
277 if (pipe (sigpipe)) 728 if (pipe (sigpipe))
278 return 0; 729 return 0;
279 730
280 ev_method = EVMETHOD_NONE; 731 if (!default_loop)
281#if HAVE_EPOLL
282 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
283#endif
284#if HAVE_SELECT
285 if (ev_method == EVMETHOD_NONE) select_init (flags);
286#endif
287
288 if (ev_method)
289 { 732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
741 if (ev_method (EV_A))
742 {
290 evw_init (&sigev, sigcb, 0); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
291 siginit (); 745 siginit (EV_A);
292 }
293 746
294 return ev_method; 747#ifndef WIN32
295} 748 ev_signal_init (&childev, childcb, SIGCHLD);
296 749 ev_set_priority (&childev, EV_MAXPRI);
297void ev_prefork (void) 750 ev_signal_start (EV_A_ &childev);
298{ 751 ev_unref (EV_A); /* child watcher should not keep loop alive */
299}
300
301void ev_postfork_parent (void)
302{
303}
304
305void ev_postfork_child (void)
306{
307#if HAVE_EPOLL
308 if (ev_method == EVMETHOD_EPOLL)
309 epoll_postfork_child ();
310#endif 752#endif
753 }
754 else
755 default_loop = 0;
756 }
311 757
758 return default_loop;
759}
760
761void
762ev_default_destroy (void)
763{
764#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
312 evio_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
313 close (sigpipe [0]); 790 close (sigpipe [0]);
314 close (sigpipe [1]); 791 close (sigpipe [1]);
315 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
316 siginit (); 795 siginit (EV_A);
317} 796}
318 797
798/*****************************************************************************/
799
319static void 800static void
320fd_reify (void) 801call_pending (EV_P)
321{ 802{
322 int i; 803 int pri;
323 804
324 for (i = 0; i < fdchangecnt; ++i) 805 for (pri = NUMPRI; pri--; )
325 { 806 while (pendingcnt [pri])
326 int fd = fdchanges [i];
327 ANFD *anfd = anfds + fd;
328 struct ev_io *w;
329
330 int wev = 0;
331
332 for (w = anfd->head; w; w = w->next)
333 wev |= w->events;
334
335 if (anfd->wev != wev)
336 { 807 {
337 method_modify (fd, anfd->wev, wev); 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
338 anfd->wev = wev;
339 }
340 }
341 809
342 fdchangecnt = 0;
343}
344
345static void
346call_pending ()
347{
348 int i;
349
350 for (i = 0; i < pendingcnt; ++i)
351 {
352 ANPENDING *p = pendings + i;
353
354 if (p->w) 810 if (p->w)
355 { 811 {
356 p->w->pending = 0; 812 p->w->pending = 0;
357 p->w->cb (p->w, p->events); 813
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
358 } 815 }
359 } 816 }
360
361 pendingcnt = 0;
362} 817}
363 818
364static void 819static void
365timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 820timers_reify (EV_P)
366{ 821{
367 while (timercnt && timers [0]->at <= now) 822 while (timercnt && ((WT)timers [0])->at <= mn_now)
368 { 823 {
369 struct ev_timer *w = timers [0]; 824 struct ev_timer *w = timers [0];
825
826 assert (("inactive timer on timer heap detected", ev_is_active (w)));
370 827
371 /* first reschedule or stop timer */ 828 /* first reschedule or stop timer */
372 if (w->repeat) 829 if (w->repeat)
373 { 830 {
374 if (w->is_abs) 831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
375 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
376 else
377 w->at = now + w->repeat; 832 ((WT)w)->at = mn_now + w->repeat;
378
379 assert (w->at > now);
380
381 downheap (timers, timercnt, 0); 833 downheap ((WT *)timers, timercnt, 0);
382 } 834 }
383 else 835 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837
838 event (EV_A_ (W)w, EV_TIMEOUT);
839 }
840}
841
842static void
843periodics_reify (EV_P)
844{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
846 {
847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850
851 /* first reschedule or stop timer */
852 if (w->interval)
384 { 853 {
385 evtimer_stop (w); /* nonrepeating: stop timer */ 854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
386 --timercnt; /* maybe pass by reference instead? */ 855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0);
387 } 857 }
858 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
388 860
389 event ((struct ev_watcher *)w, EV_TIMEOUT); 861 event (EV_A_ (W)w, EV_PERIODIC);
390 } 862 }
391} 863}
392 864
393static void 865static void
394time_update () 866periodics_reschedule (EV_P)
395{ 867{
396 int i; 868 int i;
397 ev_now = ev_time ();
398 869
399 if (have_monotonic) 870 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i)
400 { 872 {
401 ev_tstamp odiff = diff; 873 struct ev_periodic *w = periodics [i];
402 874
403 /* detecting time jumps is much more difficult */ 875 if (w->interval)
404 for (i = 2; --i; ) /* loop a few times, before making important decisions */
405 { 876 {
406 now = get_clock (); 877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
407 diff = ev_now - now;
408 878
409 if (fabs (odiff - diff) < MIN_TIMEJUMP) 879 if (fabs (diff) >= 1e-4)
410 return; /* all is well */ 880 {
881 ev_periodic_stop (EV_A_ w);
882 ev_periodic_start (EV_A_ w);
411 883
412 ev_now = ev_time (); 884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 }
413 } 886 }
887 }
888}
414 889
415 /* time jump detected, reschedule atimers */ 890inline int
416 for (i = 0; i < atimercnt; ++i) 891time_update_monotonic (EV_P)
892{
893 mn_now = get_clock ();
894
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 }
900 else
901 {
902 now_floor = mn_now;
903 rt_now = ev_time ();
904 return 1;
905 }
906}
907
908static void
909time_update (EV_P)
910{
911 int i;
912
913#if EV_USE_MONOTONIC
914 if (expect_true (have_monotonic))
915 {
916 if (time_update_monotonic (EV_A))
417 { 917 {
418 struct ev_timer *w = atimers [i]; 918 ev_tstamp odiff = rtmn_diff;
419 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 919
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 {
922 rtmn_diff = rt_now - mn_now;
923
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 return; /* all is well */
926
927 rt_now = ev_time ();
928 mn_now = get_clock ();
929 now_floor = mn_now;
930 }
931
932 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
420 } 935 }
421 } 936 }
422 else 937 else
938#endif
423 { 939 {
424 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 940 rt_now = ev_time ();
425 /* time jump detected, adjust rtimers */ 941
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 {
944 periodics_reschedule (EV_A);
945
946 /* adjust timers. this is easy, as the offset is the same for all */
426 for (i = 0; i < rtimercnt; ++i) 947 for (i = 0; i < timercnt; ++i)
427 rtimers [i]->at += ev_now - now; 948 ((WT)timers [i])->at += rt_now - mn_now;
949 }
428 950
429 now = ev_now; 951 mn_now = rt_now;
430 } 952 }
431} 953}
432 954
433int ev_loop_done; 955void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
434 960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
435void ev_loop (int flags) 970ev_loop (EV_P_ int flags)
436{ 971{
437 double block; 972 double block;
438 ev_loop_done = flags & EVLOOP_ONESHOT; 973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
439 974
440 do 975 do
441 { 976 {
977 /* queue check watchers (and execute them) */
978 if (expect_false (preparecnt))
979 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A);
982 }
983
442 /* update fd-related kernel structures */ 984 /* update fd-related kernel structures */
443 fd_reify (); 985 fd_reify (EV_A);
444 986
445 /* calculate blocking time */ 987 /* calculate blocking time */
988
989 /* we only need this for !monotonic clockor timers, but as we basically
990 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A);
994 else
995#endif
996 {
997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
1000
446 if (flags & EVLOOP_NONBLOCK) 1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
447 block = 0.; 1002 block = 0.;
448 else 1003 else
449 { 1004 {
450 block = MAX_BLOCKTIME; 1005 block = MAX_BLOCKTIME;
451 1006
452 if (rtimercnt) 1007 if (timercnt)
453 { 1008 {
454 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
455 if (block > to) block = to; 1010 if (block > to) block = to;
456 } 1011 }
457 1012
458 if (atimercnt) 1013 if (periodiccnt)
459 { 1014 {
460 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
461 if (block > to) block = to; 1016 if (block > to) block = to;
462 } 1017 }
463 1018
464 if (block < 0.) block = 0.; 1019 if (block < 0.) block = 0.;
465 } 1020 }
466 1021
467 method_poll (block); 1022 method_poll (EV_A_ block);
468 1023
469 /* update ev_now, do magic */ 1024 /* update rt_now, do magic */
470 time_update (); 1025 time_update (EV_A);
471 1026
472 /* put pending timers into pendign queue and reschedule them */ 1027 /* queue pending timers and reschedule them */
473 /* absolute timers first */ 1028 timers_reify (EV_A); /* relative timers called last */
474 timers_reify (atimers, atimercnt, ev_now); 1029 periodics_reify (EV_A); /* absolute timers called first */
475 /* relative timers second */
476 timers_reify (rtimers, rtimercnt, now);
477 1030
1031 /* queue idle watchers unless io or timers are pending */
1032 if (!pendingcnt)
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1034
1035 /* queue check watchers, to be executed first */
1036 if (checkcnt)
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1038
478 call_pending (); 1039 call_pending (EV_A);
479 } 1040 }
480 while (!ev_loop_done); 1041 while (activecnt && !loop_done);
481}
482 1042
483static void 1043 if (loop_done != 2)
484wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1044 loop_done = 0;
1045}
1046
1047void
1048ev_unloop (EV_P_ int how)
1049{
1050 loop_done = how;
1051}
1052
1053/*****************************************************************************/
1054
1055inline void
1056wlist_add (WL *head, WL elem)
485{ 1057{
486 elem->next = *head; 1058 elem->next = *head;
487 *head = elem; 1059 *head = elem;
488} 1060}
489 1061
490static void 1062inline void
491wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1063wlist_del (WL *head, WL elem)
492{ 1064{
493 while (*head) 1065 while (*head)
494 { 1066 {
495 if (*head == elem) 1067 if (*head == elem)
496 { 1068 {
500 1072
501 head = &(*head)->next; 1073 head = &(*head)->next;
502 } 1074 }
503} 1075}
504 1076
505static void 1077inline void
506ev_start (struct ev_watcher *w, int active) 1078ev_clear_pending (EV_P_ W w)
507{ 1079{
1080 if (w->pending)
1081 {
1082 pendings [ABSPRI (w)][w->pending - 1].w = 0;
508 w->pending = 0; 1083 w->pending = 0;
1084 }
1085}
1086
1087inline void
1088ev_start (EV_P_ W w, int active)
1089{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
509 w->active = active; 1093 w->active = active;
1094 ev_ref (EV_A);
510} 1095}
511 1096
512static void 1097inline void
513ev_stop (struct ev_watcher *w) 1098ev_stop (EV_P_ W w)
514{ 1099{
515 if (w->pending) 1100 ev_unref (EV_A);
516 pendings [w->pending - 1].w = 0;
517
518 w->active = 0; 1101 w->active = 0;
519 /* nop */
520} 1102}
521 1103
1104/*****************************************************************************/
1105
522void 1106void
523evio_start (struct ev_io *w) 1107ev_io_start (EV_P_ struct ev_io *w)
524{ 1108{
1109 int fd = w->fd;
1110
525 if (ev_is_active (w)) 1111 if (ev_is_active (w))
526 return; 1112 return;
527 1113
528 int fd = w->fd; 1114 assert (("ev_io_start called with negative fd", fd >= 0));
529 1115
530 ev_start ((struct ev_watcher *)w, 1); 1116 ev_start (EV_A_ (W)w, 1);
531 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
532 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w); 1118 wlist_add ((WL *)&anfds[fd].head, (WL)w);
533 1119
534 ++fdchangecnt; 1120 fd_change (EV_A_ fd);
535 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
536 fdchanges [fdchangecnt - 1] = fd;
537} 1121}
538 1122
539void 1123void
540evio_stop (struct ev_io *w) 1124ev_io_stop (EV_P_ struct ev_io *w)
541{ 1125{
1126 ev_clear_pending (EV_A_ (W)w);
542 if (!ev_is_active (w)) 1127 if (!ev_is_active (w))
543 return; 1128 return;
544 1129
545 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w); 1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
546 ev_stop ((struct ev_watcher *)w); 1131 ev_stop (EV_A_ (W)w);
547 1132
548 ++fdchangecnt; 1133 fd_change (EV_A_ w->fd);
549 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
550 fdchanges [fdchangecnt - 1] = w->fd;
551} 1134}
552 1135
553void 1136void
554evtimer_start (struct ev_timer *w) 1137ev_timer_start (EV_P_ struct ev_timer *w)
555{ 1138{
556 if (ev_is_active (w)) 1139 if (ev_is_active (w))
557 return; 1140 return;
558 1141
559 if (w->is_abs) 1142 ((WT)w)->at += mn_now;
1143
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145
1146 ev_start (EV_A_ (W)w, ++timercnt);
1147 array_needsize (timers, timermax, timercnt, );
1148 timers [timercnt - 1] = w;
1149 upheap ((WT *)timers, timercnt - 1);
1150
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152}
1153
1154void
1155ev_timer_stop (EV_P_ struct ev_timer *w)
1156{
1157 ev_clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w))
1159 return;
1160
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162
1163 if (((W)w)->active < timercnt--)
1164 {
1165 timers [((W)w)->active - 1] = timers [timercnt];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
560 { 1167 }
561 /* this formula differs from the one in timer_reify becuse we do not round up */ 1168
1169 ((WT)w)->at = w->repeat;
1170
1171 ev_stop (EV_A_ (W)w);
1172}
1173
1174void
1175ev_timer_again (EV_P_ struct ev_timer *w)
1176{
1177 if (ev_is_active (w))
1178 {
562 if (w->repeat) 1179 if (w->repeat)
563 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1180 {
564 1181 ((WT)w)->at = mn_now + w->repeat;
565 ev_start ((struct ev_watcher *)w, ++atimercnt); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
566 array_needsize (atimers, atimermax, atimercnt, ); 1183 }
567 atimers [atimercnt - 1] = w;
568 upheap (atimers, atimercnt - 1);
569 }
570 else 1184 else
1185 ev_timer_stop (EV_A_ w);
571 { 1186 }
572 w->at += now; 1187 else if (w->repeat)
573 1188 ev_timer_start (EV_A_ w);
574 ev_start ((struct ev_watcher *)w, ++rtimercnt);
575 array_needsize (rtimers, rtimermax, rtimercnt, );
576 rtimers [rtimercnt - 1] = w;
577 upheap (rtimers, rtimercnt - 1);
578 }
579
580} 1189}
581 1190
582void 1191void
583evtimer_stop (struct ev_timer *w) 1192ev_periodic_start (EV_P_ struct ev_periodic *w)
584{ 1193{
1194 if (ev_is_active (w))
1195 return;
1196
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1202
1203 ev_start (EV_A_ (W)w, ++periodiccnt);
1204 array_needsize (periodics, periodicmax, periodiccnt, );
1205 periodics [periodiccnt - 1] = w;
1206 upheap ((WT *)periodics, periodiccnt - 1);
1207
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209}
1210
1211void
1212ev_periodic_stop (EV_P_ struct ev_periodic *w)
1213{
1214 ev_clear_pending (EV_A_ (W)w);
585 if (!ev_is_active (w)) 1215 if (!ev_is_active (w))
586 return; 1216 return;
587 1217
588 if (w->is_abs) 1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
589 { 1219
590 if (w->active < atimercnt--) 1220 if (((W)w)->active < periodiccnt--)
591 {
592 atimers [w->active - 1] = atimers [atimercnt];
593 downheap (atimers, atimercnt, w->active - 1);
594 }
595 } 1221 {
596 else 1222 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
597 { 1224 }
598 if (w->active < rtimercnt--)
599 {
600 rtimers [w->active - 1] = rtimers [rtimercnt];
601 downheap (rtimers, rtimercnt, w->active - 1);
602 }
603 }
604 1225
605 ev_stop ((struct ev_watcher *)w); 1226 ev_stop (EV_A_ (W)w);
606} 1227}
607 1228
608void 1229void
609evsignal_start (struct ev_signal *w) 1230ev_idle_start (EV_P_ struct ev_idle *w)
610{ 1231{
611 if (ev_is_active (w)) 1232 if (ev_is_active (w))
612 return; 1233 return;
613 1234
614 ev_start ((struct ev_watcher *)w, 1); 1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w);
1249}
1250
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294
1295#ifndef SA_RESTART
1296# define SA_RESTART 0
1297#endif
1298
1299void
1300ev_signal_start (EV_P_ struct ev_signal *w)
1301{
1302#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304#endif
1305 if (ev_is_active (w))
1306 return;
1307
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309
1310 ev_start (EV_A_ (W)w, 1);
615 array_needsize (signals, signalmax, w->signum, signals_init); 1311 array_needsize (signals, signalmax, w->signum, signals_init);
616 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
617 1313
618 if (!w->next) 1314 if (!((WL)w)->next)
619 { 1315 {
620 struct sigaction sa; 1316 struct sigaction sa;
621 sa.sa_handler = sighandler; 1317 sa.sa_handler = sighandler;
622 sigfillset (&sa.sa_mask); 1318 sigfillset (&sa.sa_mask);
623 sa.sa_flags = 0; 1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
624 sigaction (w->signum, &sa, 0); 1320 sigaction (w->signum, &sa, 0);
625 } 1321 }
626} 1322}
627 1323
628void 1324void
629evsignal_stop (struct ev_signal *w) 1325ev_signal_stop (EV_P_ struct ev_signal *w)
630{ 1326{
1327 ev_clear_pending (EV_A_ (W)w);
631 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
632 return; 1329 return;
633 1330
634 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
635 ev_stop ((struct ev_watcher *)w); 1332 ev_stop (EV_A_ (W)w);
636 1333
637 if (!signals [w->signum - 1].head) 1334 if (!signals [w->signum - 1].head)
638 signal (w->signum, SIG_DFL); 1335 signal (w->signum, SIG_DFL);
639} 1336}
640 1337
1338void
1339ev_child_start (EV_P_ struct ev_child *w)
1340{
1341#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop));
1343#endif
1344 if (ev_is_active (w))
1345 return;
1346
1347 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1349}
1350
1351void
1352ev_child_stop (EV_P_ struct ev_child *w)
1353{
1354 ev_clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w))
1356 return;
1357
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1359 ev_stop (EV_A_ (W)w);
1360}
1361
641/*****************************************************************************/ 1362/*****************************************************************************/
642#if 1
643 1363
644static void 1364struct ev_once
645sin_cb (struct ev_io *w, int revents)
646{ 1365{
647 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
648}
649
650static void
651ocb (struct ev_timer *w, int revents)
652{
653 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
654 evtimer_stop (w);
655 evtimer_start (w);
656}
657
658static void
659scb (struct ev_signal *w, int revents)
660{
661 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
662}
663
664int main (void)
665{
666 struct ev_io sin; 1366 struct ev_io io;
667
668 ev_init (0);
669
670 evw_init (&sin, sin_cb, 55);
671 evio_set (&sin, 0, EV_READ);
672 evio_start (&sin);
673
674 struct ev_timer t[10000];
675
676#if 0
677 int i;
678 for (i = 0; i < 10000; ++i)
679 {
680 struct ev_timer *w = t + i;
681 evw_init (w, ocb, i);
682 evtimer_set_abs (w, drand48 (), 0.99775533);
683 evtimer_start (w);
684 if (drand48 () < 0.5)
685 evtimer_stop (w);
686 }
687#endif
688
689 struct ev_timer t1; 1367 struct ev_timer to;
690 evw_init (&t1, ocb, 0); 1368 void (*cb)(int revents, void *arg);
691 evtimer_set_abs (&t1, 5, 10); 1369 void *arg;
692 evtimer_start (&t1); 1370};
693 1371
694 struct ev_signal sig; 1372static void
695 evw_init (&sig, scb, 65535); 1373once_cb (EV_P_ struct ev_once *once, int revents)
696 evsignal_set (&sig, SIGQUIT); 1374{
697 evsignal_start (&sig); 1375 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg;
698 1377
699 ev_loop (0); 1378 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to);
1380 free (once);
700 1381
701 return 0; 1382 cb (revents, arg);
702} 1383}
703 1384
704#endif 1385static void
1386once_cb_io (EV_P_ struct ev_io *w, int revents)
1387{
1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1389}
705 1390
1391static void
1392once_cb_to (EV_P_ struct ev_timer *w, int revents)
1393{
1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1395}
706 1396
1397void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{
1400 struct ev_once *once = malloc (sizeof (struct ev_once));
707 1401
1402 if (!once)
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 else
1405 {
1406 once->cb = cb;
1407 once->arg = arg;
708 1408
1409 ev_watcher_init (&once->io, once_cb_io);
1410 if (fd >= 0)
1411 {
1412 ev_io_set (&once->io, fd, events);
1413 ev_io_start (EV_A_ &once->io);
1414 }
1415
1416 ev_watcher_init (&once->to, once_cb_to);
1417 if (timeout >= 0.)
1418 {
1419 ev_timer_set (&once->to, timeout, 0.);
1420 ev_timer_start (EV_A_ &once->to);
1421 }
1422 }
1423}
1424

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines