ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.12 by root, Wed Oct 31 09:23:17 2007 UTC vs.
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
17# ifdef CLOCK_MONOTONIC
18# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
19# endif 102# endif
20#endif 103#endif
21 104
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
32#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
33 122
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 127
37#include "ev.h" 128#include "ev.h"
38 129
39struct ev_watcher { 130#if __GNUC__ >= 3
40 EV_WATCHER (ev_watcher); 131# define expect(expr,value) __builtin_expect ((expr),(value))
41}; 132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
42 137
43struct ev_watcher_list { 138#define expect_false(expr) expect ((expr) != 0, 0)
44 EV_WATCHER_LIST (ev_watcher_list); 139#define expect_true(expr) expect ((expr) != 0, 1)
45};
46 140
47struct ev_watcher_time { 141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
48 EV_WATCHER_TIME (ev_watcher_time); 142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
49};
50 143
51typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
52typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
53typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
54 147
55static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
56ev_tstamp ev_now;
57int ev_method;
58
59static int have_monotonic; /* runtime */
60
61static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
62static void (*method_modify)(int fd, int oev, int nev);
63static void (*method_poll)(ev_tstamp timeout);
64 149
65/*****************************************************************************/ 150/*****************************************************************************/
66 151
67ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
68ev_time (void) 186ev_time (void)
69{ 187{
70#if HAVE_REALTIME 188#if EV_USE_REALTIME
71 struct timespec ts; 189 struct timespec ts;
72 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
73 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
74#else 192#else
75 struct timeval tv; 193 struct timeval tv;
76 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
77 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
78#endif 196#endif
79} 197}
80 198
81static ev_tstamp 199inline ev_tstamp
82get_clock (void) 200get_clock (void)
83{ 201{
84#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
85 if (have_monotonic) 203 if (expect_true (have_monotonic))
86 { 204 {
87 struct timespec ts; 205 struct timespec ts;
88 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
90 } 208 }
91#endif 209#endif
92 210
93 return ev_time (); 211 return ev_time ();
94} 212}
95 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
96#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
97 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
98 { \ 224 { \
99 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
100 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
101 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
102 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
103 cur = newcnt; \ 234 cur = newcnt; \
104 } 235 }
105 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
106/*****************************************************************************/ 240/*****************************************************************************/
107 241
108typedef struct
109{
110 struct ev_io *head;
111 unsigned char wev, rev; /* want, received event set */
112} ANFD;
113
114static ANFD *anfds;
115static int anfdmax;
116
117static int *fdchanges;
118static int fdchangemax, fdchangecnt;
119
120static void 242static void
121anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
122{ 244{
123 while (count--) 245 while (count--)
124 { 246 {
125 base->head = 0; 247 base->head = 0;
126 base->wev = base->rev = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
127 ++base; 251 ++base;
128 } 252 }
129} 253}
130 254
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137static ANPENDING *pendings;
138static int pendingmax, pendingcnt;
139
140static void 255static void
141event (W w, int events) 256event (EV_P_ W w, int events)
142{ 257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
262 }
263
143 w->pending = ++pendingcnt; 264 w->pending = ++pendingcnt [ABSPRI (w)];
144 array_needsize (pendings, pendingmax, pendingcnt, ); 265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
145 pendings [pendingcnt - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
146 pendings [pendingcnt - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
147} 268}
148 269
149static void 270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
150fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
151{ 281{
152 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
153 struct ev_io *w; 283 struct ev_io *w;
154 284
155 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
156 { 286 {
157 int ev = w->events & events; 287 int ev = w->events & events;
158 288
159 if (ev) 289 if (ev)
160 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
161 } 291 }
162} 292}
163 293
294/*****************************************************************************/
295
164static void 296static void
165queue_events (W *events, int eventcnt, int type) 297fd_reify (EV_P)
166{ 298{
167 int i; 299 int i;
168 300
169 for (i = 0; i < eventcnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
170 event (events [i], type); 302 {
303 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd;
305 struct ev_io *w;
306
307 int events = 0;
308
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events;
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
346/* called on EBADF to verify fds */
347static void
348fd_ebadf (EV_P)
349{
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
171} 386}
172 387
173/*****************************************************************************/ 388/*****************************************************************************/
174 389
175static struct ev_timer **timers;
176static int timermax, timercnt;
177
178static struct ev_periodic **periodics;
179static int periodicmax, periodiccnt;
180
181static void 390static void
182upheap (WT *timers, int k) 391upheap (WT *heap, int k)
183{ 392{
184 WT w = timers [k]; 393 WT w = heap [k];
185 394
186 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
187 { 396 {
188 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
189 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
190 k >>= 1; 399 k >>= 1;
191 } 400 }
192 401
193 timers [k] = w; 402 heap [k] = w;
194 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
195 404
196} 405}
197 406
198static void 407static void
199downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
200{ 409{
201 WT w = timers [k]; 410 WT w = heap [k];
202 411
203 while (k < (N >> 1)) 412 while (k < (N >> 1))
204 { 413 {
205 int j = k << 1; 414 int j = k << 1;
206 415
207 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
208 ++j; 417 ++j;
209 418
210 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
211 break; 420 break;
212 421
213 timers [k] = timers [j]; 422 heap [k] = heap [j];
214 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
215 k = j; 424 k = j;
216 } 425 }
217 426
218 timers [k] = w; 427 heap [k] = w;
219 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
220} 429}
221 430
222/*****************************************************************************/ 431/*****************************************************************************/
223 432
224typedef struct 433typedef struct
225{ 434{
226 struct ev_signal *head; 435 struct ev_watcher_list *head;
227 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
228} ANSIG; 437} ANSIG;
229 438
230static ANSIG *signals; 439static ANSIG *signals;
231static int signalmax; 440static int signalmax;
232 441
233static int sigpipe [2]; 442static int sigpipe [2];
234static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
235static struct ev_io sigev; 444static struct ev_io sigev;
236 445
237static void 446static void
238signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
239{ 448{
240 while (count--) 449 while (count--)
241 { 450 {
242 base->head = 0; 451 base->head = 0;
243 base->gotsig = 0; 452 base->gotsig = 0;
453
244 ++base; 454 ++base;
245 } 455 }
246} 456}
247 457
248static void 458static void
250{ 460{
251 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
252 462
253 if (!gotsig) 463 if (!gotsig)
254 { 464 {
465 int old_errno = errno;
255 gotsig = 1; 466 gotsig = 1;
256 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
257 } 469 }
258} 470}
259 471
260static void 472static void
261sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
262{ 474{
263 struct ev_signal *w; 475 struct ev_watcher_list *w;
264 int sig; 476 int signum;
265 477
478 read (sigpipe [0], &revents, 1);
266 gotsig = 0; 479 gotsig = 0;
267 read (sigpipe [0], &revents, 1);
268 480
269 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
270 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
271 { 483 {
272 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
273 485
274 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
275 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
276 } 488 }
277} 489}
278 490
279static void 491static void
280siginit (void) 492siginit (EV_P)
281{ 493{
494#ifndef WIN32
282 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
283 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
284 497
285 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
286 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
287 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
288 502
289 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
290 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
291} 506}
292 507
293/*****************************************************************************/ 508/*****************************************************************************/
294 509
295static struct ev_idle **idles; 510#ifndef WIN32
296static int idlemax, idlecnt;
297 511
298static struct ev_check **checks; 512static struct ev_child *childs [PID_HASHSIZE];
299static int checkmax, checkcnt; 513static struct ev_signal childev;
514
515#ifndef WCONTINUED
516# define WCONTINUED 0
517#endif
518
519static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
300 550
301/*****************************************************************************/ 551/*****************************************************************************/
302 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
303#if HAVE_EPOLL 556#if EV_USE_EPOLL
304# include "ev_epoll.c" 557# include "ev_epoll.c"
305#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
306#if HAVE_SELECT 562#if EV_USE_SELECT
307# include "ev_select.c" 563# include "ev_select.c"
308#endif 564#endif
309 565
310int ev_init (int flags) 566int
567ev_version_major (void)
311{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
312#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
313 { 602 {
314 struct timespec ts; 603 struct timespec ts;
315 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
316 have_monotonic = 1; 605 have_monotonic = 1;
317 } 606 }
318#endif 607#endif
319 608
320 ev_now = ev_time (); 609 rt_now = ev_time ();
321 now = get_clock (); 610 mn_now = get_clock ();
322 diff = ev_now - now; 611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
323 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
324 if (pipe (sigpipe)) 728 if (pipe (sigpipe))
325 return 0; 729 return 0;
326 730
327 ev_method = EVMETHOD_NONE; 731 if (!default_loop)
328#if HAVE_EPOLL
329 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
330#endif
331#if HAVE_SELECT
332 if (ev_method == EVMETHOD_NONE) select_init (flags);
333#endif
334
335 if (ev_method)
336 { 732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
741 if (ev_method (EV_A))
742 {
337 evw_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
338 siginit (); 745 siginit (EV_A);
339 }
340 746
341 return ev_method; 747#ifndef WIN32
342} 748 ev_signal_init (&childev, childcb, SIGCHLD);
343 749 ev_set_priority (&childev, EV_MAXPRI);
344/*****************************************************************************/ 750 ev_signal_start (EV_A_ &childev);
345 751 ev_unref (EV_A); /* child watcher should not keep loop alive */
346void ev_prefork (void)
347{
348 /* nop */
349}
350
351void ev_postfork_parent (void)
352{
353 /* nop */
354}
355
356void ev_postfork_child (void)
357{
358#if HAVE_EPOLL
359 if (ev_method == EVMETHOD_EPOLL)
360 epoll_postfork_child ();
361#endif 752#endif
753 }
754 else
755 default_loop = 0;
756 }
362 757
758 return default_loop;
759}
760
761void
762ev_default_destroy (void)
763{
764#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
363 evio_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
364 close (sigpipe [0]); 790 close (sigpipe [0]);
365 close (sigpipe [1]); 791 close (sigpipe [1]);
366 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
367 siginit (); 795 siginit (EV_A);
368} 796}
369 797
370/*****************************************************************************/ 798/*****************************************************************************/
371 799
372static void 800static void
373fd_reify (void) 801call_pending (EV_P)
374{ 802{
375 int i; 803 int pri;
376 804
377 for (i = 0; i < fdchangecnt; ++i) 805 for (pri = NUMPRI; pri--; )
378 { 806 while (pendingcnt [pri])
379 int fd = fdchanges [i];
380 ANFD *anfd = anfds + fd;
381 struct ev_io *w;
382
383 int wev = 0;
384
385 for (w = anfd->head; w; w = w->next)
386 wev |= w->events;
387
388 if (anfd->wev != wev)
389 { 807 {
390 method_modify (fd, anfd->wev, wev); 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
391 anfd->wev = wev;
392 }
393 }
394 809
395 fdchangecnt = 0;
396}
397
398static void
399call_pending ()
400{
401 int i;
402
403 for (i = 0; i < pendingcnt; ++i)
404 {
405 ANPENDING *p = pendings + i;
406
407 if (p->w) 810 if (p->w)
408 { 811 {
409 p->w->pending = 0; 812 p->w->pending = 0;
410 p->w->cb (p->w, p->events); 813 p->w->cb (EV_A_ p->w, p->events);
411 } 814 }
412 } 815 }
413
414 pendingcnt = 0;
415} 816}
416 817
417static void 818static void
418timers_reify () 819timers_reify (EV_P)
419{ 820{
420 while (timercnt && timers [0]->at <= now) 821 while (timercnt && ((WT)timers [0])->at <= mn_now)
421 { 822 {
422 struct ev_timer *w = timers [0]; 823 struct ev_timer *w = timers [0];
824
825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
423 826
424 /* first reschedule or stop timer */ 827 /* first reschedule or stop timer */
425 if (w->repeat) 828 if (w->repeat)
426 { 829 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
427 w->at = now + w->repeat; 831 ((WT)w)->at = mn_now + w->repeat;
428 assert (("timer timeout in the past, negative repeat?", w->at > now));
429 downheap ((WT *)timers, timercnt, 0); 832 downheap ((WT *)timers, timercnt, 0);
430 } 833 }
431 else 834 else
432 evtimer_stop (w); /* nonrepeating: stop timer */ 835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
433 836
434 event ((W)w, EV_TIMEOUT); 837 event (EV_A_ (W)w, EV_TIMEOUT);
435 } 838 }
436} 839}
437 840
438static void 841static void
439periodics_reify () 842periodics_reify (EV_P)
440{ 843{
441 while (periodiccnt && periodics [0]->at <= ev_now) 844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
442 { 845 {
443 struct ev_periodic *w = periodics [0]; 846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
444 849
445 /* first reschedule or stop timer */ 850 /* first reschedule or stop timer */
446 if (w->interval) 851 if (w->interval)
447 { 852 {
448 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
449 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
450 downheap ((WT *)periodics, periodiccnt, 0); 855 downheap ((WT *)periodics, periodiccnt, 0);
451 } 856 }
452 else 857 else
453 evperiodic_stop (w); /* nonrepeating: stop timer */ 858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
454 859
455 event ((W)w, EV_TIMEOUT); 860 event (EV_A_ (W)w, EV_PERIODIC);
456 } 861 }
457} 862}
458 863
459static void 864static void
460time_jump (ev_tstamp diff) 865periodics_reschedule (EV_P)
461{ 866{
462 int i; 867 int i;
463 868
464 /* adjust periodics */ 869 /* adjust periodics after time jump */
465 for (i = 0; i < periodiccnt; ++i) 870 for (i = 0; i < periodiccnt; ++i)
466 { 871 {
467 struct ev_periodic *w = periodics [i]; 872 struct ev_periodic *w = periodics [i];
468 873
469 if (w->interval) 874 if (w->interval)
470 { 875 {
471 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
472 877
473 if (fabs (diff) >= 1e-4) 878 if (fabs (diff) >= 1e-4)
474 { 879 {
475 evperiodic_stop (w); 880 ev_periodic_stop (EV_A_ w);
476 evperiodic_start (w); 881 ev_periodic_start (EV_A_ w);
477 882
478 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
479 } 884 }
480 } 885 }
481 } 886 }
482
483 /* adjust timers. this is easy, as the offset is the same for all */
484 for (i = 0; i < timercnt; ++i)
485 timers [i]->at += diff;
486} 887}
487 888
889inline int
890time_update_monotonic (EV_P)
891{
892 mn_now = get_clock ();
893
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 {
896 rt_now = rtmn_diff + mn_now;
897 return 0;
898 }
899 else
900 {
901 now_floor = mn_now;
902 rt_now = ev_time ();
903 return 1;
904 }
905}
906
488static void 907static void
489time_update () 908time_update (EV_P)
490{ 909{
491 int i; 910 int i;
492 911
493 ev_now = ev_time (); 912#if EV_USE_MONOTONIC
494
495 if (have_monotonic) 913 if (expect_true (have_monotonic))
496 { 914 {
497 ev_tstamp odiff = diff; 915 if (time_update_monotonic (EV_A))
498
499 for (i = 4; --i; ) /* loop a few times, before making important decisions */
500 { 916 {
501 now = get_clock (); 917 ev_tstamp odiff = rtmn_diff;
918
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 {
502 diff = ev_now - now; 921 rtmn_diff = rt_now - mn_now;
503 922
504 if (fabs (odiff - diff) < MIN_TIMEJUMP) 923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
505 return; /* all is well */ 924 return; /* all is well */
506 925
507 ev_now = ev_time (); 926 rt_now = ev_time ();
927 mn_now = get_clock ();
928 now_floor = mn_now;
929 }
930
931 periodics_reschedule (EV_A);
932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
508 } 934 }
509
510 time_jump (diff - odiff);
511 } 935 }
512 else 936 else
937#endif
513 { 938 {
514 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 939 rt_now = ev_time ();
515 time_jump (ev_now - now);
516 940
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
942 {
943 periodics_reschedule (EV_A);
944
945 /* adjust timers. this is easy, as the offset is the same for all */
946 for (i = 0; i < timercnt; ++i)
947 ((WT)timers [i])->at += rt_now - mn_now;
948 }
949
517 now = ev_now; 950 mn_now = rt_now;
518 } 951 }
519} 952}
520 953
521int ev_loop_done; 954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
522 959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967
968void
523void ev_loop (int flags) 969ev_loop (EV_P_ int flags)
524{ 970{
525 double block; 971 double block;
526 ev_loop_done = flags & EVLOOP_ONESHOT; 972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
527
528 if (checkcnt)
529 {
530 queue_events ((W *)checks, checkcnt, EV_CHECK);
531 call_pending ();
532 }
533 973
534 do 974 do
535 { 975 {
976 /* queue check watchers (and execute them) */
977 if (expect_false (preparecnt))
978 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A);
981 }
982
536 /* update fd-related kernel structures */ 983 /* update fd-related kernel structures */
537 fd_reify (); 984 fd_reify (EV_A);
538 985
539 /* calculate blocking time */ 986 /* calculate blocking time */
540 987
541 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 988 /* we only need this for !monotonic clockor timers, but as we basically
989 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A);
993 else
994#endif
995 {
542 ev_now = ev_time (); 996 rt_now = ev_time ();
997 mn_now = rt_now;
998 }
543 999
544 if (flags & EVLOOP_NONBLOCK || idlecnt) 1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
545 block = 0.; 1001 block = 0.;
546 else 1002 else
547 { 1003 {
548 block = MAX_BLOCKTIME; 1004 block = MAX_BLOCKTIME;
549 1005
550 if (timercnt) 1006 if (timercnt)
551 { 1007 {
552 ev_tstamp to = timers [0]->at - get_clock () + method_fudge; 1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
553 if (block > to) block = to; 1009 if (block > to) block = to;
554 } 1010 }
555 1011
556 if (periodiccnt) 1012 if (periodiccnt)
557 { 1013 {
558 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
559 if (block > to) block = to; 1015 if (block > to) block = to;
560 } 1016 }
561 1017
562 if (block < 0.) block = 0.; 1018 if (block < 0.) block = 0.;
563 } 1019 }
564 1020
565 method_poll (block); 1021 method_poll (EV_A_ block);
566 1022
567 /* update ev_now, do magic */ 1023 /* update rt_now, do magic */
568 time_update (); 1024 time_update (EV_A);
569 1025
570 /* queue pending timers and reschedule them */ 1026 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */
571 periodics_reify (); /* absolute timers first */ 1028 periodics_reify (EV_A); /* absolute timers called first */
572 timers_reify (); /* relative timers second */
573 1029
574 /* queue idle watchers unless io or timers are pending */ 1030 /* queue idle watchers unless io or timers are pending */
575 if (!pendingcnt) 1031 if (!pendingcnt)
576 queue_events ((W *)idles, idlecnt, EV_IDLE); 1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
577 1033
578 /* queue check and possibly idle watchers */ 1034 /* queue check watchers, to be executed first */
1035 if (checkcnt)
579 queue_events ((W *)checks, checkcnt, EV_CHECK); 1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
580 1037
581 call_pending (); 1038 call_pending (EV_A);
582 } 1039 }
583 while (!ev_loop_done); 1040 while (activecnt && !loop_done);
1041
1042 if (loop_done != 2)
1043 loop_done = 0;
1044}
1045
1046void
1047ev_unloop (EV_P_ int how)
1048{
1049 loop_done = how;
584} 1050}
585 1051
586/*****************************************************************************/ 1052/*****************************************************************************/
587 1053
588static void 1054inline void
589wlist_add (WL *head, WL elem) 1055wlist_add (WL *head, WL elem)
590{ 1056{
591 elem->next = *head; 1057 elem->next = *head;
592 *head = elem; 1058 *head = elem;
593} 1059}
594 1060
595static void 1061inline void
596wlist_del (WL *head, WL elem) 1062wlist_del (WL *head, WL elem)
597{ 1063{
598 while (*head) 1064 while (*head)
599 { 1065 {
600 if (*head == elem) 1066 if (*head == elem)
605 1071
606 head = &(*head)->next; 1072 head = &(*head)->next;
607 } 1073 }
608} 1074}
609 1075
610static void 1076inline void
1077ev_clear_pending (EV_P_ W w)
1078{
1079 if (w->pending)
1080 {
1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1082 w->pending = 0;
1083 }
1084}
1085
1086inline void
611ev_start (W w, int active) 1087ev_start (EV_P_ W w, int active)
612{ 1088{
613 w->pending = 0; 1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
614 w->active = active; 1092 w->active = active;
1093 ev_ref (EV_A);
615} 1094}
616 1095
617static void 1096inline void
618ev_stop (W w) 1097ev_stop (EV_P_ W w)
619{ 1098{
620 if (w->pending) 1099 ev_unref (EV_A);
621 pendings [w->pending - 1].w = 0;
622
623 w->active = 0; 1100 w->active = 0;
624} 1101}
625 1102
626/*****************************************************************************/ 1103/*****************************************************************************/
627 1104
628void 1105void
629evio_start (struct ev_io *w) 1106ev_io_start (EV_P_ struct ev_io *w)
630{ 1107{
1108 int fd = w->fd;
1109
631 if (ev_is_active (w)) 1110 if (ev_is_active (w))
632 return; 1111 return;
633 1112
634 int fd = w->fd; 1113 assert (("ev_io_start called with negative fd", fd >= 0));
635 1114
636 ev_start ((W)w, 1); 1115 ev_start (EV_A_ (W)w, 1);
637 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
638 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
639 1118
640 ++fdchangecnt; 1119 fd_change (EV_A_ fd);
641 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
642 fdchanges [fdchangecnt - 1] = fd;
643} 1120}
644 1121
645void 1122void
646evio_stop (struct ev_io *w) 1123ev_io_stop (EV_P_ struct ev_io *w)
647{ 1124{
1125 ev_clear_pending (EV_A_ (W)w);
648 if (!ev_is_active (w)) 1126 if (!ev_is_active (w))
649 return; 1127 return;
650 1128
651 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
652 ev_stop ((W)w); 1130 ev_stop (EV_A_ (W)w);
653 1131
654 ++fdchangecnt; 1132 fd_change (EV_A_ w->fd);
655 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
656 fdchanges [fdchangecnt - 1] = w->fd;
657} 1133}
658 1134
659
660void 1135void
661evtimer_start (struct ev_timer *w) 1136ev_timer_start (EV_P_ struct ev_timer *w)
662{ 1137{
663 if (ev_is_active (w)) 1138 if (ev_is_active (w))
664 return; 1139 return;
665 1140
666 w->at += now; 1141 ((WT)w)->at += mn_now;
667 1142
1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1144
668 ev_start ((W)w, ++timercnt); 1145 ev_start (EV_A_ (W)w, ++timercnt);
669 array_needsize (timers, timermax, timercnt, ); 1146 array_needsize (timers, timermax, timercnt, );
670 timers [timercnt - 1] = w; 1147 timers [timercnt - 1] = w;
671 upheap ((WT *)timers, timercnt - 1); 1148 upheap ((WT *)timers, timercnt - 1);
672}
673 1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151}
1152
674void 1153void
675evtimer_stop (struct ev_timer *w) 1154ev_timer_stop (EV_P_ struct ev_timer *w)
676{ 1155{
1156 ev_clear_pending (EV_A_ (W)w);
677 if (!ev_is_active (w)) 1157 if (!ev_is_active (w))
678 return; 1158 return;
679 1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
680 if (w->active < timercnt--) 1162 if (((W)w)->active < timercnt--)
681 { 1163 {
682 timers [w->active - 1] = timers [timercnt]; 1164 timers [((W)w)->active - 1] = timers [timercnt];
683 downheap ((WT *)timers, timercnt, w->active - 1); 1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
684 } 1166 }
685 1167
1168 ((WT)w)->at = w->repeat;
1169
686 ev_stop ((W)w); 1170 ev_stop (EV_A_ (W)w);
687} 1171}
688 1172
689void 1173void
690evperiodic_start (struct ev_periodic *w) 1174ev_timer_again (EV_P_ struct ev_timer *w)
691{ 1175{
692 if (ev_is_active (w)) 1176 if (ev_is_active (w))
1177 {
1178 if (w->repeat)
1179 {
1180 ((WT)w)->at = mn_now + w->repeat;
1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1182 }
1183 else
1184 ev_timer_stop (EV_A_ w);
1185 }
1186 else if (w->repeat)
1187 ev_timer_start (EV_A_ w);
1188}
1189
1190void
1191ev_periodic_start (EV_P_ struct ev_periodic *w)
1192{
1193 if (ev_is_active (w))
693 return; 1194 return;
1195
1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
694 1197
695 /* this formula differs from the one in periodic_reify because we do not always round up */ 1198 /* this formula differs from the one in periodic_reify because we do not always round up */
696 if (w->interval) 1199 if (w->interval)
697 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
698 1201
699 ev_start ((W)w, ++periodiccnt); 1202 ev_start (EV_A_ (W)w, ++periodiccnt);
700 array_needsize (periodics, periodicmax, periodiccnt, ); 1203 array_needsize (periodics, periodicmax, periodiccnt, );
701 periodics [periodiccnt - 1] = w; 1204 periodics [periodiccnt - 1] = w;
702 upheap ((WT *)periodics, periodiccnt - 1); 1205 upheap ((WT *)periodics, periodiccnt - 1);
703}
704 1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208}
1209
705void 1210void
706evperiodic_stop (struct ev_periodic *w) 1211ev_periodic_stop (EV_P_ struct ev_periodic *w)
707{ 1212{
1213 ev_clear_pending (EV_A_ (W)w);
708 if (!ev_is_active (w)) 1214 if (!ev_is_active (w))
709 return; 1215 return;
710 1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
711 if (w->active < periodiccnt--) 1219 if (((W)w)->active < periodiccnt--)
712 { 1220 {
713 periodics [w->active - 1] = periodics [periodiccnt]; 1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
714 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
715 } 1223 }
716 1224
717 ev_stop ((W)w); 1225 ev_stop (EV_A_ (W)w);
718} 1226}
719 1227
720void 1228void
721evsignal_start (struct ev_signal *w) 1229ev_idle_start (EV_P_ struct ev_idle *w)
722{ 1230{
723 if (ev_is_active (w)) 1231 if (ev_is_active (w))
724 return; 1232 return;
725 1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248}
1249
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293
1294#ifndef SA_RESTART
1295# define SA_RESTART 0
1296#endif
1297
1298void
1299ev_signal_start (EV_P_ struct ev_signal *w)
1300{
1301#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303#endif
1304 if (ev_is_active (w))
1305 return;
1306
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308
726 ev_start ((W)w, 1); 1309 ev_start (EV_A_ (W)w, 1);
727 array_needsize (signals, signalmax, w->signum, signals_init); 1310 array_needsize (signals, signalmax, w->signum, signals_init);
728 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
729 1312
730 if (!w->next) 1313 if (!((WL)w)->next)
731 { 1314 {
732 struct sigaction sa; 1315 struct sigaction sa;
733 sa.sa_handler = sighandler; 1316 sa.sa_handler = sighandler;
734 sigfillset (&sa.sa_mask); 1317 sigfillset (&sa.sa_mask);
735 sa.sa_flags = 0; 1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
736 sigaction (w->signum, &sa, 0); 1319 sigaction (w->signum, &sa, 0);
737 } 1320 }
738} 1321}
739 1322
740void 1323void
741evsignal_stop (struct ev_signal *w) 1324ev_signal_stop (EV_P_ struct ev_signal *w)
742{ 1325{
1326 ev_clear_pending (EV_A_ (W)w);
743 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
744 return; 1328 return;
745 1329
746 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
747 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
748 1332
749 if (!signals [w->signum - 1].head) 1333 if (!signals [w->signum - 1].head)
750 signal (w->signum, SIG_DFL); 1334 signal (w->signum, SIG_DFL);
751} 1335}
752 1336
753void evidle_start (struct ev_idle *w) 1337void
1338ev_child_start (EV_P_ struct ev_child *w)
754{ 1339{
1340#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342#endif
755 if (ev_is_active (w)) 1343 if (ev_is_active (w))
756 return; 1344 return;
757 1345
758 ev_start ((W)w, ++idlecnt); 1346 ev_start (EV_A_ (W)w, 1);
759 array_needsize (idles, idlemax, idlecnt, ); 1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
760 idles [idlecnt - 1] = w;
761} 1348}
762 1349
763void evidle_stop (struct ev_idle *w) 1350void
1351ev_child_stop (EV_P_ struct ev_child *w)
764{ 1352{
765 idles [w->active - 1] = idles [--idlecnt]; 1353 ev_clear_pending (EV_A_ (W)w);
766 ev_stop ((W)w);
767}
768
769void evcheck_start (struct ev_check *w)
770{
771 if (ev_is_active (w)) 1354 if (ev_is_active (w))
772 return; 1355 return;
773 1356
774 ev_start ((W)w, ++checkcnt); 1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
775 array_needsize (checks, checkmax, checkcnt, );
776 checks [checkcnt - 1] = w;
777}
778
779void evcheck_stop (struct ev_check *w)
780{
781 checks [w->active - 1] = checks [--checkcnt];
782 ev_stop ((W)w); 1358 ev_stop (EV_A_ (W)w);
783} 1359}
784 1360
785/*****************************************************************************/ 1361/*****************************************************************************/
786 1362
787#if 1 1363struct ev_once
788 1364{
789struct ev_io wio; 1365 struct ev_io io;
790
791static void
792sin_cb (struct ev_io *w, int revents)
793{
794 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
795}
796
797static void
798ocb (struct ev_timer *w, int revents)
799{
800 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
801 evtimer_stop (w);
802 evtimer_start (w);
803}
804
805static void
806scb (struct ev_signal *w, int revents)
807{
808 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
809 evio_stop (&wio);
810 evio_start (&wio);
811}
812
813static void
814gcb (struct ev_signal *w, int revents)
815{
816 fprintf (stderr, "generic %x\n", revents);
817
818}
819
820int main (void)
821{
822 ev_init (0);
823
824 evio_init (&wio, sin_cb, 0, EV_READ);
825 evio_start (&wio);
826
827 struct ev_timer t[10000];
828
829#if 0
830 int i;
831 for (i = 0; i < 10000; ++i)
832 {
833 struct ev_timer *w = t + i;
834 evw_init (w, ocb, i);
835 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
836 evtimer_start (w);
837 if (drand48 () < 0.5)
838 evtimer_stop (w);
839 }
840#endif
841
842 struct ev_timer t1; 1366 struct ev_timer to;
843 evtimer_init (&t1, ocb, 5, 10); 1367 void (*cb)(int revents, void *arg);
844 evtimer_start (&t1); 1368 void *arg;
1369};
845 1370
846 struct ev_signal sig; 1371static void
847 evsignal_init (&sig, scb, SIGQUIT); 1372once_cb (EV_P_ struct ev_once *once, int revents)
848 evsignal_start (&sig); 1373{
1374 void (*cb)(int revents, void *arg) = once->cb;
1375 void *arg = once->arg;
849 1376
850 struct ev_check cw; 1377 ev_io_stop (EV_A_ &once->io);
851 evcheck_init (&cw, gcb); 1378 ev_timer_stop (EV_A_ &once->to);
852 evcheck_start (&cw); 1379 free (once);
853 1380
854 struct ev_idle iw; 1381 cb (revents, arg);
855 evidle_init (&iw, gcb);
856 evidle_start (&iw);
857
858 ev_loop (0);
859
860 return 0;
861} 1382}
862 1383
863#endif 1384static void
1385once_cb_io (EV_P_ struct ev_io *w, int revents)
1386{
1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1388}
864 1389
1390static void
1391once_cb_to (EV_P_ struct ev_timer *w, int revents)
1392{
1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1394}
865 1395
1396void
1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1398{
1399 struct ev_once *once = malloc (sizeof (struct ev_once));
866 1400
1401 if (!once)
1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1403 else
1404 {
1405 once->cb = cb;
1406 once->arg = arg;
867 1407
1408 ev_watcher_init (&once->io, once_cb_io);
1409 if (fd >= 0)
1410 {
1411 ev_io_set (&once->io, fd, events);
1412 ev_io_start (EV_A_ &once->io);
1413 }
1414
1415 ev_watcher_init (&once->to, once_cb_to);
1416 if (timeout >= 0.)
1417 {
1418 ev_timer_set (&once->to, timeout, 0.);
1419 ev_timer_start (EV_A_ &once->to);
1420 }
1421 }
1422}
1423

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines