ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.26 by root, Wed Oct 31 21:50:15 2007 UTC vs.
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 149
84/*****************************************************************************/ 150/*****************************************************************************/
85 151
86ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
87ev_time (void) 186ev_time (void)
88{ 187{
89#if HAVE_REALTIME 188#if EV_USE_REALTIME
90 struct timespec ts; 189 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 192#else
94 struct timeval tv; 193 struct timeval tv;
95 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 196#endif
98} 197}
99 198
100static ev_tstamp 199inline ev_tstamp
101get_clock (void) 200get_clock (void)
102{ 201{
103#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
104 if (have_monotonic) 203 if (expect_true (have_monotonic))
105 { 204 {
106 struct timespec ts; 205 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 208 }
110#endif 209#endif
111 210
112 return ev_time (); 211 return ev_time ();
113} 212}
114 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
115#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
117 { \ 224 { \
118 int newcnt = cur; \ 225 int newcnt = cur; \
119 do \ 226 do \
120 { \ 227 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 228 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 229 } \
123 while ((cnt) > newcnt); \ 230 while ((cnt) > newcnt); \
124 \ 231 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 234 cur = newcnt; \
128 } 235 }
129 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
130/*****************************************************************************/ 240/*****************************************************************************/
131 241
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 242static void
145anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
146{ 244{
147 while (count--) 245 while (count--)
148 { 246 {
149 base->head = 0; 247 base->head = 0;
150 base->wev = base->rev = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
151 ++base; 251 ++base;
152 } 252 }
153} 253}
154 254
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void 255static void
165event (W w, int events) 256event (EV_P_ W w, int events)
166{ 257{
167 if (w->active) 258 if (w->pending)
168 { 259 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
261 return;
173 } 262 }
174}
175 263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268}
269
176static void 270static void
271queue_events (EV_P_ W *events, int eventcnt, int type)
272{
273 int i;
274
275 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type);
277}
278
279static void
177fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
178{ 281{
179 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 283 struct ev_io *w;
181 284
182 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 286 {
184 int ev = w->events & events; 287 int ev = w->events & events;
185 288
186 if (ev) 289 if (ev)
187 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
188 } 291 }
189} 292}
190 293
294/*****************************************************************************/
295
191static void 296static void
192queue_events (W *events, int eventcnt, int type) 297fd_reify (EV_P)
193{ 298{
194 int i; 299 int i;
195 300
196 for (i = 0; i < eventcnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 302 {
303 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd;
305 struct ev_io *w;
306
307 int events = 0;
308
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0;
313
314 method_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events;
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
198} 344}
199 345
200/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
201static void 347static void
202fd_recheck (void) 348fd_ebadf (EV_P)
203{ 349{
204 int fd; 350 int fd;
205 351
206 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 353 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
210 { 366 {
211 event ((W)anfds [fd].head, EV_ERROR); 367 close (fd);
212 evio_stop (anfds [fd].head); 368 fd_kill (EV_A_ fd);
369 return;
213 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
214} 386}
215 387
216/*****************************************************************************/ 388/*****************************************************************************/
217 389
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void 390static void
225upheap (WT *timers, int k) 391upheap (WT *heap, int k)
226{ 392{
227 WT w = timers [k]; 393 WT w = heap [k];
228 394
229 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
230 { 396 {
231 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
232 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
233 k >>= 1; 399 k >>= 1;
234 } 400 }
235 401
236 timers [k] = w; 402 heap [k] = w;
237 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
238 404
239} 405}
240 406
241static void 407static void
242downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
243{ 409{
244 WT w = timers [k]; 410 WT w = heap [k];
245 411
246 while (k < (N >> 1)) 412 while (k < (N >> 1))
247 { 413 {
248 int j = k << 1; 414 int j = k << 1;
249 415
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
251 ++j; 417 ++j;
252 418
253 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
254 break; 420 break;
255 421
256 timers [k] = timers [j]; 422 heap [k] = heap [j];
257 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
258 k = j; 424 k = j;
259 } 425 }
260 426
261 timers [k] = w; 427 heap [k] = w;
262 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
263} 429}
264 430
265/*****************************************************************************/ 431/*****************************************************************************/
266 432
267typedef struct 433typedef struct
268{ 434{
269 struct ev_signal *head; 435 struct ev_watcher_list *head;
270 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
271} ANSIG; 437} ANSIG;
272 438
273static ANSIG *signals; 439static ANSIG *signals;
274static int signalmax; 440static int signalmax;
275 441
276static int sigpipe [2]; 442static int sigpipe [2];
277static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
278static struct ev_io sigev; 444static struct ev_io sigev;
279 445
280static void 446static void
281signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
282{ 448{
283 while (count--) 449 while (count--)
284 { 450 {
285 base->head = 0; 451 base->head = 0;
286 base->gotsig = 0; 452 base->gotsig = 0;
453
287 ++base; 454 ++base;
288 } 455 }
289} 456}
290 457
291static void 458static void
293{ 460{
294 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
295 462
296 if (!gotsig) 463 if (!gotsig)
297 { 464 {
465 int old_errno = errno;
298 gotsig = 1; 466 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
300 } 469 }
301} 470}
302 471
303static void 472static void
304sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
305{ 474{
306 struct ev_signal *w; 475 struct ev_watcher_list *w;
307 int sig; 476 int signum;
308 477
478 read (sigpipe [0], &revents, 1);
309 gotsig = 0; 479 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311 480
312 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
313 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
314 { 483 {
315 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
316 485
317 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
319 } 488 }
320} 489}
321 490
322static void 491static void
323siginit (void) 492siginit (EV_P)
324{ 493{
494#ifndef WIN32
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327 497
328 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
331 502
332 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
334} 506}
335 507
336/*****************************************************************************/ 508/*****************************************************************************/
337 509
338static struct ev_idle **idles; 510#ifndef WIN32
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348 511
349static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 513static struct ev_signal childev;
351 514
352#ifndef WCONTINUED 515#ifndef WCONTINUED
353# define WCONTINUED 0 516# define WCONTINUED 0
354#endif 517#endif
355 518
356static void 519static void
357childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
358{ 521{
359 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
360 int pid, status; 537 int pid, status;
361 538
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
364 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
365 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
366 w->status = status; 543
367 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
368 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
369} 547}
548
549#endif
370 550
371/*****************************************************************************/ 551/*****************************************************************************/
372 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
373#if HAVE_EPOLL 556#if EV_USE_EPOLL
374# include "ev_epoll.c" 557# include "ev_epoll.c"
375#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
376#if HAVE_SELECT 562#if EV_USE_SELECT
377# include "ev_select.c" 563# include "ev_select.c"
378#endif 564#endif
379 565
380int 566int
381ev_version_major (void) 567ev_version_major (void)
387ev_version_minor (void) 573ev_version_minor (void)
388{ 574{
389 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
390} 576}
391 577
392int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
393{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
394 if (!ev_method) 599 if (!method)
395 { 600 {
396#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
397 { 602 {
398 struct timespec ts; 603 struct timespec ts;
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
400 have_monotonic = 1; 605 have_monotonic = 1;
401 } 606 }
402#endif 607#endif
403 608
404 ev_now = ev_time (); 609 rt_now = ev_time ();
405 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
406 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
407 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
408 if (pipe (sigpipe)) 728 if (pipe (sigpipe))
409 return 0; 729 return 0;
410 730
411 ev_method = EVMETHOD_NONE; 731 if (!default_loop)
412#if HAVE_EPOLL 732 {
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
414#endif 737#endif
415#if HAVE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 738
739 loop_init (EV_A_ methods);
740
419 if (ev_method) 741 if (ev_method (EV_A))
420 { 742 {
421 evw_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
422 siginit (); 745 siginit (EV_A);
423 746
747#ifndef WIN32
424 evsignal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
425 evsignal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
426 } 753 }
754 else
755 default_loop = 0;
427 } 756 }
428 757
429 return ev_method; 758 return default_loop;
430} 759}
431 760
432/*****************************************************************************/
433
434void 761void
435ev_prefork (void) 762ev_default_destroy (void)
436{ 763{
437 /* nop */ 764#if EV_MULTIPLICITY
438} 765 struct ev_loop *loop = default_loop;
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif 766#endif
453 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
454 evio_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
455 close (sigpipe [0]); 790 close (sigpipe [0]);
456 close (sigpipe [1]); 791 close (sigpipe [1]);
457 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
458 siginit (); 795 siginit (EV_A);
459} 796}
460 797
461/*****************************************************************************/ 798/*****************************************************************************/
462 799
463static void 800static void
464fd_reify (void) 801call_pending (EV_P)
465{ 802{
466 int i; 803 int pri;
467 804
468 for (i = 0; i < fdchangecnt; ++i) 805 for (pri = NUMPRI; pri--; )
469 { 806 while (pendingcnt [pri])
470 int fd = fdchanges [i];
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 { 807 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
495 809
496 if (p->w) 810 if (p->w)
497 { 811 {
498 p->w->pending = 0; 812 p->w->pending = 0;
499 p->w->cb (p->w, p->events); 813 p->w->cb (EV_A_ p->w, p->events);
500 } 814 }
501 } 815 }
502} 816}
503 817
504static void 818static void
505timers_reify (void) 819timers_reify (EV_P)
506{ 820{
507 while (timercnt && timers [0]->at <= now) 821 while (timercnt && ((WT)timers [0])->at <= mn_now)
508 { 822 {
509 struct ev_timer *w = timers [0]; 823 struct ev_timer *w = timers [0];
510 824
511 event ((W)w, EV_TIMEOUT); 825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
512 826
513 /* first reschedule or stop timer */ 827 /* first reschedule or stop timer */
514 if (w->repeat) 828 if (w->repeat)
515 { 829 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
516 w->at = now + w->repeat; 831 ((WT)w)->at = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now));
518 downheap ((WT *)timers, timercnt, 0); 832 downheap ((WT *)timers, timercnt, 0);
519 } 833 }
520 else 834 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
522 }
523}
524 836
837 event (EV_A_ (W)w, EV_TIMEOUT);
838 }
839}
840
525static void 841static void
526periodics_reify (void) 842periodics_reify (EV_P)
527{ 843{
528 while (periodiccnt && periodics [0]->at <= ev_now) 844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
529 { 845 {
530 struct ev_periodic *w = periodics [0]; 846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
531 849
532 /* first reschedule or stop timer */ 850 /* first reschedule or stop timer */
533 if (w->interval) 851 if (w->interval)
534 { 852 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
537 downheap ((WT *)periodics, periodiccnt, 0); 855 downheap ((WT *)periodics, periodiccnt, 0);
538 } 856 }
539 else 857 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
541 859
542 event ((W)w, EV_TIMEOUT); 860 event (EV_A_ (W)w, EV_PERIODIC);
543 } 861 }
544} 862}
545 863
546static void 864static void
547periodics_reschedule (ev_tstamp diff) 865periodics_reschedule (EV_P)
548{ 866{
549 int i; 867 int i;
550 868
551 /* adjust periodics after time jump */ 869 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i) 870 for (i = 0; i < periodiccnt; ++i)
553 { 871 {
554 struct ev_periodic *w = periodics [i]; 872 struct ev_periodic *w = periodics [i];
555 873
556 if (w->interval) 874 if (w->interval)
557 { 875 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
559 877
560 if (fabs (diff) >= 1e-4) 878 if (fabs (diff) >= 1e-4)
561 { 879 {
562 evperiodic_stop (w); 880 ev_periodic_stop (EV_A_ w);
563 evperiodic_start (w); 881 ev_periodic_start (EV_A_ w);
564 882
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
566 } 884 }
567 } 885 }
568 } 886 }
569} 887}
570 888
889inline int
890time_update_monotonic (EV_P)
891{
892 mn_now = get_clock ();
893
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 {
896 rt_now = rtmn_diff + mn_now;
897 return 0;
898 }
899 else
900 {
901 now_floor = mn_now;
902 rt_now = ev_time ();
903 return 1;
904 }
905}
906
571static void 907static void
572time_update (void) 908time_update (EV_P)
573{ 909{
574 int i; 910 int i;
575 911
576 ev_now = ev_time (); 912#if EV_USE_MONOTONIC
577
578 if (have_monotonic) 913 if (expect_true (have_monotonic))
579 { 914 {
580 ev_tstamp odiff = diff; 915 if (time_update_monotonic (EV_A))
581
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */
583 { 916 {
584 now = get_clock (); 917 ev_tstamp odiff = rtmn_diff;
918
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 {
585 diff = ev_now - now; 921 rtmn_diff = rt_now - mn_now;
586 922
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
588 return; /* all is well */ 924 return; /* all is well */
589 925
590 ev_now = ev_time (); 926 rt_now = ev_time ();
927 mn_now = get_clock ();
928 now_floor = mn_now;
929 }
930
931 periodics_reschedule (EV_A);
932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
591 } 934 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 } 935 }
596 else 936 else
937#endif
597 { 938 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 939 rt_now = ev_time ();
940
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
599 { 942 {
600 periodics_reschedule (ev_now - now); 943 periodics_reschedule (EV_A);
601 944
602 /* adjust timers. this is easy, as the offset is the same for all */ 945 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i) 946 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff; 947 ((WT)timers [i])->at += rt_now - mn_now;
605 } 948 }
606 949
607 now = ev_now; 950 mn_now = rt_now;
608 } 951 }
609} 952}
610 953
611int ev_loop_done; 954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
612 959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967
968void
613void ev_loop (int flags) 969ev_loop (EV_P_ int flags)
614{ 970{
615 double block; 971 double block;
616 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
617 973
618 do 974 do
619 { 975 {
620 /* queue check watchers (and execute them) */ 976 /* queue check watchers (and execute them) */
621 if (preparecnt) 977 if (expect_false (preparecnt))
622 { 978 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
624 call_pending (); 980 call_pending (EV_A);
625 } 981 }
626 982
627 /* update fd-related kernel structures */ 983 /* update fd-related kernel structures */
628 fd_reify (); 984 fd_reify (EV_A);
629 985
630 /* calculate blocking time */ 986 /* calculate blocking time */
631 987
632 /* we only need this for !monotonic clockor timers, but as we basically 988 /* we only need this for !monotonic clockor timers, but as we basically
633 always have timers, we just calculate it always */ 989 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A);
993 else
994#endif
995 {
634 ev_now = ev_time (); 996 rt_now = ev_time ();
997 mn_now = rt_now;
998 }
635 999
636 if (flags & EVLOOP_NONBLOCK || idlecnt) 1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.; 1001 block = 0.;
638 else 1002 else
639 { 1003 {
640 block = MAX_BLOCKTIME; 1004 block = MAX_BLOCKTIME;
641 1005
642 if (timercnt) 1006 if (timercnt)
643 { 1007 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
645 if (block > to) block = to; 1009 if (block > to) block = to;
646 } 1010 }
647 1011
648 if (periodiccnt) 1012 if (periodiccnt)
649 { 1013 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
651 if (block > to) block = to; 1015 if (block > to) block = to;
652 } 1016 }
653 1017
654 if (block < 0.) block = 0.; 1018 if (block < 0.) block = 0.;
655 } 1019 }
656 1020
657 method_poll (block); 1021 method_poll (EV_A_ block);
658 1022
659 /* update ev_now, do magic */ 1023 /* update rt_now, do magic */
660 time_update (); 1024 time_update (EV_A);
661 1025
662 /* queue pending timers and reschedule them */ 1026 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 1027 timers_reify (EV_A); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */ 1028 periodics_reify (EV_A); /* absolute timers called first */
665 1029
666 /* queue idle watchers unless io or timers are pending */ 1030 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt) 1031 if (!pendingcnt)
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
669 1033
670 /* queue check watchers, to be executed first */ 1034 /* queue check watchers, to be executed first */
671 if (checkcnt) 1035 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 1037
674 call_pending (); 1038 call_pending (EV_A);
675 } 1039 }
676 while (!ev_loop_done); 1040 while (activecnt && !loop_done);
677 1041
678 if (ev_loop_done != 2) 1042 if (loop_done != 2)
679 ev_loop_done = 0; 1043 loop_done = 0;
1044}
1045
1046void
1047ev_unloop (EV_P_ int how)
1048{
1049 loop_done = how;
680} 1050}
681 1051
682/*****************************************************************************/ 1052/*****************************************************************************/
683 1053
684static void 1054inline void
685wlist_add (WL *head, WL elem) 1055wlist_add (WL *head, WL elem)
686{ 1056{
687 elem->next = *head; 1057 elem->next = *head;
688 *head = elem; 1058 *head = elem;
689} 1059}
690 1060
691static void 1061inline void
692wlist_del (WL *head, WL elem) 1062wlist_del (WL *head, WL elem)
693{ 1063{
694 while (*head) 1064 while (*head)
695 { 1065 {
696 if (*head == elem) 1066 if (*head == elem)
701 1071
702 head = &(*head)->next; 1072 head = &(*head)->next;
703 } 1073 }
704} 1074}
705 1075
706static void 1076inline void
707ev_clear (W w) 1077ev_clear_pending (EV_P_ W w)
708{ 1078{
709 if (w->pending) 1079 if (w->pending)
710 { 1080 {
711 pendings [w->pending - 1].w = 0; 1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 1082 w->pending = 0;
713 } 1083 }
714} 1084}
715 1085
716static void 1086inline void
717ev_start (W w, int active) 1087ev_start (EV_P_ W w, int active)
718{ 1088{
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
719 w->active = active; 1092 w->active = active;
1093 ev_ref (EV_A);
720} 1094}
721 1095
722static void 1096inline void
723ev_stop (W w) 1097ev_stop (EV_P_ W w)
724{ 1098{
1099 ev_unref (EV_A);
725 w->active = 0; 1100 w->active = 0;
726} 1101}
727 1102
728/*****************************************************************************/ 1103/*****************************************************************************/
729 1104
730void 1105void
731evio_start (struct ev_io *w) 1106ev_io_start (EV_P_ struct ev_io *w)
732{ 1107{
1108 int fd = w->fd;
1109
733 if (ev_is_active (w)) 1110 if (ev_is_active (w))
734 return; 1111 return;
735 1112
736 int fd = w->fd; 1113 assert (("ev_io_start called with negative fd", fd >= 0));
737 1114
738 ev_start ((W)w, 1); 1115 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741 1118
742 ++fdchangecnt; 1119 fd_change (EV_A_ fd);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745
746 if (w->fd == 9)
747 printf ("start %p:%x\n", w, w->events);//D
748} 1120}
749 1121
750void 1122void
751evio_stop (struct ev_io *w) 1123ev_io_stop (EV_P_ struct ev_io *w)
752{ 1124{
753 if (w->fd == 9) 1125 ev_clear_pending (EV_A_ (W)w);
754 printf ("stop %p:%x\n", w, w->events);//D
755 ev_clear ((W)w);
756 if (!ev_is_active (w)) 1126 if (!ev_is_active (w))
757 return; 1127 return;
758 1128
759 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
760 ev_stop ((W)w); 1130 ev_stop (EV_A_ (W)w);
761 1131
762 ++fdchangecnt; 1132 fd_change (EV_A_ w->fd);
763 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
764 fdchanges [fdchangecnt - 1] = w->fd;
765} 1133}
766 1134
767void 1135void
768evtimer_start (struct ev_timer *w) 1136ev_timer_start (EV_P_ struct ev_timer *w)
769{ 1137{
770 if (ev_is_active (w)) 1138 if (ev_is_active (w))
771 return; 1139 return;
772 1140
773 w->at += now; 1141 ((WT)w)->at += mn_now;
774 1142
775 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
776 1144
777 ev_start ((W)w, ++timercnt); 1145 ev_start (EV_A_ (W)w, ++timercnt);
778 array_needsize (timers, timermax, timercnt, ); 1146 array_needsize (timers, timermax, timercnt, );
779 timers [timercnt - 1] = w; 1147 timers [timercnt - 1] = w;
780 upheap ((WT *)timers, timercnt - 1); 1148 upheap ((WT *)timers, timercnt - 1);
781}
782 1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151}
1152
783void 1153void
784evtimer_stop (struct ev_timer *w) 1154ev_timer_stop (EV_P_ struct ev_timer *w)
785{ 1155{
786 ev_clear ((W)w); 1156 ev_clear_pending (EV_A_ (W)w);
787 if (!ev_is_active (w)) 1157 if (!ev_is_active (w))
788 return; 1158 return;
789 1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
790 if (w->active < timercnt--) 1162 if (((W)w)->active < timercnt--)
791 { 1163 {
792 timers [w->active - 1] = timers [timercnt]; 1164 timers [((W)w)->active - 1] = timers [timercnt];
793 downheap ((WT *)timers, timercnt, w->active - 1); 1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
794 } 1166 }
795 1167
796 w->at = w->repeat; 1168 ((WT)w)->at = w->repeat;
797 1169
798 ev_stop ((W)w); 1170 ev_stop (EV_A_ (W)w);
799} 1171}
800 1172
801void 1173void
802evtimer_again (struct ev_timer *w) 1174ev_timer_again (EV_P_ struct ev_timer *w)
803{ 1175{
804 if (ev_is_active (w)) 1176 if (ev_is_active (w))
805 { 1177 {
806 if (w->repeat) 1178 if (w->repeat)
807 { 1179 {
808 w->at = now + w->repeat; 1180 ((WT)w)->at = mn_now + w->repeat;
809 downheap ((WT *)timers, timercnt, w->active - 1); 1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
810 } 1182 }
811 else 1183 else
812 evtimer_stop (w); 1184 ev_timer_stop (EV_A_ w);
813 } 1185 }
814 else if (w->repeat) 1186 else if (w->repeat)
815 evtimer_start (w); 1187 ev_timer_start (EV_A_ w);
816} 1188}
817 1189
818void 1190void
819evperiodic_start (struct ev_periodic *w) 1191ev_periodic_start (EV_P_ struct ev_periodic *w)
820{ 1192{
821 if (ev_is_active (w)) 1193 if (ev_is_active (w))
822 return; 1194 return;
823 1195
824 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
825 1197
826 /* this formula differs from the one in periodic_reify because we do not always round up */ 1198 /* this formula differs from the one in periodic_reify because we do not always round up */
827 if (w->interval) 1199 if (w->interval)
828 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
829 1201
830 ev_start ((W)w, ++periodiccnt); 1202 ev_start (EV_A_ (W)w, ++periodiccnt);
831 array_needsize (periodics, periodicmax, periodiccnt, ); 1203 array_needsize (periodics, periodicmax, periodiccnt, );
832 periodics [periodiccnt - 1] = w; 1204 periodics [periodiccnt - 1] = w;
833 upheap ((WT *)periodics, periodiccnt - 1); 1205 upheap ((WT *)periodics, periodiccnt - 1);
834}
835 1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208}
1209
836void 1210void
837evperiodic_stop (struct ev_periodic *w) 1211ev_periodic_stop (EV_P_ struct ev_periodic *w)
838{ 1212{
839 ev_clear ((W)w); 1213 ev_clear_pending (EV_A_ (W)w);
840 if (!ev_is_active (w)) 1214 if (!ev_is_active (w))
841 return; 1215 return;
842 1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
843 if (w->active < periodiccnt--) 1219 if (((W)w)->active < periodiccnt--)
844 { 1220 {
845 periodics [w->active - 1] = periodics [periodiccnt]; 1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
846 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
847 } 1223 }
848 1224
849 ev_stop ((W)w); 1225 ev_stop (EV_A_ (W)w);
850} 1226}
851 1227
852void 1228void
853evsignal_start (struct ev_signal *w) 1229ev_idle_start (EV_P_ struct ev_idle *w)
854{ 1230{
855 if (ev_is_active (w)) 1231 if (ev_is_active (w))
856 return; 1232 return;
857 1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248}
1249
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293
1294#ifndef SA_RESTART
1295# define SA_RESTART 0
1296#endif
1297
1298void
1299ev_signal_start (EV_P_ struct ev_signal *w)
1300{
1301#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303#endif
1304 if (ev_is_active (w))
1305 return;
1306
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308
858 ev_start ((W)w, 1); 1309 ev_start (EV_A_ (W)w, 1);
859 array_needsize (signals, signalmax, w->signum, signals_init); 1310 array_needsize (signals, signalmax, w->signum, signals_init);
860 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
861 1312
862 if (!w->next) 1313 if (!((WL)w)->next)
863 { 1314 {
864 struct sigaction sa; 1315 struct sigaction sa;
865 sa.sa_handler = sighandler; 1316 sa.sa_handler = sighandler;
866 sigfillset (&sa.sa_mask); 1317 sigfillset (&sa.sa_mask);
867 sa.sa_flags = 0; 1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
868 sigaction (w->signum, &sa, 0); 1319 sigaction (w->signum, &sa, 0);
869 } 1320 }
870} 1321}
871 1322
872void 1323void
873evsignal_stop (struct ev_signal *w) 1324ev_signal_stop (EV_P_ struct ev_signal *w)
874{ 1325{
875 ev_clear ((W)w); 1326 ev_clear_pending (EV_A_ (W)w);
876 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
877 return; 1328 return;
878 1329
879 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
880 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
881 1332
882 if (!signals [w->signum - 1].head) 1333 if (!signals [w->signum - 1].head)
883 signal (w->signum, SIG_DFL); 1334 signal (w->signum, SIG_DFL);
884} 1335}
885 1336
886void evidle_start (struct ev_idle *w) 1337void
1338ev_child_start (EV_P_ struct ev_child *w)
887{ 1339{
1340#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342#endif
888 if (ev_is_active (w)) 1343 if (ev_is_active (w))
889 return; 1344 return;
890 1345
891 ev_start ((W)w, ++idlecnt); 1346 ev_start (EV_A_ (W)w, 1);
892 array_needsize (idles, idlemax, idlecnt, ); 1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
893 idles [idlecnt - 1] = w;
894} 1348}
895 1349
896void evidle_stop (struct ev_idle *w) 1350void
1351ev_child_stop (EV_P_ struct ev_child *w)
897{ 1352{
898 ev_clear ((W)w); 1353 ev_clear_pending (EV_A_ (W)w);
899 if (ev_is_active (w)) 1354 if (ev_is_active (w))
900 return; 1355 return;
901 1356
902 idles [w->active - 1] = idles [--idlecnt];
903 ev_stop ((W)w);
904}
905
906void evprepare_start (struct ev_prepare *w)
907{
908 if (ev_is_active (w))
909 return;
910
911 ev_start ((W)w, ++preparecnt);
912 array_needsize (prepares, preparemax, preparecnt, );
913 prepares [preparecnt - 1] = w;
914}
915
916void evprepare_stop (struct ev_prepare *w)
917{
918 ev_clear ((W)w);
919 if (ev_is_active (w))
920 return;
921
922 prepares [w->active - 1] = prepares [--preparecnt];
923 ev_stop ((W)w);
924}
925
926void evcheck_start (struct ev_check *w)
927{
928 if (ev_is_active (w))
929 return;
930
931 ev_start ((W)w, ++checkcnt);
932 array_needsize (checks, checkmax, checkcnt, );
933 checks [checkcnt - 1] = w;
934}
935
936void evcheck_stop (struct ev_check *w)
937{
938 ev_clear ((W)w);
939 if (ev_is_active (w))
940 return;
941
942 checks [w->active - 1] = checks [--checkcnt];
943 ev_stop ((W)w);
944}
945
946void evchild_start (struct ev_child *w)
947{
948 if (ev_is_active (w))
949 return;
950
951 ev_start ((W)w, 1);
952 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
953}
954
955void evchild_stop (struct ev_child *w)
956{
957 ev_clear ((W)w);
958 if (ev_is_active (w))
959 return;
960
961 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
962 ev_stop ((W)w); 1358 ev_stop (EV_A_ (W)w);
963} 1359}
964 1360
965/*****************************************************************************/ 1361/*****************************************************************************/
966 1362
967struct ev_once 1363struct ev_once
971 void (*cb)(int revents, void *arg); 1367 void (*cb)(int revents, void *arg);
972 void *arg; 1368 void *arg;
973}; 1369};
974 1370
975static void 1371static void
976once_cb (struct ev_once *once, int revents) 1372once_cb (EV_P_ struct ev_once *once, int revents)
977{ 1373{
978 void (*cb)(int revents, void *arg) = once->cb; 1374 void (*cb)(int revents, void *arg) = once->cb;
979 void *arg = once->arg; 1375 void *arg = once->arg;
980 1376
981 evio_stop (&once->io); 1377 ev_io_stop (EV_A_ &once->io);
982 evtimer_stop (&once->to); 1378 ev_timer_stop (EV_A_ &once->to);
983 free (once); 1379 free (once);
984 1380
985 cb (revents, arg); 1381 cb (revents, arg);
986} 1382}
987 1383
988static void 1384static void
989once_cb_io (struct ev_io *w, int revents) 1385once_cb_io (EV_P_ struct ev_io *w, int revents)
990{ 1386{
991 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
992} 1388}
993 1389
994static void 1390static void
995once_cb_to (struct ev_timer *w, int revents) 1391once_cb_to (EV_P_ struct ev_timer *w, int revents)
996{ 1392{
997 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
998} 1394}
999 1395
1000void 1396void
1001ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1002{ 1398{
1003 struct ev_once *once = malloc (sizeof (struct ev_once)); 1399 struct ev_once *once = malloc (sizeof (struct ev_once));
1004 1400
1005 if (!once) 1401 if (!once)
1006 cb (EV_ERROR, arg); 1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1007 else 1403 else
1008 { 1404 {
1009 once->cb = cb; 1405 once->cb = cb;
1010 once->arg = arg; 1406 once->arg = arg;
1011 1407
1012 evw_init (&once->io, once_cb_io); 1408 ev_watcher_init (&once->io, once_cb_io);
1013
1014 if (fd >= 0) 1409 if (fd >= 0)
1015 { 1410 {
1016 evio_set (&once->io, fd, events); 1411 ev_io_set (&once->io, fd, events);
1017 evio_start (&once->io); 1412 ev_io_start (EV_A_ &once->io);
1018 } 1413 }
1019 1414
1020 evw_init (&once->to, once_cb_to); 1415 ev_watcher_init (&once->to, once_cb_to);
1021
1022 if (timeout >= 0.) 1416 if (timeout >= 0.)
1023 { 1417 {
1024 evtimer_set (&once->to, timeout, 0.); 1418 ev_timer_set (&once->to, timeout, 0.);
1025 evtimer_start (&once->to); 1419 ev_timer_start (EV_A_ &once->to);
1026 } 1420 }
1027 } 1421 }
1028} 1422}
1029 1423
1030/*****************************************************************************/
1031
1032#if 0
1033
1034struct ev_io wio;
1035
1036static void
1037sin_cb (struct ev_io *w, int revents)
1038{
1039 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1040}
1041
1042static void
1043ocb (struct ev_timer *w, int revents)
1044{
1045 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1046 evtimer_stop (w);
1047 evtimer_start (w);
1048}
1049
1050static void
1051scb (struct ev_signal *w, int revents)
1052{
1053 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1054 evio_stop (&wio);
1055 evio_start (&wio);
1056}
1057
1058static void
1059gcb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "generic %x\n", revents);
1062
1063}
1064
1065int main (void)
1066{
1067 ev_init (0);
1068
1069 evio_init (&wio, sin_cb, 0, EV_READ);
1070 evio_start (&wio);
1071
1072 struct ev_timer t[10000];
1073
1074#if 0
1075 int i;
1076 for (i = 0; i < 10000; ++i)
1077 {
1078 struct ev_timer *w = t + i;
1079 evw_init (w, ocb, i);
1080 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1081 evtimer_start (w);
1082 if (drand48 () < 0.5)
1083 evtimer_stop (w);
1084 }
1085#endif
1086
1087 struct ev_timer t1;
1088 evtimer_init (&t1, ocb, 5, 10);
1089 evtimer_start (&t1);
1090
1091 struct ev_signal sig;
1092 evsignal_init (&sig, scb, SIGQUIT);
1093 evsignal_start (&sig);
1094
1095 struct ev_check cw;
1096 evcheck_init (&cw, gcb);
1097 evcheck_start (&cw);
1098
1099 struct ev_idle iw;
1100 evidle_init (&iw, gcb);
1101 evidle_start (&iw);
1102
1103 ev_loop (0);
1104
1105 return 0;
1106}
1107
1108#endif
1109
1110
1111
1112

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines