ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.42 by root, Fri Nov 2 20:05:05 2007 UTC vs.
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
107 143
108typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
109typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
111 147
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
113ev_tstamp ev_now;
114int ev_method;
115
116static int have_monotonic; /* runtime */
117
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
119static void (*method_modify)(int fd, int oev, int nev);
120static void (*method_poll)(ev_tstamp timeout);
121 149
122/*****************************************************************************/ 150/*****************************************************************************/
123 151
124ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
125ev_time (void) 186ev_time (void)
126{ 187{
127#if EV_USE_REALTIME 188#if EV_USE_REALTIME
128 struct timespec ts; 189 struct timespec ts;
129 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
133 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif 196#endif
136} 197}
137 198
138static ev_tstamp 199inline ev_tstamp
139get_clock (void) 200get_clock (void)
140{ 201{
141#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 203 if (expect_true (have_monotonic))
143 { 204 {
146 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
147 } 208 }
148#endif 209#endif
149 210
150 return ev_time (); 211 return ev_time ();
212}
213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
151} 218}
152 219
153#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
154 221
155#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
165 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
166 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
167 cur = newcnt; \ 234 cur = newcnt; \
168 } 235 }
169 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
170/*****************************************************************************/ 240/*****************************************************************************/
171
172typedef struct
173{
174 struct ev_io *head;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178
179static ANFD *anfds;
180static int anfdmax;
181 241
182static void 242static void
183anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
184{ 244{
185 while (count--) 245 while (count--)
190 250
191 ++base; 251 ++base;
192 } 252 }
193} 253}
194 254
195typedef struct
196{
197 W w;
198 int events;
199} ANPENDING;
200
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void 255static void
205event (W w, int events) 256event (EV_P_ W w, int events)
206{ 257{
207 if (w->pending) 258 if (w->pending)
208 { 259 {
209 pendings [ABSPRI (w)][w->pending - 1].events |= events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
210 return; 261 return;
215 pendings [ABSPRI (w)][w->pending - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
216 pendings [ABSPRI (w)][w->pending - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
217} 268}
218 269
219static void 270static void
220queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
221{ 272{
222 int i; 273 int i;
223 274
224 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type); 276 event (EV_A_ events [i], type);
226} 277}
227 278
228static void 279static void
229fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
230{ 281{
231 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 283 struct ev_io *w;
233 284
234 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
235 { 286 {
236 int ev = w->events & events; 287 int ev = w->events & events;
237 288
238 if (ev) 289 if (ev)
239 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
240 } 291 }
241} 292}
242 293
243/*****************************************************************************/ 294/*****************************************************************************/
244 295
245static int *fdchanges;
246static int fdchangemax, fdchangecnt;
247
248static void 296static void
249fd_reify (void) 297fd_reify (EV_P)
250{ 298{
251 int i; 299 int i;
252 300
253 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
254 { 302 {
256 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 305 struct ev_io *w;
258 306
259 int events = 0; 307 int events = 0;
260 308
261 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
262 events |= w->events; 310 events |= w->events;
263 311
264 anfd->reify = 0; 312 anfd->reify = 0;
265 313
266 if (anfd->events != events)
267 {
268 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
269 anfd->events = events; 315 anfd->events = events;
270 }
271 } 316 }
272 317
273 fdchangecnt = 0; 318 fdchangecnt = 0;
274} 319}
275 320
276static void 321static void
277fd_change (int fd) 322fd_change (EV_P_ int fd)
278{ 323{
279 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
280 return; 325 return;
281 326
282 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
286 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
287} 332}
288 333
289static void 334static void
290fd_kill (int fd) 335fd_kill (EV_P_ int fd)
291{ 336{
292 struct ev_io *w; 337 struct ev_io *w;
293 338
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 339 while ((w = (struct ev_io *)anfds [fd].head))
296 { 340 {
297 ev_io_stop (w); 341 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 343 }
300} 344}
301 345
302/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
303static void 347static void
304fd_ebadf (void) 348fd_ebadf (EV_P)
305{ 349{
306 int fd; 350 int fd;
307 351
308 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 353 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
311 fd_kill (fd); 355 fd_kill (EV_A_ fd);
312} 356}
313 357
314/* called on ENOMEM in select/poll to kill some fds and retry */ 358/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 359static void
316fd_enomem (void) 360fd_enomem (EV_P)
317{ 361{
318 int fd = anfdmax; 362 int fd;
319 363
320 while (fd--) 364 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 365 if (anfds [fd].events)
322 { 366 {
323 close (fd); 367 close (fd);
324 fd_kill (fd); 368 fd_kill (EV_A_ fd);
325 return; 369 return;
326 } 370 }
327} 371}
328 372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
386}
387
329/*****************************************************************************/ 388/*****************************************************************************/
330 389
331static struct ev_timer **timers;
332static int timermax, timercnt;
333
334static struct ev_periodic **periodics;
335static int periodicmax, periodiccnt;
336
337static void 390static void
338upheap (WT *timers, int k) 391upheap (WT *heap, int k)
339{ 392{
340 WT w = timers [k]; 393 WT w = heap [k];
341 394
342 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
343 { 396 {
344 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
346 k >>= 1; 399 k >>= 1;
347 } 400 }
348 401
349 timers [k] = w; 402 heap [k] = w;
350 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
351 404
352} 405}
353 406
354static void 407static void
355downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
356{ 409{
357 WT w = timers [k]; 410 WT w = heap [k];
358 411
359 while (k < (N >> 1)) 412 while (k < (N >> 1))
360 { 413 {
361 int j = k << 1; 414 int j = k << 1;
362 415
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 417 ++j;
365 418
366 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
367 break; 420 break;
368 421
369 timers [k] = timers [j]; 422 heap [k] = heap [j];
370 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
371 k = j; 424 k = j;
372 } 425 }
373 426
374 timers [k] = w; 427 heap [k] = w;
375 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
376} 429}
377 430
378/*****************************************************************************/ 431/*****************************************************************************/
379 432
380typedef struct 433typedef struct
381{ 434{
382 struct ev_signal *head; 435 struct ev_watcher_list *head;
383 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
384} ANSIG; 437} ANSIG;
385 438
386static ANSIG *signals; 439static ANSIG *signals;
387static int signalmax; 440static int signalmax;
407{ 460{
408 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
409 462
410 if (!gotsig) 463 if (!gotsig)
411 { 464 {
465 int old_errno = errno;
412 gotsig = 1; 466 gotsig = 1;
413 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
414 } 469 }
415} 470}
416 471
417static void 472static void
418sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
419{ 474{
420 struct ev_signal *w; 475 struct ev_watcher_list *w;
421 int signum; 476 int signum;
422 477
423 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
424 gotsig = 0; 479 gotsig = 0;
425 480
427 if (signals [signum].gotsig) 482 if (signals [signum].gotsig)
428 { 483 {
429 signals [signum].gotsig = 0; 484 signals [signum].gotsig = 0;
430 485
431 for (w = signals [signum].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
433 } 488 }
434} 489}
435 490
436static void 491static void
437siginit (void) 492siginit (EV_P)
438{ 493{
494#ifndef WIN32
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441 497
442 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
445 502
446 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
448} 506}
449 507
450/*****************************************************************************/ 508/*****************************************************************************/
451 509
452static struct ev_idle **idles; 510#ifndef WIN32
453static int idlemax, idlecnt;
454
455static struct ev_prepare **prepares;
456static int preparemax, preparecnt;
457
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462 511
463static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
464static struct ev_signal childev; 513static struct ev_signal childev;
465 514
466#ifndef WCONTINUED 515#ifndef WCONTINUED
467# define WCONTINUED 0 516# define WCONTINUED 0
468#endif 517#endif
469 518
470static void 519static void
471childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{ 521{
473 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
474 int pid, status; 537 int pid, status;
475 538
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
478 if (w->pid == pid || !w->pid) 541 /* make sure we are called again until all childs have been reaped */
479 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
480 w->status = status; 543
481 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
482 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
483} 547}
548
549#endif
484 550
485/*****************************************************************************/ 551/*****************************************************************************/
486 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
487#if EV_USE_EPOLL 556#if EV_USE_EPOLL
488# include "ev_epoll.c" 557# include "ev_epoll.c"
489#endif 558#endif
490#if EV_USE_POLL 559#if EV_USE_POLL
491# include "ev_poll.c" 560# include "ev_poll.c"
504ev_version_minor (void) 573ev_version_minor (void)
505{ 574{
506 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
507} 576}
508 577
509/* return true if we are running with elevated privileges and ignore env variables */ 578/* return true if we are running with elevated privileges and should ignore env variables */
510static int 579static int
511enable_secure () 580enable_secure (void)
512{ 581{
582#ifdef WIN32
583 return 0;
584#else
513 return getuid () != geteuid () 585 return getuid () != geteuid ()
514 || getgid () != getegid (); 586 || getgid () != getegid ();
587#endif
515} 588}
516 589
517int ev_init (int methods) 590int
591ev_method (EV_P)
518{ 592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
519 if (!ev_method) 599 if (!method)
520 { 600 {
521#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
522 { 602 {
523 struct timespec ts; 603 struct timespec ts;
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
525 have_monotonic = 1; 605 have_monotonic = 1;
526 } 606 }
527#endif 607#endif
528 608
529 ev_now = ev_time (); 609 rt_now = ev_time ();
530 now = get_clock (); 610 mn_now = get_clock ();
531 now_floor = now; 611 now_floor = mn_now;
532 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
533
534 if (pipe (sigpipe))
535 return 0;
536 613
537 if (methods == EVMETHOD_AUTO) 614 if (methods == EVMETHOD_AUTO)
538 if (!enable_secure () && getenv ("LIBEV_METHODS")) 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
539 methods = atoi (getenv ("LIBEV_METHODS")); 616 methods = atoi (getenv ("LIBEV_METHODS"));
540 else 617 else
541 methods = EVMETHOD_ANY; 618 methods = EVMETHOD_ANY;
542 619
543 ev_method = 0; 620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
544#if EV_USE_EPOLL 627#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
546#endif 629#endif
547#if EV_USE_POLL 630#if EV_USE_POLL
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
549#endif 632#endif
550#if EV_USE_SELECT 633#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
552#endif 635#endif
636 }
637}
553 638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
554 if (ev_method) 741 if (ev_method (EV_A))
555 { 742 {
556 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
557 siginit (); 745 siginit (EV_A);
558 746
747#ifndef WIN32
559 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
561 } 753 }
754 else
755 default_loop = 0;
562 } 756 }
563 757
564 return ev_method; 758 return default_loop;
565} 759}
566 760
567/*****************************************************************************/
568
569void 761void
570ev_fork_prepare (void) 762ev_default_destroy (void)
571{ 763{
572 /* nop */ 764#if EV_MULTIPLICITY
573} 765 struct ev_loop *loop = default_loop;
574
575void
576ev_fork_parent (void)
577{
578 /* nop */
579}
580
581void
582ev_fork_child (void)
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif 766#endif
588 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
589 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
590 close (sigpipe [0]); 790 close (sigpipe [0]);
591 close (sigpipe [1]); 791 close (sigpipe [1]);
592 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
593 siginit (); 795 siginit (EV_A);
594} 796}
595 797
596/*****************************************************************************/ 798/*****************************************************************************/
597 799
598static void 800static void
599call_pending (void) 801call_pending (EV_P)
600{ 802{
601 int pri; 803 int pri;
602 804
603 for (pri = NUMPRI; pri--; ) 805 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 806 while (pendingcnt [pri])
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 809
608 if (p->w) 810 if (p->w)
609 { 811 {
610 p->w->pending = 0; 812 p->w->pending = 0;
611 p->w->cb (p->w, p->events); 813 p->w->cb (EV_A_ p->w, p->events);
612 } 814 }
613 } 815 }
614} 816}
615 817
616static void 818static void
617timers_reify (void) 819timers_reify (EV_P)
618{ 820{
619 while (timercnt && timers [0]->at <= now) 821 while (timercnt && ((WT)timers [0])->at <= mn_now)
620 { 822 {
621 struct ev_timer *w = timers [0]; 823 struct ev_timer *w = timers [0];
824
825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
622 826
623 /* first reschedule or stop timer */ 827 /* first reschedule or stop timer */
624 if (w->repeat) 828 if (w->repeat)
625 { 829 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
627 w->at = now + w->repeat; 831 ((WT)w)->at = mn_now + w->repeat;
628 downheap ((WT *)timers, timercnt, 0); 832 downheap ((WT *)timers, timercnt, 0);
629 } 833 }
630 else 834 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */ 835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
632 836
633 event ((W)w, EV_TIMEOUT); 837 event (EV_A_ (W)w, EV_TIMEOUT);
634 } 838 }
635} 839}
636 840
637static void 841static void
638periodics_reify (void) 842periodics_reify (EV_P)
639{ 843{
640 while (periodiccnt && periodics [0]->at <= ev_now) 844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
641 { 845 {
642 struct ev_periodic *w = periodics [0]; 846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
643 849
644 /* first reschedule or stop timer */ 850 /* first reschedule or stop timer */
645 if (w->interval) 851 if (w->interval)
646 { 852 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
649 downheap ((WT *)periodics, periodiccnt, 0); 855 downheap ((WT *)periodics, periodiccnt, 0);
650 } 856 }
651 else 857 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */ 858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
653 859
654 event ((W)w, EV_PERIODIC); 860 event (EV_A_ (W)w, EV_PERIODIC);
655 } 861 }
656} 862}
657 863
658static void 864static void
659periodics_reschedule (ev_tstamp diff) 865periodics_reschedule (EV_P)
660{ 866{
661 int i; 867 int i;
662 868
663 /* adjust periodics after time jump */ 869 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i) 870 for (i = 0; i < periodiccnt; ++i)
665 { 871 {
666 struct ev_periodic *w = periodics [i]; 872 struct ev_periodic *w = periodics [i];
667 873
668 if (w->interval) 874 if (w->interval)
669 { 875 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
671 877
672 if (fabs (diff) >= 1e-4) 878 if (fabs (diff) >= 1e-4)
673 { 879 {
674 ev_periodic_stop (w); 880 ev_periodic_stop (EV_A_ w);
675 ev_periodic_start (w); 881 ev_periodic_start (EV_A_ w);
676 882
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
678 } 884 }
679 } 885 }
680 } 886 }
681} 887}
682 888
683static int 889inline int
684time_update_monotonic (void) 890time_update_monotonic (EV_P)
685{ 891{
686 now = get_clock (); 892 mn_now = get_clock ();
687 893
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
689 { 895 {
690 ev_now = now + diff; 896 rt_now = rtmn_diff + mn_now;
691 return 0; 897 return 0;
692 } 898 }
693 else 899 else
694 { 900 {
695 now_floor = now; 901 now_floor = mn_now;
696 ev_now = ev_time (); 902 rt_now = ev_time ();
697 return 1; 903 return 1;
698 } 904 }
699} 905}
700 906
701static void 907static void
702time_update (void) 908time_update (EV_P)
703{ 909{
704 int i; 910 int i;
705 911
706#if EV_USE_MONOTONIC 912#if EV_USE_MONOTONIC
707 if (expect_true (have_monotonic)) 913 if (expect_true (have_monotonic))
708 { 914 {
709 if (time_update_monotonic ()) 915 if (time_update_monotonic (EV_A))
710 { 916 {
711 ev_tstamp odiff = diff; 917 ev_tstamp odiff = rtmn_diff;
712 918
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 { 920 {
715 diff = ev_now - now; 921 rtmn_diff = rt_now - mn_now;
716 922
717 if (fabs (odiff - diff) < MIN_TIMEJUMP) 923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
718 return; /* all is well */ 924 return; /* all is well */
719 925
720 ev_now = ev_time (); 926 rt_now = ev_time ();
721 now = get_clock (); 927 mn_now = get_clock ();
722 now_floor = now; 928 now_floor = mn_now;
723 } 929 }
724 930
725 periodics_reschedule (diff - odiff); 931 periodics_reschedule (EV_A);
726 /* no timer adjustment, as the monotonic clock doesn't jump */ 932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
727 } 934 }
728 } 935 }
729 else 936 else
730#endif 937#endif
731 { 938 {
732 ev_now = ev_time (); 939 rt_now = ev_time ();
733 940
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
735 { 942 {
736 periodics_reschedule (ev_now - now); 943 periodics_reschedule (EV_A);
737 944
738 /* adjust timers. this is easy, as the offset is the same for all */ 945 /* adjust timers. this is easy, as the offset is the same for all */
739 for (i = 0; i < timercnt; ++i) 946 for (i = 0; i < timercnt; ++i)
740 timers [i]->at += diff; 947 ((WT)timers [i])->at += rt_now - mn_now;
741 } 948 }
742 949
743 now = ev_now; 950 mn_now = rt_now;
744 } 951 }
745} 952}
746 953
747int ev_loop_done; 954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
748 959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967
968void
749void ev_loop (int flags) 969ev_loop (EV_P_ int flags)
750{ 970{
751 double block; 971 double block;
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
753 973
754 do 974 do
755 { 975 {
756 /* queue check watchers (and execute them) */ 976 /* queue check watchers (and execute them) */
757 if (expect_false (preparecnt)) 977 if (expect_false (preparecnt))
758 { 978 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
760 call_pending (); 980 call_pending (EV_A);
761 } 981 }
762 982
763 /* update fd-related kernel structures */ 983 /* update fd-related kernel structures */
764 fd_reify (); 984 fd_reify (EV_A);
765 985
766 /* calculate blocking time */ 986 /* calculate blocking time */
767 987
768 /* we only need this for !monotonic clockor timers, but as we basically 988 /* we only need this for !monotonic clockor timers, but as we basically
769 always have timers, we just calculate it always */ 989 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC 990#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic)) 991 if (expect_true (have_monotonic))
772 time_update_monotonic (); 992 time_update_monotonic (EV_A);
773 else 993 else
774#endif 994#endif
775 { 995 {
776 ev_now = ev_time (); 996 rt_now = ev_time ();
777 now = ev_now; 997 mn_now = rt_now;
778 } 998 }
779 999
780 if (flags & EVLOOP_NONBLOCK || idlecnt) 1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
781 block = 0.; 1001 block = 0.;
782 else 1002 else
783 { 1003 {
784 block = MAX_BLOCKTIME; 1004 block = MAX_BLOCKTIME;
785 1005
786 if (timercnt) 1006 if (timercnt)
787 { 1007 {
788 ev_tstamp to = timers [0]->at - now + method_fudge; 1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
789 if (block > to) block = to; 1009 if (block > to) block = to;
790 } 1010 }
791 1011
792 if (periodiccnt) 1012 if (periodiccnt)
793 { 1013 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
795 if (block > to) block = to; 1015 if (block > to) block = to;
796 } 1016 }
797 1017
798 if (block < 0.) block = 0.; 1018 if (block < 0.) block = 0.;
799 } 1019 }
800 1020
801 method_poll (block); 1021 method_poll (EV_A_ block);
802 1022
803 /* update ev_now, do magic */ 1023 /* update rt_now, do magic */
804 time_update (); 1024 time_update (EV_A);
805 1025
806 /* queue pending timers and reschedule them */ 1026 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */ 1027 timers_reify (EV_A); /* relative timers called last */
808 periodics_reify (); /* absolute timers called first */ 1028 periodics_reify (EV_A); /* absolute timers called first */
809 1029
810 /* queue idle watchers unless io or timers are pending */ 1030 /* queue idle watchers unless io or timers are pending */
811 if (!pendingcnt) 1031 if (!pendingcnt)
812 queue_events ((W *)idles, idlecnt, EV_IDLE); 1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
813 1033
814 /* queue check watchers, to be executed first */ 1034 /* queue check watchers, to be executed first */
815 if (checkcnt) 1035 if (checkcnt)
816 queue_events ((W *)checks, checkcnt, EV_CHECK); 1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
817 1037
818 call_pending (); 1038 call_pending (EV_A);
819 } 1039 }
820 while (!ev_loop_done); 1040 while (activecnt && !loop_done);
821 1041
822 if (ev_loop_done != 2) 1042 if (loop_done != 2)
823 ev_loop_done = 0; 1043 loop_done = 0;
1044}
1045
1046void
1047ev_unloop (EV_P_ int how)
1048{
1049 loop_done = how;
824} 1050}
825 1051
826/*****************************************************************************/ 1052/*****************************************************************************/
827 1053
828static void 1054inline void
829wlist_add (WL *head, WL elem) 1055wlist_add (WL *head, WL elem)
830{ 1056{
831 elem->next = *head; 1057 elem->next = *head;
832 *head = elem; 1058 *head = elem;
833} 1059}
834 1060
835static void 1061inline void
836wlist_del (WL *head, WL elem) 1062wlist_del (WL *head, WL elem)
837{ 1063{
838 while (*head) 1064 while (*head)
839 { 1065 {
840 if (*head == elem) 1066 if (*head == elem)
845 1071
846 head = &(*head)->next; 1072 head = &(*head)->next;
847 } 1073 }
848} 1074}
849 1075
850static void 1076inline void
851ev_clear_pending (W w) 1077ev_clear_pending (EV_P_ W w)
852{ 1078{
853 if (w->pending) 1079 if (w->pending)
854 { 1080 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
856 w->pending = 0; 1082 w->pending = 0;
857 } 1083 }
858} 1084}
859 1085
860static void 1086inline void
861ev_start (W w, int active) 1087ev_start (EV_P_ W w, int active)
862{ 1088{
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
863 w->active = active; 1092 w->active = active;
1093 ev_ref (EV_A);
864} 1094}
865 1095
866static void 1096inline void
867ev_stop (W w) 1097ev_stop (EV_P_ W w)
868{ 1098{
1099 ev_unref (EV_A);
869 w->active = 0; 1100 w->active = 0;
870} 1101}
871 1102
872/*****************************************************************************/ 1103/*****************************************************************************/
873 1104
874void 1105void
875ev_io_start (struct ev_io *w) 1106ev_io_start (EV_P_ struct ev_io *w)
876{ 1107{
877 int fd = w->fd; 1108 int fd = w->fd;
878 1109
879 if (ev_is_active (w)) 1110 if (ev_is_active (w))
880 return; 1111 return;
881 1112
882 assert (("ev_io_start called with negative fd", fd >= 0)); 1113 assert (("ev_io_start called with negative fd", fd >= 0));
883 1114
884 ev_start ((W)w, 1); 1115 ev_start (EV_A_ (W)w, 1);
885 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
886 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
887 1118
888 fd_change (fd); 1119 fd_change (EV_A_ fd);
889} 1120}
890 1121
891void 1122void
892ev_io_stop (struct ev_io *w) 1123ev_io_stop (EV_P_ struct ev_io *w)
893{ 1124{
894 ev_clear_pending ((W)w); 1125 ev_clear_pending (EV_A_ (W)w);
895 if (!ev_is_active (w)) 1126 if (!ev_is_active (w))
896 return; 1127 return;
897 1128
898 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
899 ev_stop ((W)w); 1130 ev_stop (EV_A_ (W)w);
900 1131
901 fd_change (w->fd); 1132 fd_change (EV_A_ w->fd);
902} 1133}
903 1134
904void 1135void
905ev_timer_start (struct ev_timer *w) 1136ev_timer_start (EV_P_ struct ev_timer *w)
906{ 1137{
907 if (ev_is_active (w)) 1138 if (ev_is_active (w))
908 return; 1139 return;
909 1140
910 w->at += now; 1141 ((WT)w)->at += mn_now;
911 1142
912 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
913 1144
914 ev_start ((W)w, ++timercnt); 1145 ev_start (EV_A_ (W)w, ++timercnt);
915 array_needsize (timers, timermax, timercnt, ); 1146 array_needsize (timers, timermax, timercnt, );
916 timers [timercnt - 1] = w; 1147 timers [timercnt - 1] = w;
917 upheap ((WT *)timers, timercnt - 1); 1148 upheap ((WT *)timers, timercnt - 1);
918}
919 1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151}
1152
920void 1153void
921ev_timer_stop (struct ev_timer *w) 1154ev_timer_stop (EV_P_ struct ev_timer *w)
922{ 1155{
923 ev_clear_pending ((W)w); 1156 ev_clear_pending (EV_A_ (W)w);
924 if (!ev_is_active (w)) 1157 if (!ev_is_active (w))
925 return; 1158 return;
926 1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
927 if (w->active < timercnt--) 1162 if (((W)w)->active < timercnt--)
928 { 1163 {
929 timers [w->active - 1] = timers [timercnt]; 1164 timers [((W)w)->active - 1] = timers [timercnt];
930 downheap ((WT *)timers, timercnt, w->active - 1); 1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
931 } 1166 }
932 1167
933 w->at = w->repeat; 1168 ((WT)w)->at = w->repeat;
934 1169
935 ev_stop ((W)w); 1170 ev_stop (EV_A_ (W)w);
936} 1171}
937 1172
938void 1173void
939ev_timer_again (struct ev_timer *w) 1174ev_timer_again (EV_P_ struct ev_timer *w)
940{ 1175{
941 if (ev_is_active (w)) 1176 if (ev_is_active (w))
942 { 1177 {
943 if (w->repeat) 1178 if (w->repeat)
944 { 1179 {
945 w->at = now + w->repeat; 1180 ((WT)w)->at = mn_now + w->repeat;
946 downheap ((WT *)timers, timercnt, w->active - 1); 1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
947 } 1182 }
948 else 1183 else
949 ev_timer_stop (w); 1184 ev_timer_stop (EV_A_ w);
950 } 1185 }
951 else if (w->repeat) 1186 else if (w->repeat)
952 ev_timer_start (w); 1187 ev_timer_start (EV_A_ w);
953} 1188}
954 1189
955void 1190void
956ev_periodic_start (struct ev_periodic *w) 1191ev_periodic_start (EV_P_ struct ev_periodic *w)
957{ 1192{
958 if (ev_is_active (w)) 1193 if (ev_is_active (w))
959 return; 1194 return;
960 1195
961 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
962 1197
963 /* this formula differs from the one in periodic_reify because we do not always round up */ 1198 /* this formula differs from the one in periodic_reify because we do not always round up */
964 if (w->interval) 1199 if (w->interval)
965 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
966 1201
967 ev_start ((W)w, ++periodiccnt); 1202 ev_start (EV_A_ (W)w, ++periodiccnt);
968 array_needsize (periodics, periodicmax, periodiccnt, ); 1203 array_needsize (periodics, periodicmax, periodiccnt, );
969 periodics [periodiccnt - 1] = w; 1204 periodics [periodiccnt - 1] = w;
970 upheap ((WT *)periodics, periodiccnt - 1); 1205 upheap ((WT *)periodics, periodiccnt - 1);
971}
972 1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208}
1209
973void 1210void
974ev_periodic_stop (struct ev_periodic *w) 1211ev_periodic_stop (EV_P_ struct ev_periodic *w)
975{ 1212{
976 ev_clear_pending ((W)w); 1213 ev_clear_pending (EV_A_ (W)w);
977 if (!ev_is_active (w)) 1214 if (!ev_is_active (w))
978 return; 1215 return;
979 1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
980 if (w->active < periodiccnt--) 1219 if (((W)w)->active < periodiccnt--)
981 { 1220 {
982 periodics [w->active - 1] = periodics [periodiccnt]; 1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
983 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
984 } 1223 }
985 1224
986 ev_stop ((W)w); 1225 ev_stop (EV_A_ (W)w);
987} 1226}
988 1227
989void 1228void
990ev_signal_start (struct ev_signal *w) 1229ev_idle_start (EV_P_ struct ev_idle *w)
991{ 1230{
992 if (ev_is_active (w)) 1231 if (ev_is_active (w))
993 return; 1232 return;
994 1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248}
1249
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293
1294#ifndef SA_RESTART
1295# define SA_RESTART 0
1296#endif
1297
1298void
1299ev_signal_start (EV_P_ struct ev_signal *w)
1300{
1301#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303#endif
1304 if (ev_is_active (w))
1305 return;
1306
995 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
996 1308
997 ev_start ((W)w, 1); 1309 ev_start (EV_A_ (W)w, 1);
998 array_needsize (signals, signalmax, w->signum, signals_init); 1310 array_needsize (signals, signalmax, w->signum, signals_init);
999 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1000 1312
1001 if (!w->next) 1313 if (!((WL)w)->next)
1002 { 1314 {
1003 struct sigaction sa; 1315 struct sigaction sa;
1004 sa.sa_handler = sighandler; 1316 sa.sa_handler = sighandler;
1005 sigfillset (&sa.sa_mask); 1317 sigfillset (&sa.sa_mask);
1006 sa.sa_flags = 0; 1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1007 sigaction (w->signum, &sa, 0); 1319 sigaction (w->signum, &sa, 0);
1008 } 1320 }
1009} 1321}
1010 1322
1011void 1323void
1012ev_signal_stop (struct ev_signal *w) 1324ev_signal_stop (EV_P_ struct ev_signal *w)
1013{ 1325{
1014 ev_clear_pending ((W)w); 1326 ev_clear_pending (EV_A_ (W)w);
1015 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
1016 return; 1328 return;
1017 1329
1018 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1019 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
1020 1332
1021 if (!signals [w->signum - 1].head) 1333 if (!signals [w->signum - 1].head)
1022 signal (w->signum, SIG_DFL); 1334 signal (w->signum, SIG_DFL);
1023} 1335}
1024 1336
1025void 1337void
1026ev_idle_start (struct ev_idle *w) 1338ev_child_start (EV_P_ struct ev_child *w)
1027{ 1339{
1340#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342#endif
1028 if (ev_is_active (w)) 1343 if (ev_is_active (w))
1029 return; 1344 return;
1030 1345
1031 ev_start ((W)w, ++idlecnt); 1346 ev_start (EV_A_ (W)w, 1);
1032 array_needsize (idles, idlemax, idlecnt, ); 1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1033 idles [idlecnt - 1] = w;
1034} 1348}
1035 1349
1036void 1350void
1037ev_idle_stop (struct ev_idle *w) 1351ev_child_stop (EV_P_ struct ev_child *w)
1038{ 1352{
1039 ev_clear_pending ((W)w); 1353 ev_clear_pending (EV_A_ (W)w);
1040 if (ev_is_active (w)) 1354 if (ev_is_active (w))
1041 return; 1355 return;
1042 1356
1043 idles [w->active - 1] = idles [--idlecnt];
1044 ev_stop ((W)w);
1045}
1046
1047void
1048ev_prepare_start (struct ev_prepare *w)
1049{
1050 if (ev_is_active (w))
1051 return;
1052
1053 ev_start ((W)w, ++preparecnt);
1054 array_needsize (prepares, preparemax, preparecnt, );
1055 prepares [preparecnt - 1] = w;
1056}
1057
1058void
1059ev_prepare_stop (struct ev_prepare *w)
1060{
1061 ev_clear_pending ((W)w);
1062 if (ev_is_active (w))
1063 return;
1064
1065 prepares [w->active - 1] = prepares [--preparecnt];
1066 ev_stop ((W)w);
1067}
1068
1069void
1070ev_check_start (struct ev_check *w)
1071{
1072 if (ev_is_active (w))
1073 return;
1074
1075 ev_start ((W)w, ++checkcnt);
1076 array_needsize (checks, checkmax, checkcnt, );
1077 checks [checkcnt - 1] = w;
1078}
1079
1080void
1081ev_check_stop (struct ev_check *w)
1082{
1083 ev_clear_pending ((W)w);
1084 if (ev_is_active (w))
1085 return;
1086
1087 checks [w->active - 1] = checks [--checkcnt];
1088 ev_stop ((W)w);
1089}
1090
1091void
1092ev_child_start (struct ev_child *w)
1093{
1094 if (ev_is_active (w))
1095 return;
1096
1097 ev_start ((W)w, 1);
1098 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1099}
1100
1101void
1102ev_child_stop (struct ev_child *w)
1103{
1104 ev_clear_pending ((W)w);
1105 if (ev_is_active (w))
1106 return;
1107
1108 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1109 ev_stop ((W)w); 1358 ev_stop (EV_A_ (W)w);
1110} 1359}
1111 1360
1112/*****************************************************************************/ 1361/*****************************************************************************/
1113 1362
1114struct ev_once 1363struct ev_once
1118 void (*cb)(int revents, void *arg); 1367 void (*cb)(int revents, void *arg);
1119 void *arg; 1368 void *arg;
1120}; 1369};
1121 1370
1122static void 1371static void
1123once_cb (struct ev_once *once, int revents) 1372once_cb (EV_P_ struct ev_once *once, int revents)
1124{ 1373{
1125 void (*cb)(int revents, void *arg) = once->cb; 1374 void (*cb)(int revents, void *arg) = once->cb;
1126 void *arg = once->arg; 1375 void *arg = once->arg;
1127 1376
1128 ev_io_stop (&once->io); 1377 ev_io_stop (EV_A_ &once->io);
1129 ev_timer_stop (&once->to); 1378 ev_timer_stop (EV_A_ &once->to);
1130 free (once); 1379 free (once);
1131 1380
1132 cb (revents, arg); 1381 cb (revents, arg);
1133} 1382}
1134 1383
1135static void 1384static void
1136once_cb_io (struct ev_io *w, int revents) 1385once_cb_io (EV_P_ struct ev_io *w, int revents)
1137{ 1386{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1139} 1388}
1140 1389
1141static void 1390static void
1142once_cb_to (struct ev_timer *w, int revents) 1391once_cb_to (EV_P_ struct ev_timer *w, int revents)
1143{ 1392{
1144 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1145} 1394}
1146 1395
1147void 1396void
1148ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1149{ 1398{
1150 struct ev_once *once = malloc (sizeof (struct ev_once)); 1399 struct ev_once *once = malloc (sizeof (struct ev_once));
1151 1400
1152 if (!once) 1401 if (!once)
1153 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1158 1407
1159 ev_watcher_init (&once->io, once_cb_io); 1408 ev_watcher_init (&once->io, once_cb_io);
1160 if (fd >= 0) 1409 if (fd >= 0)
1161 { 1410 {
1162 ev_io_set (&once->io, fd, events); 1411 ev_io_set (&once->io, fd, events);
1163 ev_io_start (&once->io); 1412 ev_io_start (EV_A_ &once->io);
1164 } 1413 }
1165 1414
1166 ev_watcher_init (&once->to, once_cb_to); 1415 ev_watcher_init (&once->to, once_cb_to);
1167 if (timeout >= 0.) 1416 if (timeout >= 0.)
1168 { 1417 {
1169 ev_timer_set (&once->to, timeout, 0.); 1418 ev_timer_set (&once->to, timeout, 0.);
1170 ev_timer_start (&once->to); 1419 ev_timer_start (EV_A_ &once->to);
1171 } 1420 }
1172 } 1421 }
1173} 1422}
1174 1423
1175/*****************************************************************************/
1176
1177#if 0
1178
1179struct ev_io wio;
1180
1181static void
1182sin_cb (struct ev_io *w, int revents)
1183{
1184 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1185}
1186
1187static void
1188ocb (struct ev_timer *w, int revents)
1189{
1190 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1191 ev_timer_stop (w);
1192 ev_timer_start (w);
1193}
1194
1195static void
1196scb (struct ev_signal *w, int revents)
1197{
1198 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1199 ev_io_stop (&wio);
1200 ev_io_start (&wio);
1201}
1202
1203static void
1204gcb (struct ev_signal *w, int revents)
1205{
1206 fprintf (stderr, "generic %x\n", revents);
1207
1208}
1209
1210int main (void)
1211{
1212 ev_init (0);
1213
1214 ev_io_init (&wio, sin_cb, 0, EV_READ);
1215 ev_io_start (&wio);
1216
1217 struct ev_timer t[10000];
1218
1219#if 0
1220 int i;
1221 for (i = 0; i < 10000; ++i)
1222 {
1223 struct ev_timer *w = t + i;
1224 ev_watcher_init (w, ocb, i);
1225 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1226 ev_timer_start (w);
1227 if (drand48 () < 0.5)
1228 ev_timer_stop (w);
1229 }
1230#endif
1231
1232 struct ev_timer t1;
1233 ev_timer_init (&t1, ocb, 5, 10);
1234 ev_timer_start (&t1);
1235
1236 struct ev_signal sig;
1237 ev_signal_init (&sig, scb, SIGQUIT);
1238 ev_signal_start (&sig);
1239
1240 struct ev_check cw;
1241 ev_check_init (&cw, gcb);
1242 ev_check_start (&cw);
1243
1244 struct ev_idle iw;
1245 ev_idle_init (&iw, gcb);
1246 ev_idle_start (&iw);
1247
1248 ev_loop (0);
1249
1250 return 0;
1251}
1252
1253#endif
1254
1255
1256
1257

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines