ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
95#endif 105#endif
96 106
97#ifndef EV_USE_WIN32 107#ifndef EV_USE_WIN32
98# ifdef WIN32 108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 111# define EV_USE_SELECT 1
100# else 112# else
101# define EV_USE_WIN32 0 113# define EV_USE_WIN32 0
102# endif 114# endif
103#endif 115#endif
104 116
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 139
140#ifdef EV_H
141# include EV_H
142#else
128#include "ev.h" 143# include "ev.h"
144#endif
129 145
130#if __GNUC__ >= 3 146#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 148# define inline inline
133#else 149#else
145typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
147 163
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 165
166#include "ev_win32.c"
167
150/*****************************************************************************/ 168/*****************************************************************************/
151 169
170static void (*syserr_cb)(const char *msg);
171
172void ev_set_syserr_cb (void (*cb)(const char *msg))
173{
174 syserr_cb = cb;
175}
176
177static void
178syserr (const char *msg)
179{
180 if (!msg)
181 msg = "(libev) system error";
182
183 if (syserr_cb)
184 syserr_cb (msg);
185 else
186 {
187 perror (msg);
188 abort ();
189 }
190}
191
192static void *(*alloc)(void *ptr, long size);
193
194void ev_set_allocator (void *(*cb)(void *ptr, long size))
195{
196 alloc = cb;
197}
198
199static void *
200ev_realloc (void *ptr, long size)
201{
202 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
203
204 if (!ptr && size)
205 {
206 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
207 abort ();
208 }
209
210 return ptr;
211}
212
213#define ev_malloc(size) ev_realloc (0, (size))
214#define ev_free(ptr) ev_realloc ((ptr), 0)
215
216/*****************************************************************************/
217
152typedef struct 218typedef struct
153{ 219{
154 struct ev_watcher_list *head; 220 WL head;
155 unsigned char events; 221 unsigned char events;
156 unsigned char reify; 222 unsigned char reify;
157} ANFD; 223} ANFD;
158 224
159typedef struct 225typedef struct
162 int events; 228 int events;
163} ANPENDING; 229} ANPENDING;
164 230
165#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
166 232
167struct ev_loop 233 struct ev_loop
168{ 234 {
235 ev_tstamp ev_rt_now;
169# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
170# include "ev_vars.h" 237 #include "ev_vars.h"
171};
172# undef VAR 238 #undef VAR
239 };
173# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
174 244
175#else 245#else
176 246
247 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 249 #include "ev_vars.h"
179# undef VAR 250 #undef VAR
251
252 static int default_loop;
180 253
181#endif 254#endif
182 255
183/*****************************************************************************/ 256/*****************************************************************************/
184 257
185inline ev_tstamp 258ev_tstamp
186ev_time (void) 259ev_time (void)
187{ 260{
188#if EV_USE_REALTIME 261#if EV_USE_REALTIME
189 struct timespec ts; 262 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 282#endif
210 283
211 return ev_time (); 284 return ev_time ();
212} 285}
213 286
287#if EV_MULTIPLICITY
214ev_tstamp 288ev_tstamp
215ev_now (EV_P) 289ev_now (EV_P)
216{ 290{
217 return rt_now; 291 return ev_rt_now;
218} 292}
293#endif
219 294
220#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
221 296
222#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
224 { \ 299 { \
225 int newcnt = cur; \ 300 int newcnt = cur; \
226 do \ 301 do \
227 { \ 302 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 304 } \
230 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
231 \ 306 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 309 cur = newcnt; \
235 } 310 }
311
312#define array_slim(type,stem) \
313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
314 { \
315 stem ## max = array_roundsize (stem ## cnt >> 1); \
316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
318 }
319
320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322#define array_free_microshit(stem) \
323 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
236 324
237#define array_free(stem, idx) \ 325#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 326 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 327
240/*****************************************************************************/ 328/*****************************************************************************/
241 329
242static void 330static void
243anfds_init (ANFD *base, int count) 331anfds_init (ANFD *base, int count)
250 338
251 ++base; 339 ++base;
252 } 340 }
253} 341}
254 342
255static void 343void
256event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
257{ 345{
346 W w_ = (W)w;
347
258 if (w->pending) 348 if (w_->pending)
259 { 349 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 351 return;
262 } 352 }
263 353
264 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 358}
269 359
270static void 360static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 362{
273 int i; 363 int i;
274 364
275 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
277} 367}
278 368
279static void 369inline void
280fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
281{ 371{
282 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 373 struct ev_io *w;
284 374
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 { 376 {
287 int ev = w->events & events; 377 int ev = w->events & revents;
288 378
289 if (ev) 379 if (ev)
290 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
291 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
292} 388}
293 389
294/*****************************************************************************/ 390/*****************************************************************************/
295 391
296static void 392static void
319} 415}
320 416
321static void 417static void
322fd_change (EV_P_ int fd) 418fd_change (EV_P_ int fd)
323{ 419{
324 if (anfds [fd].reify || fdchangecnt < 0) 420 if (anfds [fd].reify)
325 return; 421 return;
326 422
327 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
328 424
329 ++fdchangecnt; 425 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
332} 428}
333 429
334static void 430static void
335fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
337 struct ev_io *w; 433 struct ev_io *w;
338 434
339 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
340 { 436 {
341 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 439 }
440}
441
442static int
443fd_valid (int fd)
444{
445#ifdef WIN32
446 return !!win32_get_osfhandle (fd);
447#else
448 return fcntl (fd, F_GETFD) != -1;
449#endif
344} 450}
345 451
346/* called on EBADF to verify fds */ 452/* called on EBADF to verify fds */
347static void 453static void
348fd_ebadf (EV_P) 454fd_ebadf (EV_P)
349{ 455{
350 int fd; 456 int fd;
351 457
352 for (fd = 0; fd < anfdmax; ++fd) 458 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 459 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 460 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 461 fd_kill (EV_A_ fd);
356} 462}
357 463
358/* called on ENOMEM in select/poll to kill some fds and retry */ 464/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 465static void
362 int fd; 468 int fd;
363 469
364 for (fd = anfdmax; fd--; ) 470 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 471 if (anfds [fd].events)
366 { 472 {
367 close (fd);
368 fd_kill (EV_A_ fd); 473 fd_kill (EV_A_ fd);
369 return; 474 return;
370 } 475 }
371} 476}
372 477
373/* susually called after fork if method needs to re-arm all fds from scratch */ 478/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 479static void
375fd_rearm_all (EV_P) 480fd_rearm_all (EV_P)
376{ 481{
377 int fd; 482 int fd;
378 483
426 531
427 heap [k] = w; 532 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 533 ((W)heap [k])->active = k + 1;
429} 534}
430 535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
546}
547
431/*****************************************************************************/ 548/*****************************************************************************/
432 549
433typedef struct 550typedef struct
434{ 551{
435 struct ev_watcher_list *head; 552 WL head;
436 sig_atomic_t volatile gotsig; 553 sig_atomic_t volatile gotsig;
437} ANSIG; 554} ANSIG;
438 555
439static ANSIG *signals; 556static ANSIG *signals;
440static int signalmax; 557static int signalmax;
456} 573}
457 574
458static void 575static void
459sighandler (int signum) 576sighandler (int signum)
460{ 577{
578#if WIN32
579 signal (signum, sighandler);
580#endif
581
461 signals [signum - 1].gotsig = 1; 582 signals [signum - 1].gotsig = 1;
462 583
463 if (!gotsig) 584 if (!gotsig)
464 { 585 {
465 int old_errno = errno; 586 int old_errno = errno;
466 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
467 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
468 errno = old_errno; 593 errno = old_errno;
469 } 594 }
470} 595}
471 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
472static void 617static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 619{
475 struct ev_watcher_list *w;
476 int signum; 620 int signum;
477 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
478 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
479 gotsig = 0; 627 gotsig = 0;
480 628
481 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
483 { 631 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 632}
490 633
491static void 634static void
492siginit (EV_P) 635siginit (EV_P)
493{ 636{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 648 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 649}
507 650
508/*****************************************************************************/ 651/*****************************************************************************/
509 652
653static struct ev_child *childs [PID_HASHSIZE];
654
510#ifndef WIN32 655#ifndef WIN32
511 656
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 657static struct ev_signal childev;
514 658
515#ifndef WCONTINUED 659#ifndef WCONTINUED
516# define WCONTINUED 0 660# define WCONTINUED 0
517#endif 661#endif
525 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
526 { 670 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 672 w->rpid = pid;
529 w->rstatus = status; 673 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 675 }
532} 676}
533 677
534static void 678static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 681 int pid, status;
538 682
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 684 {
541 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 687
544 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 690 }
547} 691}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 749 have_monotonic = 1;
606 } 750 }
607#endif 751#endif
608 752
609 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 754 mn_now = get_clock ();
611 now_floor = mn_now; 755 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
613 757
614 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 761 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 775 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 776#endif
633#if EV_USE_SELECT 777#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 779#endif
780
781 ev_init (&sigev, sigcb);
782 ev_set_priority (&sigev, EV_MAXPRI);
636 } 783 }
637} 784}
638 785
639void 786void
640loop_destroy (EV_P) 787loop_destroy (EV_P)
658#endif 805#endif
659 806
660 for (i = NUMPRI; i--; ) 807 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 808 array_free (pending, [i]);
662 809
810 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 811 array_free_microshit (fdchange);
664 array_free (timer, ); 812 array_free_microshit (timer);
813#if EV_PERIODICS
665 array_free (periodic, ); 814 array_free_microshit (periodic);
815#endif
666 array_free (idle, ); 816 array_free_microshit (idle);
667 array_free (prepare, ); 817 array_free_microshit (prepare);
668 array_free (check, ); 818 array_free_microshit (check);
669 819
670 method = 0; 820 method = 0;
671 /*TODO*/
672} 821}
673 822
674void 823static void
675loop_fork (EV_P) 824loop_fork (EV_P)
676{ 825{
677 /*TODO*/
678#if EV_USE_EPOLL 826#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif 828#endif
681#if EV_USE_KQUEUE 829#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
684} 849}
685 850
686#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
687struct ev_loop * 852struct ev_loop *
688ev_loop_new (int methods) 853ev_loop_new (int methods)
689{ 854{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
691 858
692 loop_init (EV_A_ methods); 859 loop_init (EV_A_ methods);
693 860
694 if (ev_method (EV_A)) 861 if (ev_method (EV_A))
695 return loop; 862 return loop;
699 866
700void 867void
701ev_loop_destroy (EV_P) 868ev_loop_destroy (EV_P)
702{ 869{
703 loop_destroy (EV_A); 870 loop_destroy (EV_A);
704 free (loop); 871 ev_free (loop);
705} 872}
706 873
707void 874void
708ev_loop_fork (EV_P) 875ev_loop_fork (EV_P)
709{ 876{
710 loop_fork (EV_A); 877 postfork = 1;
711} 878}
712 879
713#endif 880#endif
714 881
715#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 883struct ev_loop *
720#else 884#else
721static int default_loop;
722
723int 885int
724#endif 886#endif
725ev_default_loop (int methods) 887ev_default_loop (int methods)
726{ 888{
727 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
738 900
739 loop_init (EV_A_ methods); 901 loop_init (EV_A_ methods);
740 902
741 if (ev_method (EV_A)) 903 if (ev_method (EV_A))
742 { 904 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 905 siginit (EV_A);
746 906
747#ifndef WIN32 907#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
763{ 923{
764#if EV_MULTIPLICITY 924#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 925 struct ev_loop *loop = default_loop;
766#endif 926#endif
767 927
928#ifndef WIN32
768 ev_ref (EV_A); /* child watcher */ 929 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 930 ev_signal_stop (EV_A_ &childev);
931#endif
770 932
771 ev_ref (EV_A); /* signal watcher */ 933 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 934 ev_io_stop (EV_A_ &sigev);
773 935
774 close (sigpipe [0]); sigpipe [0] = 0; 936 close (sigpipe [0]); sigpipe [0] = 0;
782{ 944{
783#if EV_MULTIPLICITY 945#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 946 struct ev_loop *loop = default_loop;
785#endif 947#endif
786 948
787 loop_fork (EV_A); 949 if (method)
788 950 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 951}
797 952
798/*****************************************************************************/ 953/*****************************************************************************/
954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
799 966
800static void 967static void
801call_pending (EV_P) 968call_pending (EV_P)
802{ 969{
803 int pri; 970 int pri;
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 976
810 if (p->w) 977 if (p->w)
811 { 978 {
812 p->w->pending = 0; 979 p->w->pending = 0;
813 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
814 } 981 }
815 } 982 }
816} 983}
817 984
818static void 985static void
826 993
827 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
828 if (w->repeat) 995 if (w->repeat)
829 { 996 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
831 ((WT)w)->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
832 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
833 } 1004 }
834 else 1005 else
835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
836 1007
837 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
838 } 1009 }
839} 1010}
840 1011
1012#if EV_PERIODICS
841static void 1013static void
842periodics_reify (EV_P) 1014periodics_reify (EV_P)
843{ 1015{
844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
845 { 1017 {
846 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
847 1019
848 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
849 1021
850 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
851 if (w->interval) 1023 if (w->reschedule_cb)
852 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
855 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
856 } 1035 }
857 else 1036 else
858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
859 1038
860 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
861 } 1040 }
862} 1041}
863 1042
864static void 1043static void
865periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
869 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
870 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
871 { 1050 {
872 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
873 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
874 if (w->interval) 1055 else if (w->interval)
875 {
876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
877
878 if (fabs (diff) >= 1e-4)
879 {
880 ev_periodic_stop (EV_A_ w);
881 ev_periodic_start (EV_A_ w);
882
883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
884 }
885 }
886 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
887} 1062}
1063#endif
888 1064
889inline int 1065inline int
890time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
891{ 1067{
892 mn_now = get_clock (); 1068 mn_now = get_clock ();
893 1069
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 { 1071 {
896 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
897 return 0; 1073 return 0;
898 } 1074 }
899 else 1075 else
900 { 1076 {
901 now_floor = mn_now; 1077 now_floor = mn_now;
902 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
903 return 1; 1079 return 1;
904 } 1080 }
905} 1081}
906 1082
907static void 1083static void
916 { 1092 {
917 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
918 1094
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 { 1096 {
921 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
922 1098
923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
924 return; /* all is well */ 1100 return; /* all is well */
925 1101
926 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
927 mn_now = get_clock (); 1103 mn_now = get_clock ();
928 now_floor = mn_now; 1104 now_floor = mn_now;
929 } 1105 }
930 1106
1107# if EV_PERIODICS
931 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
932 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
934 } 1112 }
935 } 1113 }
936 else 1114 else
937#endif 1115#endif
938 { 1116 {
939 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
940 1118
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
942 { 1120 {
1121#if EV_PERIODICS
943 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
944 1124
945 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
946 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
947 ((WT)timers [i])->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
948 } 1128 }
949 1129
950 mn_now = rt_now; 1130 mn_now = ev_rt_now;
951 } 1131 }
952} 1132}
953 1133
954void 1134void
955ev_ref (EV_P) 1135ev_ref (EV_P)
978 { 1158 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A); 1160 call_pending (EV_A);
981 } 1161 }
982 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
983 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
984 fd_reify (EV_A); 1168 fd_reify (EV_A);
985 1169
986 /* calculate blocking time */ 1170 /* calculate blocking time */
987 1171
988 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
989 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
993 else 1177 else
994#endif 1178#endif
995 { 1179 {
996 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
997 mn_now = rt_now; 1181 mn_now = ev_rt_now;
998 } 1182 }
999 1183
1000 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1001 block = 0.; 1185 block = 0.;
1002 else 1186 else
1007 { 1191 {
1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1009 if (block > to) block = to; 1193 if (block > to) block = to;
1010 } 1194 }
1011 1195
1196#if EV_PERIODICS
1012 if (periodiccnt) 1197 if (periodiccnt)
1013 { 1198 {
1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1015 if (block > to) block = to; 1200 if (block > to) block = to;
1016 } 1201 }
1202#endif
1017 1203
1018 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1019 } 1205 }
1020 1206
1021 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1022 1208
1023 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1024 time_update (EV_A); 1210 time_update (EV_A);
1025 1211
1026 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1028 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1029 1217
1030 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1031 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1033 1221
1034 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1035 if (checkcnt) 1223 if (checkcnt)
1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1111 return; 1299 return;
1112 1300
1113 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1114 1302
1115 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1117 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1118 1306
1119 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1120} 1308}
1121 1309
1124{ 1312{
1125 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1126 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1127 return; 1315 return;
1128 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1130 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1131 1321
1132 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1133} 1323}
1141 ((WT)w)->at += mn_now; 1331 ((WT)w)->at += mn_now;
1142 1332
1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1144 1334
1145 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1146 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1147 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1148 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1149 1339
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151} 1341}
1163 { 1353 {
1164 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1166 } 1356 }
1167 1357
1168 ((WT)w)->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1169 1359
1170 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1171} 1361}
1172 1362
1173void 1363void
1174ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1175{ 1365{
1176 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1177 { 1367 {
1178 if (w->repeat) 1368 if (w->repeat)
1179 {
1180 ((WT)w)->at = mn_now + w->repeat;
1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1182 }
1183 else 1370 else
1184 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1185 } 1372 }
1186 else if (w->repeat) 1373 else if (w->repeat)
1187 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1188} 1375}
1189 1376
1377#if EV_PERIODICS
1190void 1378void
1191ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1192{ 1380{
1193 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1194 return; 1382 return;
1195 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1197
1198 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1199 if (w->interval)
1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1201 1392
1202 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1203 array_needsize (periodics, periodicmax, periodiccnt, ); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1204 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1205 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1206 1397
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208} 1399}
1224 1415
1225 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1226} 1417}
1227 1418
1228void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1229ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1230{ 1430{
1231 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1232 return; 1432 return;
1233 1433
1234 ev_start (EV_A_ (W)w, ++idlecnt); 1434 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, ); 1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1236 idles [idlecnt - 1] = w; 1436 idles [idlecnt - 1] = w;
1237} 1437}
1238 1438
1239void 1439void
1240ev_idle_stop (EV_P_ struct ev_idle *w) 1440ev_idle_stop (EV_P_ struct ev_idle *w)
1252{ 1452{
1253 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1254 return; 1454 return;
1255 1455
1256 ev_start (EV_A_ (W)w, ++preparecnt); 1456 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, ); 1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1258 prepares [preparecnt - 1] = w; 1458 prepares [preparecnt - 1] = w;
1259} 1459}
1260 1460
1261void 1461void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w) 1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1274{ 1474{
1275 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1276 return; 1476 return;
1277 1477
1278 ev_start (EV_A_ (W)w, ++checkcnt); 1478 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, ); 1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1280 checks [checkcnt - 1] = w; 1480 checks [checkcnt - 1] = w;
1281} 1481}
1282 1482
1283void 1483void
1284ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1285{ 1485{
1286 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1288 return; 1488 return;
1289 1489
1290 checks [((W)w)->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1292} 1492}
1305 return; 1505 return;
1306 1506
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308 1508
1309 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1310 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1312 1512
1313 if (!((WL)w)->next) 1513 if (!((WL)w)->next)
1314 { 1514 {
1515#if WIN32
1516 signal (w->signum, sighandler);
1517#else
1315 struct sigaction sa; 1518 struct sigaction sa;
1316 sa.sa_handler = sighandler; 1519 sa.sa_handler = sighandler;
1317 sigfillset (&sa.sa_mask); 1520 sigfillset (&sa.sa_mask);
1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1521 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1319 sigaction (w->signum, &sa, 0); 1522 sigaction (w->signum, &sa, 0);
1523#endif
1320 } 1524 }
1321} 1525}
1322 1526
1323void 1527void
1324ev_signal_stop (EV_P_ struct ev_signal *w) 1528ev_signal_stop (EV_P_ struct ev_signal *w)
1349 1553
1350void 1554void
1351ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1352{ 1556{
1353 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1354 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1355 return; 1559 return;
1356 1560
1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1358 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1359} 1563}
1374 void (*cb)(int revents, void *arg) = once->cb; 1578 void (*cb)(int revents, void *arg) = once->cb;
1375 void *arg = once->arg; 1579 void *arg = once->arg;
1376 1580
1377 ev_io_stop (EV_A_ &once->io); 1581 ev_io_stop (EV_A_ &once->io);
1378 ev_timer_stop (EV_A_ &once->to); 1582 ev_timer_stop (EV_A_ &once->to);
1379 free (once); 1583 ev_free (once);
1380 1584
1381 cb (revents, arg); 1585 cb (revents, arg);
1382} 1586}
1383 1587
1384static void 1588static void
1394} 1598}
1395 1599
1396void 1600void
1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1398{ 1602{
1399 struct ev_once *once = malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1400 1604
1401 if (!once) 1605 if (!once)
1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1403 else 1607 else
1404 { 1608 {
1405 once->cb = cb; 1609 once->cb = cb;
1406 once->arg = arg; 1610 once->arg = arg;
1407 1611
1408 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1409 if (fd >= 0) 1613 if (fd >= 0)
1410 { 1614 {
1411 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1412 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1413 } 1617 }
1414 1618
1415 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1416 if (timeout >= 0.) 1620 if (timeout >= 0.)
1417 { 1621 {
1418 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1419 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1420 } 1624 }
1421 } 1625 }
1422} 1626}
1423 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines