ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
95#endif 105#endif
96 106
97#ifndef EV_USE_WIN32 107#ifndef EV_USE_WIN32
98# ifdef WIN32 108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 111# define EV_USE_SELECT 1
100# else 112# else
101# define EV_USE_WIN32 0 113# define EV_USE_WIN32 0
102# endif 114# endif
103#endif 115#endif
104 116
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 139
140#ifdef EV_H
141# include EV_H
142#else
128#include "ev.h" 143# include "ev.h"
144#endif
129 145
130#if __GNUC__ >= 3 146#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 148# define inline inline
133#else 149#else
145typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
147 163
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 165
166#ifdef WIN32
167# include "ev_win32.c"
168#endif
169
150/*****************************************************************************/ 170/*****************************************************************************/
151 171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
217
218/*****************************************************************************/
219
152typedef struct 220typedef struct
153{ 221{
154 struct ev_watcher_list *head; 222 WL head;
155 unsigned char events; 223 unsigned char events;
156 unsigned char reify; 224 unsigned char reify;
157} ANFD; 225} ANFD;
158 226
159typedef struct 227typedef struct
162 int events; 230 int events;
163} ANPENDING; 231} ANPENDING;
164 232
165#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
166 234
167struct ev_loop 235 struct ev_loop
168{ 236 {
237 ev_tstamp ev_rt_now;
169# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
170# include "ev_vars.h" 239 #include "ev_vars.h"
171};
172# undef VAR 240 #undef VAR
241 };
173# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
174 246
175#else 247#else
176 248
249 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 251 #include "ev_vars.h"
179# undef VAR 252 #undef VAR
253
254 static int default_loop;
180 255
181#endif 256#endif
182 257
183/*****************************************************************************/ 258/*****************************************************************************/
184 259
185inline ev_tstamp 260ev_tstamp
186ev_time (void) 261ev_time (void)
187{ 262{
188#if EV_USE_REALTIME 263#if EV_USE_REALTIME
189 struct timespec ts; 264 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 284#endif
210 285
211 return ev_time (); 286 return ev_time ();
212} 287}
213 288
289#if EV_MULTIPLICITY
214ev_tstamp 290ev_tstamp
215ev_now (EV_P) 291ev_now (EV_P)
216{ 292{
217 return rt_now; 293 return ev_rt_now;
218} 294}
295#endif
219 296
220#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
221 298
222#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
224 { \ 301 { \
225 int newcnt = cur; \ 302 int newcnt = cur; \
226 do \ 303 do \
227 { \ 304 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 306 } \
230 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
231 \ 308 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 311 cur = newcnt; \
235 } 312 }
313
314#define array_slim(type,stem) \
315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
316 { \
317 stem ## max = array_roundsize (stem ## cnt >> 1); \
318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
320 }
321
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
236 326
237#define array_free(stem, idx) \ 327#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 329
240/*****************************************************************************/ 330/*****************************************************************************/
241 331
242static void 332static void
243anfds_init (ANFD *base, int count) 333anfds_init (ANFD *base, int count)
250 340
251 ++base; 341 ++base;
252 } 342 }
253} 343}
254 344
255static void 345void
256event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
257{ 347{
348 W w_ = (W)w;
349
258 if (w->pending) 350 if (w_->pending)
259 { 351 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 353 return;
262 } 354 }
263 355
264 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 360}
269 361
270static void 362static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 364{
273 int i; 365 int i;
274 366
275 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
277} 369}
278 370
279static void 371inline void
280fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
281{ 373{
282 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 375 struct ev_io *w;
284 376
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 { 378 {
287 int ev = w->events & events; 379 int ev = w->events & revents;
288 380
289 if (ev) 381 if (ev)
290 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
291 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
292} 390}
293 391
294/*****************************************************************************/ 392/*****************************************************************************/
295 393
296static void 394static void
319} 417}
320 418
321static void 419static void
322fd_change (EV_P_ int fd) 420fd_change (EV_P_ int fd)
323{ 421{
324 if (anfds [fd].reify || fdchangecnt < 0) 422 if (anfds [fd].reify)
325 return; 423 return;
326 424
327 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
328 426
329 ++fdchangecnt; 427 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
332} 430}
333 431
334static void 432static void
335fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
337 struct ev_io *w; 435 struct ev_io *w;
338 436
339 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
340 { 438 {
341 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 441 }
442}
443
444static int
445fd_valid (int fd)
446{
447#ifdef WIN32
448 return !!win32_get_osfhandle (fd);
449#else
450 return fcntl (fd, F_GETFD) != -1;
451#endif
344} 452}
345 453
346/* called on EBADF to verify fds */ 454/* called on EBADF to verify fds */
347static void 455static void
348fd_ebadf (EV_P) 456fd_ebadf (EV_P)
349{ 457{
350 int fd; 458 int fd;
351 459
352 for (fd = 0; fd < anfdmax; ++fd) 460 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 461 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 462 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 463 fd_kill (EV_A_ fd);
356} 464}
357 465
358/* called on ENOMEM in select/poll to kill some fds and retry */ 466/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 467static void
362 int fd; 470 int fd;
363 471
364 for (fd = anfdmax; fd--; ) 472 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 473 if (anfds [fd].events)
366 { 474 {
367 close (fd);
368 fd_kill (EV_A_ fd); 475 fd_kill (EV_A_ fd);
369 return; 476 return;
370 } 477 }
371} 478}
372 479
373/* susually called after fork if method needs to re-arm all fds from scratch */ 480/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 481static void
375fd_rearm_all (EV_P) 482fd_rearm_all (EV_P)
376{ 483{
377 int fd; 484 int fd;
378 485
426 533
427 heap [k] = w; 534 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 535 ((W)heap [k])->active = k + 1;
429} 536}
430 537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
548}
549
431/*****************************************************************************/ 550/*****************************************************************************/
432 551
433typedef struct 552typedef struct
434{ 553{
435 struct ev_watcher_list *head; 554 WL head;
436 sig_atomic_t volatile gotsig; 555 sig_atomic_t volatile gotsig;
437} ANSIG; 556} ANSIG;
438 557
439static ANSIG *signals; 558static ANSIG *signals;
440static int signalmax; 559static int signalmax;
456} 575}
457 576
458static void 577static void
459sighandler (int signum) 578sighandler (int signum)
460{ 579{
580#if WIN32
581 signal (signum, sighandler);
582#endif
583
461 signals [signum - 1].gotsig = 1; 584 signals [signum - 1].gotsig = 1;
462 585
463 if (!gotsig) 586 if (!gotsig)
464 { 587 {
465 int old_errno = errno; 588 int old_errno = errno;
466 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
467 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
468 errno = old_errno; 595 errno = old_errno;
469 } 596 }
470} 597}
471 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
472static void 619static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 621{
475 struct ev_watcher_list *w;
476 int signum; 622 int signum;
477 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
478 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
479 gotsig = 0; 629 gotsig = 0;
480 630
481 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
483 { 633 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 634}
490 635
491static void 636static void
492siginit (EV_P) 637siginit (EV_P)
493{ 638{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 650 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 651}
507 652
508/*****************************************************************************/ 653/*****************************************************************************/
509 654
655static struct ev_child *childs [PID_HASHSIZE];
656
510#ifndef WIN32 657#ifndef WIN32
511 658
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 659static struct ev_signal childev;
514 660
515#ifndef WCONTINUED 661#ifndef WCONTINUED
516# define WCONTINUED 0 662# define WCONTINUED 0
517#endif 663#endif
525 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
526 { 672 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 674 w->rpid = pid;
529 w->rstatus = status; 675 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 677 }
532} 678}
533 679
534static void 680static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 683 int pid, status;
538 684
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 686 {
541 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 689
544 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 692 }
547} 693}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 751 have_monotonic = 1;
606 } 752 }
607#endif 753#endif
608 754
609 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 756 mn_now = get_clock ();
611 now_floor = mn_now; 757 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
613 759
614 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 763 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 778#endif
633#if EV_USE_SELECT 779#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 781#endif
782
783 ev_init (&sigev, sigcb);
784 ev_set_priority (&sigev, EV_MAXPRI);
636 } 785 }
637} 786}
638 787
639void 788void
640loop_destroy (EV_P) 789loop_destroy (EV_P)
658#endif 807#endif
659 808
660 for (i = NUMPRI; i--; ) 809 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 810 array_free (pending, [i]);
662 811
812 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 813 array_free_microshit (fdchange);
664 array_free (timer, ); 814 array_free_microshit (timer);
815#if EV_PERIODICS
665 array_free (periodic, ); 816 array_free_microshit (periodic);
817#endif
666 array_free (idle, ); 818 array_free_microshit (idle);
667 array_free (prepare, ); 819 array_free_microshit (prepare);
668 array_free (check, ); 820 array_free_microshit (check);
669 821
670 method = 0; 822 method = 0;
671 /*TODO*/
672} 823}
673 824
674void 825static void
675loop_fork (EV_P) 826loop_fork (EV_P)
676{ 827{
677 /*TODO*/
678#if EV_USE_EPOLL 828#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif 830#endif
681#if EV_USE_KQUEUE 831#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 833#endif
834
835 if (ev_is_active (&sigev))
836 {
837 /* default loop */
838
839 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev);
841 close (sigpipe [0]);
842 close (sigpipe [1]);
843
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A);
848 }
849
850 postfork = 0;
684} 851}
685 852
686#if EV_MULTIPLICITY 853#if EV_MULTIPLICITY
687struct ev_loop * 854struct ev_loop *
688ev_loop_new (int methods) 855ev_loop_new (int methods)
689{ 856{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858
859 memset (loop, 0, sizeof (struct ev_loop));
691 860
692 loop_init (EV_A_ methods); 861 loop_init (EV_A_ methods);
693 862
694 if (ev_method (EV_A)) 863 if (ev_method (EV_A))
695 return loop; 864 return loop;
699 868
700void 869void
701ev_loop_destroy (EV_P) 870ev_loop_destroy (EV_P)
702{ 871{
703 loop_destroy (EV_A); 872 loop_destroy (EV_A);
704 free (loop); 873 ev_free (loop);
705} 874}
706 875
707void 876void
708ev_loop_fork (EV_P) 877ev_loop_fork (EV_P)
709{ 878{
710 loop_fork (EV_A); 879 postfork = 1;
711} 880}
712 881
713#endif 882#endif
714 883
715#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 885struct ev_loop *
720#else 886#else
721static int default_loop;
722
723int 887int
724#endif 888#endif
725ev_default_loop (int methods) 889ev_default_loop (int methods)
726{ 890{
727 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
738 902
739 loop_init (EV_A_ methods); 903 loop_init (EV_A_ methods);
740 904
741 if (ev_method (EV_A)) 905 if (ev_method (EV_A))
742 { 906 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 907 siginit (EV_A);
746 908
747#ifndef WIN32 909#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 910 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 911 ev_set_priority (&childev, EV_MAXPRI);
763{ 925{
764#if EV_MULTIPLICITY 926#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 927 struct ev_loop *loop = default_loop;
766#endif 928#endif
767 929
930#ifndef WIN32
768 ev_ref (EV_A); /* child watcher */ 931 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 932 ev_signal_stop (EV_A_ &childev);
933#endif
770 934
771 ev_ref (EV_A); /* signal watcher */ 935 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 936 ev_io_stop (EV_A_ &sigev);
773 937
774 close (sigpipe [0]); sigpipe [0] = 0; 938 close (sigpipe [0]); sigpipe [0] = 0;
782{ 946{
783#if EV_MULTIPLICITY 947#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 948 struct ev_loop *loop = default_loop;
785#endif 949#endif
786 950
787 loop_fork (EV_A); 951 if (method)
788 952 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 953}
797 954
798/*****************************************************************************/ 955/*****************************************************************************/
956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
799 968
800static void 969static void
801call_pending (EV_P) 970call_pending (EV_P)
802{ 971{
803 int pri; 972 int pri;
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 978
810 if (p->w) 979 if (p->w)
811 { 980 {
812 p->w->pending = 0; 981 p->w->pending = 0;
813 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
814 } 983 }
815 } 984 }
816} 985}
817 986
818static void 987static void
826 995
827 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
828 if (w->repeat) 997 if (w->repeat)
829 { 998 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
831 ((WT)w)->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
832 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
833 } 1006 }
834 else 1007 else
835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
836 1009
837 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
838 } 1011 }
839} 1012}
840 1013
1014#if EV_PERIODICS
841static void 1015static void
842periodics_reify (EV_P) 1016periodics_reify (EV_P)
843{ 1017{
844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
845 { 1019 {
846 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
847 1021
848 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
849 1023
850 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
851 if (w->interval) 1025 if (w->reschedule_cb)
852 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
855 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
856 } 1037 }
857 else 1038 else
858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
859 1040
860 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
861 } 1042 }
862} 1043}
863 1044
864static void 1045static void
865periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
869 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
870 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
871 { 1052 {
872 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
873 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
874 if (w->interval) 1057 else if (w->interval)
875 {
876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
877
878 if (fabs (diff) >= 1e-4)
879 {
880 ev_periodic_stop (EV_A_ w);
881 ev_periodic_start (EV_A_ w);
882
883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
884 }
885 }
886 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
887} 1064}
1065#endif
888 1066
889inline int 1067inline int
890time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
891{ 1069{
892 mn_now = get_clock (); 1070 mn_now = get_clock ();
893 1071
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 { 1073 {
896 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
897 return 0; 1075 return 0;
898 } 1076 }
899 else 1077 else
900 { 1078 {
901 now_floor = mn_now; 1079 now_floor = mn_now;
902 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
903 return 1; 1081 return 1;
904 } 1082 }
905} 1083}
906 1084
907static void 1085static void
916 { 1094 {
917 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
918 1096
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 { 1098 {
921 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
922 1100
923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
924 return; /* all is well */ 1102 return; /* all is well */
925 1103
926 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
927 mn_now = get_clock (); 1105 mn_now = get_clock ();
928 now_floor = mn_now; 1106 now_floor = mn_now;
929 } 1107 }
930 1108
1109# if EV_PERIODICS
931 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
932 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
934 } 1114 }
935 } 1115 }
936 else 1116 else
937#endif 1117#endif
938 { 1118 {
939 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
940 1120
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
942 { 1122 {
1123#if EV_PERIODICS
943 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
944 1126
945 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
946 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
947 ((WT)timers [i])->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
948 } 1130 }
949 1131
950 mn_now = rt_now; 1132 mn_now = ev_rt_now;
951 } 1133 }
952} 1134}
953 1135
954void 1136void
955ev_ref (EV_P) 1137ev_ref (EV_P)
978 { 1160 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A); 1162 call_pending (EV_A);
981 } 1163 }
982 1164
1165 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork))
1167 loop_fork (EV_A);
1168
983 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
984 fd_reify (EV_A); 1170 fd_reify (EV_A);
985 1171
986 /* calculate blocking time */ 1172 /* calculate blocking time */
987 1173
988 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
989 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
993 else 1179 else
994#endif 1180#endif
995 { 1181 {
996 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
997 mn_now = rt_now; 1183 mn_now = ev_rt_now;
998 } 1184 }
999 1185
1000 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1001 block = 0.; 1187 block = 0.;
1002 else 1188 else
1007 { 1193 {
1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1009 if (block > to) block = to; 1195 if (block > to) block = to;
1010 } 1196 }
1011 1197
1198#if EV_PERIODICS
1012 if (periodiccnt) 1199 if (periodiccnt)
1013 { 1200 {
1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1015 if (block > to) block = to; 1202 if (block > to) block = to;
1016 } 1203 }
1204#endif
1017 1205
1018 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
1019 } 1207 }
1020 1208
1021 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
1022 1210
1023 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
1024 time_update (EV_A); 1212 time_update (EV_A);
1025 1213
1026 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
1028 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
1029 1219
1030 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
1031 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1033 1223
1034 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
1035 if (checkcnt) 1225 if (checkcnt)
1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1111 return; 1301 return;
1112 1302
1113 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1114 1304
1115 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1117 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1118 1308
1119 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1120} 1310}
1121 1311
1124{ 1314{
1125 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1126 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1127 return; 1317 return;
1128 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1130 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1131 1323
1132 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1133} 1325}
1141 ((WT)w)->at += mn_now; 1333 ((WT)w)->at += mn_now;
1142 1334
1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1144 1336
1145 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1146 array_needsize (timers, timermax, timercnt, ); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1147 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1148 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1149 1341
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151} 1343}
1163 { 1355 {
1164 timers [((W)w)->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1166 } 1358 }
1167 1359
1168 ((WT)w)->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1169 1361
1170 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1171} 1363}
1172 1364
1173void 1365void
1174ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1175{ 1367{
1176 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1177 { 1369 {
1178 if (w->repeat) 1370 if (w->repeat)
1179 {
1180 ((WT)w)->at = mn_now + w->repeat;
1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1182 }
1183 else 1372 else
1184 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1185 } 1374 }
1186 else if (w->repeat) 1375 else if (w->repeat)
1187 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1188} 1377}
1189 1378
1379#if EV_PERIODICS
1190void 1380void
1191ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1192{ 1382{
1193 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1194 return; 1384 return;
1195 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1197
1198 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1199 if (w->interval)
1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1201 1394
1202 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1203 array_needsize (periodics, periodicmax, periodiccnt, ); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1204 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1205 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1206 1399
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208} 1401}
1224 1417
1225 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1226} 1419}
1227 1420
1228void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1229ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1230{ 1432{
1231 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1232 return; 1434 return;
1233 1435
1234 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, ); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1236 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1237} 1439}
1238 1440
1239void 1441void
1240ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1252{ 1454{
1253 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1254 return; 1456 return;
1255 1457
1256 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, ); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1258 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1259} 1461}
1260 1462
1261void 1463void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1274{ 1476{
1275 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1276 return; 1478 return;
1277 1479
1278 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, ); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1280 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1281} 1483}
1282 1484
1283void 1485void
1284ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1285{ 1487{
1286 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1288 return; 1490 return;
1289 1491
1290 checks [((W)w)->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1292} 1494}
1305 return; 1507 return;
1306 1508
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308 1510
1309 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1310 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1312 1514
1313 if (!((WL)w)->next) 1515 if (!((WL)w)->next)
1314 { 1516 {
1517#if WIN32
1518 signal (w->signum, sighandler);
1519#else
1315 struct sigaction sa; 1520 struct sigaction sa;
1316 sa.sa_handler = sighandler; 1521 sa.sa_handler = sighandler;
1317 sigfillset (&sa.sa_mask); 1522 sigfillset (&sa.sa_mask);
1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1319 sigaction (w->signum, &sa, 0); 1524 sigaction (w->signum, &sa, 0);
1525#endif
1320 } 1526 }
1321} 1527}
1322 1528
1323void 1529void
1324ev_signal_stop (EV_P_ struct ev_signal *w) 1530ev_signal_stop (EV_P_ struct ev_signal *w)
1349 1555
1350void 1556void
1351ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1352{ 1558{
1353 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1354 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1355 return; 1561 return;
1356 1562
1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1358 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1359} 1565}
1374 void (*cb)(int revents, void *arg) = once->cb; 1580 void (*cb)(int revents, void *arg) = once->cb;
1375 void *arg = once->arg; 1581 void *arg = once->arg;
1376 1582
1377 ev_io_stop (EV_A_ &once->io); 1583 ev_io_stop (EV_A_ &once->io);
1378 ev_timer_stop (EV_A_ &once->to); 1584 ev_timer_stop (EV_A_ &once->to);
1379 free (once); 1585 ev_free (once);
1380 1586
1381 cb (revents, arg); 1587 cb (revents, arg);
1382} 1588}
1383 1589
1384static void 1590static void
1394} 1600}
1395 1601
1396void 1602void
1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1398{ 1604{
1399 struct ev_once *once = malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1400 1606
1401 if (!once) 1607 if (!once)
1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1403 else 1609 else
1404 { 1610 {
1405 once->cb = cb; 1611 once->cb = cb;
1406 once->arg = arg; 1612 once->arg = arg;
1407 1613
1408 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1409 if (fd >= 0) 1615 if (fd >= 0)
1410 { 1616 {
1411 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1412 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1413 } 1619 }
1414 1620
1415 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1416 if (timeout >= 0.) 1622 if (timeout >= 0.)
1417 { 1623 {
1418 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1419 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1420 } 1626 }
1421 } 1627 }
1422} 1628}
1423 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines