ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.105 by root, Mon Nov 12 01:02:09 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) && !defined (__APPLE__)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) && !defined (__APPLE__)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif 117#endif
104 118
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
114#endif 128#endif
115 129
116#ifndef CLOCK_REALTIME 130#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 131# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 132# define EV_USE_REALTIME 0
133#endif
134
135#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h>
119#endif 137#endif
120 138
121/**/ 139/**/
122 140
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 145
146#ifdef EV_H
147# include EV_H
148#else
128#include "ev.h" 149# include "ev.h"
150#endif
129 151
130#if __GNUC__ >= 3 152#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 153# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 154# define inline inline
133#else 155#else
139#define expect_true(expr) expect ((expr) != 0, 1) 161#define expect_true(expr) expect ((expr) != 0, 1)
140 162
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 164#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 165
166#define EMPTY /* required for microsofts broken pseudo-c compiler */
167
144typedef struct ev_watcher *W; 168typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 169typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 170typedef struct ev_watcher_time *WT;
147 171
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 173
150#if WIN32 174#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 175# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 176#endif
155 177
156/*****************************************************************************/ 178/*****************************************************************************/
157 179
180static void (*syserr_cb)(const char *msg);
181
182void ev_set_syserr_cb (void (*cb)(const char *msg))
183{
184 syserr_cb = cb;
185}
186
187static void
188syserr (const char *msg)
189{
190 if (!msg)
191 msg = "(libev) system error";
192
193 if (syserr_cb)
194 syserr_cb (msg);
195 else
196 {
197 perror (msg);
198 abort ();
199 }
200}
201
202static void *(*alloc)(void *ptr, long size);
203
204void ev_set_allocator (void *(*cb)(void *ptr, long size))
205{
206 alloc = cb;
207}
208
209static void *
210ev_realloc (void *ptr, long size)
211{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
213
214 if (!ptr && size)
215 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort ();
218 }
219
220 return ptr;
221}
222
223#define ev_malloc(size) ev_realloc (0, (size))
224#define ev_free(ptr) ev_realloc ((ptr), 0)
225
226/*****************************************************************************/
227
158typedef struct 228typedef struct
159{ 229{
160 struct ev_watcher_list *head; 230 WL head;
161 unsigned char events; 231 unsigned char events;
162 unsigned char reify; 232 unsigned char reify;
233#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle;
235#endif
163} ANFD; 236} ANFD;
164 237
165typedef struct 238typedef struct
166{ 239{
167 W w; 240 W w;
168 int events; 241 int events;
169} ANPENDING; 242} ANPENDING;
170 243
171#if EV_MULTIPLICITY 244#if EV_MULTIPLICITY
172 245
173struct ev_loop 246 struct ev_loop
174{ 247 {
248 ev_tstamp ev_rt_now;
249 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 250 #define VAR(name,decl) decl;
176# include "ev_vars.h" 251 #include "ev_vars.h"
177};
178# undef VAR 252 #undef VAR
253 };
179# include "ev_wrap.h" 254 #include "ev_wrap.h"
255
256 struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop;
180 258
181#else 259#else
182 260
261 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 262 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 263 #include "ev_vars.h"
185# undef VAR 264 #undef VAR
265
266 static int default_loop;
186 267
187#endif 268#endif
188 269
189/*****************************************************************************/ 270/*****************************************************************************/
190 271
191inline ev_tstamp 272ev_tstamp
192ev_time (void) 273ev_time (void)
193{ 274{
194#if EV_USE_REALTIME 275#if EV_USE_REALTIME
195 struct timespec ts; 276 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 277 clock_gettime (CLOCK_REALTIME, &ts);
215#endif 296#endif
216 297
217 return ev_time (); 298 return ev_time ();
218} 299}
219 300
301#if EV_MULTIPLICITY
220ev_tstamp 302ev_tstamp
221ev_now (EV_P) 303ev_now (EV_P)
222{ 304{
223 return rt_now; 305 return ev_rt_now;
224} 306}
307#endif
225 308
226#define array_roundsize(base,n) ((n) | 4 & ~3) 309#define array_roundsize(type,n) ((n) | 4 & ~3)
227 310
228#define array_needsize(base,cur,cnt,init) \ 311#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 312 if (expect_false ((cnt) > cur)) \
230 { \ 313 { \
231 int newcnt = cur; \ 314 int newcnt = cur; \
232 do \ 315 do \
233 { \ 316 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 317 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 318 } \
236 while ((cnt) > newcnt); \ 319 while ((cnt) > newcnt); \
237 \ 320 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 322 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 323 cur = newcnt; \
241 } 324 }
242 325
243#define array_slim(stem) \ 326#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 328 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 329 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 332 }
250 333
251#define array_free(stem, idx) \ 334#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 336
254/*****************************************************************************/ 337/*****************************************************************************/
255 338
256static void 339static void
257anfds_init (ANFD *base, int count) 340anfds_init (ANFD *base, int count)
264 347
265 ++base; 348 ++base;
266 } 349 }
267} 350}
268 351
269static void 352void
270event (EV_P_ W w, int events) 353ev_feed_event (EV_P_ void *w, int revents)
271{ 354{
355 W w_ = (W)w;
356
272 if (w->pending) 357 if (w_->pending)
273 { 358 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 360 return;
276 } 361 }
277 362
278 w->pending = ++pendingcnt [ABSPRI (w)]; 363 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 367}
283 368
284static void 369static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 370queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 371{
287 int i; 372 int i;
288 373
289 for (i = 0; i < eventcnt; ++i) 374 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 375 ev_feed_event (EV_A_ events [i], type);
291} 376}
292 377
293static void 378inline void
294fd_event (EV_P_ int fd, int events) 379fd_event (EV_P_ int fd, int revents)
295{ 380{
296 ANFD *anfd = anfds + fd; 381 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 382 struct ev_io *w;
298 383
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 385 {
301 int ev = w->events & events; 386 int ev = w->events & revents;
302 387
303 if (ev) 388 if (ev)
304 event (EV_A_ (W)w, ev); 389 ev_feed_event (EV_A_ (W)w, ev);
305 } 390 }
391}
392
393void
394ev_feed_fd_event (EV_P_ int fd, int revents)
395{
396 fd_event (EV_A_ fd, revents);
306} 397}
307 398
308/*****************************************************************************/ 399/*****************************************************************************/
309 400
310static void 401static void
321 int events = 0; 412 int events = 0;
322 413
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events; 415 events |= w->events;
325 416
417#if EV_SELECT_IS_WINSOCKET
418 if (events)
419 {
420 unsigned long argp;
421 anfd->handle = _get_osfhandle (fd);
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
423 }
424#endif
425
326 anfd->reify = 0; 426 anfd->reify = 0;
327 427
328 method_modify (EV_A_ fd, anfd->events, events); 428 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 429 anfd->events = events;
330 } 430 }
333} 433}
334 434
335static void 435static void
336fd_change (EV_P_ int fd) 436fd_change (EV_P_ int fd)
337{ 437{
338 if (anfds [fd].reify || fdchangecnt < 0) 438 if (anfds [fd].reify)
339 return; 439 return;
340 440
341 anfds [fd].reify = 1; 441 anfds [fd].reify = 1;
342 442
343 ++fdchangecnt; 443 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
345 fdchanges [fdchangecnt - 1] = fd; 445 fdchanges [fdchangecnt - 1] = fd;
346} 446}
347 447
348static void 448static void
349fd_kill (EV_P_ int fd) 449fd_kill (EV_P_ int fd)
351 struct ev_io *w; 451 struct ev_io *w;
352 452
353 while ((w = (struct ev_io *)anfds [fd].head)) 453 while ((w = (struct ev_io *)anfds [fd].head))
354 { 454 {
355 ev_io_stop (EV_A_ w); 455 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 457 }
458}
459
460static int
461fd_valid (int fd)
462{
463#ifdef _WIN32
464 return _get_osfhandle (fd) != -1;
465#else
466 return fcntl (fd, F_GETFD) != -1;
467#endif
358} 468}
359 469
360/* called on EBADF to verify fds */ 470/* called on EBADF to verify fds */
361static void 471static void
362fd_ebadf (EV_P) 472fd_ebadf (EV_P)
363{ 473{
364 int fd; 474 int fd;
365 475
366 for (fd = 0; fd < anfdmax; ++fd) 476 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 477 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 478 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 479 fd_kill (EV_A_ fd);
370} 480}
371 481
372/* called on ENOMEM in select/poll to kill some fds and retry */ 482/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 483static void
376 int fd; 486 int fd;
377 487
378 for (fd = anfdmax; fd--; ) 488 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 489 if (anfds [fd].events)
380 { 490 {
381 close (fd);
382 fd_kill (EV_A_ fd); 491 fd_kill (EV_A_ fd);
383 return; 492 return;
384 } 493 }
385} 494}
386 495
387/* susually called after fork if method needs to re-arm all fds from scratch */ 496/* usually called after fork if method needs to re-arm all fds from scratch */
388static void 497static void
389fd_rearm_all (EV_P) 498fd_rearm_all (EV_P)
390{ 499{
391 int fd; 500 int fd;
392 501
440 549
441 heap [k] = w; 550 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 551 ((W)heap [k])->active = k + 1;
443} 552}
444 553
554inline void
555adjustheap (WT *heap, int N, int k)
556{
557 upheap (heap, k);
558 downheap (heap, N, k);
559}
560
445/*****************************************************************************/ 561/*****************************************************************************/
446 562
447typedef struct 563typedef struct
448{ 564{
449 struct ev_watcher_list *head; 565 WL head;
450 sig_atomic_t volatile gotsig; 566 sig_atomic_t volatile gotsig;
451} ANSIG; 567} ANSIG;
452 568
453static ANSIG *signals; 569static ANSIG *signals;
454static int signalmax; 570static int signalmax;
470} 586}
471 587
472static void 588static void
473sighandler (int signum) 589sighandler (int signum)
474{ 590{
475#if WIN32 591#if _WIN32
476 signal (signum, sighandler); 592 signal (signum, sighandler);
477#endif 593#endif
478 594
479 signals [signum - 1].gotsig = 1; 595 signals [signum - 1].gotsig = 1;
480 596
485 write (sigpipe [1], &signum, 1); 601 write (sigpipe [1], &signum, 1);
486 errno = old_errno; 602 errno = old_errno;
487 } 603 }
488} 604}
489 605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
490static void 626static void
491sigcb (EV_P_ struct ev_io *iow, int revents) 627sigcb (EV_P_ struct ev_io *iow, int revents)
492{ 628{
493 struct ev_watcher_list *w;
494 int signum; 629 int signum;
495 630
496 read (sigpipe [0], &revents, 1); 631 read (sigpipe [0], &revents, 1);
497 gotsig = 0; 632 gotsig = 0;
498 633
499 for (signum = signalmax; signum--; ) 634 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig) 635 if (signals [signum].gotsig)
501 { 636 ev_feed_signal_event (EV_A_ signum + 1);
502 signals [signum].gotsig = 0; 637}
503 638
504 for (w = signals [signum].head; w; w = w->next) 639inline void
505 event (EV_A_ (W)w, EV_SIGNAL); 640fd_intern (int fd)
506 } 641{
642#ifdef _WIN32
643 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif
507} 649}
508 650
509static void 651static void
510siginit (EV_P) 652siginit (EV_P)
511{ 653{
512#ifndef WIN32 654 fd_intern (sigpipe [0]);
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 655 fd_intern (sigpipe [1]);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
520 656
521 ev_io_set (&sigev, sigpipe [0], EV_READ); 657 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev); 658 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */ 659 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 660}
525 661
526/*****************************************************************************/ 662/*****************************************************************************/
527 663
528#ifndef WIN32
529
530static struct ev_child *childs [PID_HASHSIZE]; 664static struct ev_child *childs [PID_HASHSIZE];
665
666#ifndef _WIN32
667
531static struct ev_signal childev; 668static struct ev_signal childev;
532 669
533#ifndef WCONTINUED 670#ifndef WCONTINUED
534# define WCONTINUED 0 671# define WCONTINUED 0
535#endif 672#endif
543 if (w->pid == pid || !w->pid) 680 if (w->pid == pid || !w->pid)
544 { 681 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid; 683 w->rpid = pid;
547 w->rstatus = status; 684 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD); 685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
549 } 686 }
550} 687}
551 688
552static void 689static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 690childcb (EV_P_ struct ev_signal *sw, int revents)
555 int pid, status; 692 int pid, status;
556 693
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 695 {
559 /* make sure we are called again until all childs have been reaped */ 696 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL); 697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 698
562 child_reap (EV_A_ sw, pid, pid, status); 699 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 } 701 }
565} 702}
595 732
596/* return true if we are running with elevated privileges and should ignore env variables */ 733/* return true if we are running with elevated privileges and should ignore env variables */
597static int 734static int
598enable_secure (void) 735enable_secure (void)
599{ 736{
600#ifdef WIN32 737#ifdef _WIN32
601 return 0; 738 return 0;
602#else 739#else
603 return getuid () != geteuid () 740 return getuid () != geteuid ()
604 || getgid () != getegid (); 741 || getgid () != getegid ();
605#endif 742#endif
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 759 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 760 have_monotonic = 1;
624 } 761 }
625#endif 762#endif
626 763
627 rt_now = ev_time (); 764 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 765 mn_now = get_clock ();
629 now_floor = mn_now; 766 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 767 rtmn_diff = ev_rt_now - mn_now;
631 768
632 if (methods == EVMETHOD_AUTO) 769 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 770 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 771 methods = atoi (getenv ("LIBEV_METHODS"));
635 else 772 else
636 methods = EVMETHOD_ANY; 773 methods = EVMETHOD_ANY;
637 774
638 method = 0; 775 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE 776#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif 778#endif
645#if EV_USE_EPOLL 779#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif 784#endif
651#if EV_USE_SELECT 785#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif 787#endif
788
789 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI);
654 } 791 }
655} 792}
656 793
657void 794void
658loop_destroy (EV_P) 795loop_destroy (EV_P)
659{ 796{
660 int i; 797 int i;
661 798
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE 799#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif 801#endif
668#if EV_USE_EPOLL 802#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
676#endif 810#endif
677 811
678 for (i = NUMPRI; i--; ) 812 for (i = NUMPRI; i--; )
679 array_free (pending, [i]); 813 array_free (pending, [i]);
680 814
815 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 816 array_free (fdchange, EMPTY);
682 array_free (timer, ); 817 array_free (timer, EMPTY);
818#if EV_PERIODICS
683 array_free (periodic, ); 819 array_free (periodic, EMPTY);
820#endif
684 array_free (idle, ); 821 array_free (idle, EMPTY);
685 array_free (prepare, ); 822 array_free (prepare, EMPTY);
686 array_free (check, ); 823 array_free (check, EMPTY);
687 824
688 method = 0; 825 method = 0;
689 /*TODO*/
690} 826}
691 827
692void 828static void
693loop_fork (EV_P) 829loop_fork (EV_P)
694{ 830{
695 /*TODO*/
696#if EV_USE_EPOLL 831#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif 833#endif
699#if EV_USE_KQUEUE 834#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif 836#endif
837
838 if (ev_is_active (&sigev))
839 {
840 /* default loop */
841
842 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev);
844 close (sigpipe [0]);
845 close (sigpipe [1]);
846
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A);
851 }
852
853 postfork = 0;
702} 854}
703 855
704#if EV_MULTIPLICITY 856#if EV_MULTIPLICITY
705struct ev_loop * 857struct ev_loop *
706ev_loop_new (int methods) 858ev_loop_new (int methods)
707{ 859{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
709 863
710 loop_init (EV_A_ methods); 864 loop_init (EV_A_ methods);
711 865
712 if (ev_method (EV_A)) 866 if (ev_method (EV_A))
713 return loop; 867 return loop;
717 871
718void 872void
719ev_loop_destroy (EV_P) 873ev_loop_destroy (EV_P)
720{ 874{
721 loop_destroy (EV_A); 875 loop_destroy (EV_A);
722 free (loop); 876 ev_free (loop);
723} 877}
724 878
725void 879void
726ev_loop_fork (EV_P) 880ev_loop_fork (EV_P)
727{ 881{
728 loop_fork (EV_A); 882 postfork = 1;
729} 883}
730 884
731#endif 885#endif
732 886
733#if EV_MULTIPLICITY 887#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 888struct ev_loop *
738#else 889#else
739static int default_loop;
740
741int 890int
742#endif 891#endif
743ev_default_loop (int methods) 892ev_default_loop (int methods)
744{ 893{
745 if (sigpipe [0] == sigpipe [1]) 894 if (sigpipe [0] == sigpipe [1])
756 905
757 loop_init (EV_A_ methods); 906 loop_init (EV_A_ methods);
758 907
759 if (ev_method (EV_A)) 908 if (ev_method (EV_A))
760 { 909 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A); 910 siginit (EV_A);
764 911
765#ifndef WIN32 912#ifndef _WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 913 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 914 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev); 915 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */ 916 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif 917#endif
781{ 928{
782#if EV_MULTIPLICITY 929#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 930 struct ev_loop *loop = default_loop;
784#endif 931#endif
785 932
933#ifndef _WIN32
786 ev_ref (EV_A); /* child watcher */ 934 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 935 ev_signal_stop (EV_A_ &childev);
936#endif
788 937
789 ev_ref (EV_A); /* signal watcher */ 938 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev); 939 ev_io_stop (EV_A_ &sigev);
791 940
792 close (sigpipe [0]); sigpipe [0] = 0; 941 close (sigpipe [0]); sigpipe [0] = 0;
800{ 949{
801#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 951 struct ev_loop *loop = default_loop;
803#endif 952#endif
804 953
805 loop_fork (EV_A); 954 if (method)
806 955 postfork = 1;
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 956}
815 957
816/*****************************************************************************/ 958/*****************************************************************************/
959
960static int
961any_pending (EV_P)
962{
963 int pri;
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970}
817 971
818static void 972static void
819call_pending (EV_P) 973call_pending (EV_P)
820{ 974{
821 int pri; 975 int pri;
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 980 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 981
828 if (p->w) 982 if (p->w)
829 { 983 {
830 p->w->pending = 0; 984 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 985 EV_CB_INVOKE (p->w, p->events);
832 } 986 }
833 } 987 }
834} 988}
835 989
836static void 990static void
844 998
845 /* first reschedule or stop timer */ 999 /* first reschedule or stop timer */
846 if (w->repeat) 1000 if (w->repeat)
847 { 1001 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003
849 ((WT)w)->at = mn_now + w->repeat; 1004 ((WT)w)->at += w->repeat;
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
850 downheap ((WT *)timers, timercnt, 0); 1008 downheap ((WT *)timers, timercnt, 0);
851 } 1009 }
852 else 1010 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 1012
855 event (EV_A_ (W)w, EV_TIMEOUT); 1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 1014 }
857} 1015}
858 1016
1017#if EV_PERIODICS
859static void 1018static void
860periodics_reify (EV_P) 1019periodics_reify (EV_P)
861{ 1020{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
863 { 1022 {
864 struct ev_periodic *w = periodics [0]; 1023 struct ev_periodic *w = periodics [0];
865 1024
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1025 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867 1026
868 /* first reschedule or stop timer */ 1027 /* first reschedule or stop timer */
869 if (w->interval) 1028 if (w->reschedule_cb)
870 { 1029 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 }
1035 else if (w->interval)
1036 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1039 downheap ((WT *)periodics, periodiccnt, 0);
874 } 1040 }
875 else 1041 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1043
878 event (EV_A_ (W)w, EV_PERIODIC); 1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1045 }
880} 1046}
881 1047
882static void 1048static void
883periodics_reschedule (EV_P) 1049periodics_reschedule (EV_P)
887 /* adjust periodics after time jump */ 1053 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1054 for (i = 0; i < periodiccnt; ++i)
889 { 1055 {
890 struct ev_periodic *w = periodics [i]; 1056 struct ev_periodic *w = periodics [i];
891 1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1060 else if (w->interval)
893 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
895
896 if (fabs (diff) >= 1e-4)
897 {
898 ev_periodic_stop (EV_A_ w);
899 ev_periodic_start (EV_A_ w);
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 }
903 }
904 } 1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
905} 1067}
1068#endif
906 1069
907inline int 1070inline int
908time_update_monotonic (EV_P) 1071time_update_monotonic (EV_P)
909{ 1072{
910 mn_now = get_clock (); 1073 mn_now = get_clock ();
911 1074
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 { 1076 {
914 rt_now = rtmn_diff + mn_now; 1077 ev_rt_now = rtmn_diff + mn_now;
915 return 0; 1078 return 0;
916 } 1079 }
917 else 1080 else
918 { 1081 {
919 now_floor = mn_now; 1082 now_floor = mn_now;
920 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
921 return 1; 1084 return 1;
922 } 1085 }
923} 1086}
924 1087
925static void 1088static void
934 { 1097 {
935 ev_tstamp odiff = rtmn_diff; 1098 ev_tstamp odiff = rtmn_diff;
936 1099
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 { 1101 {
939 rtmn_diff = rt_now - mn_now; 1102 rtmn_diff = ev_rt_now - mn_now;
940 1103
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1105 return; /* all is well */
943 1106
944 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1108 mn_now = get_clock ();
946 now_floor = mn_now; 1109 now_floor = mn_now;
947 } 1110 }
948 1111
1112# if EV_PERIODICS
949 periodics_reschedule (EV_A); 1113 periodics_reschedule (EV_A);
1114# endif
950 /* no timer adjustment, as the monotonic clock doesn't jump */ 1115 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
952 } 1117 }
953 } 1118 }
954 else 1119 else
955#endif 1120#endif
956 { 1121 {
957 rt_now = ev_time (); 1122 ev_rt_now = ev_time ();
958 1123
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 { 1125 {
1126#if EV_PERIODICS
961 periodics_reschedule (EV_A); 1127 periodics_reschedule (EV_A);
1128#endif
962 1129
963 /* adjust timers. this is easy, as the offset is the same for all */ 1130 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i) 1131 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now; 1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
966 } 1133 }
967 1134
968 mn_now = rt_now; 1135 mn_now = ev_rt_now;
969 } 1136 }
970} 1137}
971 1138
972void 1139void
973ev_ref (EV_P) 1140ev_ref (EV_P)
996 { 1163 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1165 call_pending (EV_A);
999 } 1166 }
1000 1167
1168 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork))
1170 loop_fork (EV_A);
1171
1001 /* update fd-related kernel structures */ 1172 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1173 fd_reify (EV_A);
1003 1174
1004 /* calculate blocking time */ 1175 /* calculate blocking time */
1005 1176
1006 /* we only need this for !monotonic clockor timers, but as we basically 1177 /* we only need this for !monotonic clock or timers, but as we basically
1007 always have timers, we just calculate it always */ 1178 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC 1179#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic)) 1180 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A); 1181 time_update_monotonic (EV_A);
1011 else 1182 else
1012#endif 1183#endif
1013 { 1184 {
1014 rt_now = ev_time (); 1185 ev_rt_now = ev_time ();
1015 mn_now = rt_now; 1186 mn_now = ev_rt_now;
1016 } 1187 }
1017 1188
1018 if (flags & EVLOOP_NONBLOCK || idlecnt) 1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.; 1190 block = 0.;
1020 else 1191 else
1025 { 1196 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1027 if (block > to) block = to; 1198 if (block > to) block = to;
1028 } 1199 }
1029 1200
1201#if EV_PERIODICS
1030 if (periodiccnt) 1202 if (periodiccnt)
1031 { 1203 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1033 if (block > to) block = to; 1205 if (block > to) block = to;
1034 } 1206 }
1207#endif
1035 1208
1036 if (block < 0.) block = 0.; 1209 if (block < 0.) block = 0.;
1037 } 1210 }
1038 1211
1039 method_poll (EV_A_ block); 1212 method_poll (EV_A_ block);
1040 1213
1041 /* update rt_now, do magic */ 1214 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1215 time_update (EV_A);
1043 1216
1044 /* queue pending timers and reschedule them */ 1217 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1218 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS
1046 periodics_reify (EV_A); /* absolute timers called first */ 1220 periodics_reify (EV_A); /* absolute timers called first */
1221#endif
1047 1222
1048 /* queue idle watchers unless io or timers are pending */ 1223 /* queue idle watchers unless io or timers are pending */
1049 if (!pendingcnt) 1224 if (idlecnt && !any_pending (EV_A))
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1051 1226
1052 /* queue check watchers, to be executed first */ 1227 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1228 if (checkcnt)
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1129 return; 1304 return;
1130 1305
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1306 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1307
1133 ev_start (EV_A_ (W)w, 1); 1308 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1310 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1136 1311
1137 fd_change (EV_A_ fd); 1312 fd_change (EV_A_ fd);
1138} 1313}
1139 1314
1142{ 1317{
1143 ev_clear_pending (EV_A_ (W)w); 1318 ev_clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w)) 1319 if (!ev_is_active (w))
1145 return; 1320 return;
1146 1321
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w); 1325 ev_stop (EV_A_ (W)w);
1149 1326
1150 fd_change (EV_A_ w->fd); 1327 fd_change (EV_A_ w->fd);
1151} 1328}
1159 ((WT)w)->at += mn_now; 1336 ((WT)w)->at += mn_now;
1160 1337
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1339
1163 ev_start (EV_A_ (W)w, ++timercnt); 1340 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1165 timers [timercnt - 1] = w; 1342 timers [timercnt - 1] = w;
1166 upheap ((WT *)timers, timercnt - 1); 1343 upheap ((WT *)timers, timercnt - 1);
1167 1344
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169} 1346}
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179 1356
1180 if (((W)w)->active < timercnt--) 1357 if (((W)w)->active < timercnt--)
1181 { 1358 {
1182 timers [((W)w)->active - 1] = timers [timercnt]; 1359 timers [((W)w)->active - 1] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1184 } 1361 }
1185 1362
1186 ((WT)w)->at = w->repeat; 1363 ((WT)w)->at -= mn_now;
1187 1364
1188 ev_stop (EV_A_ (W)w); 1365 ev_stop (EV_A_ (W)w);
1189} 1366}
1190 1367
1191void 1368void
1194 if (ev_is_active (w)) 1371 if (ev_is_active (w))
1195 { 1372 {
1196 if (w->repeat) 1373 if (w->repeat)
1197 { 1374 {
1198 ((WT)w)->at = mn_now + w->repeat; 1375 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1200 } 1377 }
1201 else 1378 else
1202 ev_timer_stop (EV_A_ w); 1379 ev_timer_stop (EV_A_ w);
1203 } 1380 }
1204 else if (w->repeat) 1381 else if (w->repeat)
1205 ev_timer_start (EV_A_ w); 1382 ev_timer_start (EV_A_ w);
1206} 1383}
1207 1384
1385#if EV_PERIODICS
1208void 1386void
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1387ev_periodic_start (EV_P_ struct ev_periodic *w)
1210{ 1388{
1211 if (ev_is_active (w)) 1389 if (ev_is_active (w))
1212 return; 1390 return;
1213 1391
1392 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval)
1395 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1397 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 }
1219 1400
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1401 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1222 periodics [periodiccnt - 1] = w; 1403 periodics [periodiccnt - 1] = w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1404 upheap ((WT *)periodics, periodiccnt - 1);
1224 1405
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226} 1407}
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236 1417
1237 if (((W)w)->active < periodiccnt--) 1418 if (((W)w)->active < periodiccnt--)
1238 { 1419 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1420 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1241 } 1422 }
1242 1423
1243 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1244} 1425}
1245 1426
1246void 1427void
1428ev_periodic_again (EV_P_ struct ev_periodic *w)
1429{
1430 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w);
1433}
1434#endif
1435
1436void
1247ev_idle_start (EV_P_ struct ev_idle *w) 1437ev_idle_start (EV_P_ struct ev_idle *w)
1248{ 1438{
1249 if (ev_is_active (w)) 1439 if (ev_is_active (w))
1250 return; 1440 return;
1251 1441
1252 ev_start (EV_A_ (W)w, ++idlecnt); 1442 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, ); 1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1254 idles [idlecnt - 1] = w; 1444 idles [idlecnt - 1] = w;
1255} 1445}
1256 1446
1257void 1447void
1258ev_idle_stop (EV_P_ struct ev_idle *w) 1448ev_idle_stop (EV_P_ struct ev_idle *w)
1259{ 1449{
1260 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w)) 1451 if (!ev_is_active (w))
1262 return; 1452 return;
1263 1453
1264 idles [((W)w)->active - 1] = idles [--idlecnt]; 1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w); 1455 ev_stop (EV_A_ (W)w);
1266} 1456}
1270{ 1460{
1271 if (ev_is_active (w)) 1461 if (ev_is_active (w))
1272 return; 1462 return;
1273 1463
1274 ev_start (EV_A_ (W)w, ++preparecnt); 1464 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, ); 1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1276 prepares [preparecnt - 1] = w; 1466 prepares [preparecnt - 1] = w;
1277} 1467}
1278 1468
1279void 1469void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w) 1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{ 1471{
1282 ev_clear_pending (EV_A_ (W)w); 1472 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w)) 1473 if (!ev_is_active (w))
1284 return; 1474 return;
1285 1475
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w); 1477 ev_stop (EV_A_ (W)w);
1288} 1478}
1292{ 1482{
1293 if (ev_is_active (w)) 1483 if (ev_is_active (w))
1294 return; 1484 return;
1295 1485
1296 ev_start (EV_A_ (W)w, ++checkcnt); 1486 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, ); 1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1298 checks [checkcnt - 1] = w; 1488 checks [checkcnt - 1] = w;
1299} 1489}
1300 1490
1301void 1491void
1302ev_check_stop (EV_P_ struct ev_check *w) 1492ev_check_stop (EV_P_ struct ev_check *w)
1303{ 1493{
1304 ev_clear_pending (EV_A_ (W)w); 1494 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w)) 1495 if (!ev_is_active (w))
1306 return; 1496 return;
1307 1497
1308 checks [((W)w)->active - 1] = checks [--checkcnt]; 1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w); 1499 ev_stop (EV_A_ (W)w);
1310} 1500}
1323 return; 1513 return;
1324 1514
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 1516
1327 ev_start (EV_A_ (W)w, 1); 1517 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init); 1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1330 1520
1331 if (!((WL)w)->next) 1521 if (!((WL)w)->next)
1332 { 1522 {
1333#if WIN32 1523#if _WIN32
1334 signal (w->signum, sighandler); 1524 signal (w->signum, sighandler);
1335#else 1525#else
1336 struct sigaction sa; 1526 struct sigaction sa;
1337 sa.sa_handler = sighandler; 1527 sa.sa_handler = sighandler;
1338 sigfillset (&sa.sa_mask); 1528 sigfillset (&sa.sa_mask);
1371 1561
1372void 1562void
1373ev_child_stop (EV_P_ struct ev_child *w) 1563ev_child_stop (EV_P_ struct ev_child *w)
1374{ 1564{
1375 ev_clear_pending (EV_A_ (W)w); 1565 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w)) 1566 if (!ev_is_active (w))
1377 return; 1567 return;
1378 1568
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w); 1570 ev_stop (EV_A_ (W)w);
1381} 1571}
1396 void (*cb)(int revents, void *arg) = once->cb; 1586 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 1587 void *arg = once->arg;
1398 1588
1399 ev_io_stop (EV_A_ &once->io); 1589 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 1590 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 1591 ev_free (once);
1402 1592
1403 cb (revents, arg); 1593 cb (revents, arg);
1404} 1594}
1405 1595
1406static void 1596static void
1416} 1606}
1417 1607
1418void 1608void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 1610{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 1612
1423 if (!once) 1613 if (!once)
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 1615 else
1426 { 1616 {
1427 once->cb = cb; 1617 once->cb = cb;
1428 once->arg = arg; 1618 once->arg = arg;
1429 1619
1430 ev_watcher_init (&once->io, once_cb_io); 1620 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 1621 if (fd >= 0)
1432 { 1622 {
1433 ev_io_set (&once->io, fd, events); 1623 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 1624 ev_io_start (EV_A_ &once->io);
1435 } 1625 }
1436 1626
1437 ev_watcher_init (&once->to, once_cb_to); 1627 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 1628 if (timeout >= 0.)
1439 { 1629 {
1440 ev_timer_set (&once->to, timeout, 0.); 1630 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 1631 ev_timer_start (EV_A_ &once->to);
1442 } 1632 }
1443 } 1633 }
1444} 1634}
1445 1635
1636#ifdef __cplusplus
1637}
1638#endif
1639

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines