ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.15 by root, Wed Oct 31 11:56:34 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
17# ifdef CLOCK_MONOTONIC
18# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
19# endif 102# endif
20#endif 103#endif
21 104
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
32#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
33 122
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 127
37#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
38 143
39typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
40typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
41typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
42 147
43static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
44ev_tstamp ev_now;
45int ev_method;
46 149
47static int have_monotonic; /* runtime */ 150#if WIN32
48 151/* note: the comment below could not be substantiated, but what would I care */
49static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
50static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
51static void (*method_poll)(ev_tstamp timeout); 154#endif
52 155
53/*****************************************************************************/ 156/*****************************************************************************/
54 157
55ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
56ev_time (void) 192ev_time (void)
57{ 193{
58#if HAVE_REALTIME 194#if EV_USE_REALTIME
59 struct timespec ts; 195 struct timespec ts;
60 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
61 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
62#else 198#else
63 struct timeval tv; 199 struct timeval tv;
64 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
65 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
66#endif 202#endif
67} 203}
68 204
69static ev_tstamp 205inline ev_tstamp
70get_clock (void) 206get_clock (void)
71{ 207{
72#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
73 if (have_monotonic) 209 if (expect_true (have_monotonic))
74 { 210 {
75 struct timespec ts; 211 struct timespec ts;
76 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
77 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
78 } 214 }
79#endif 215#endif
80 216
81 return ev_time (); 217 return ev_time ();
82} 218}
83 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
84#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
85 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
86 { \ 230 { \
87 int newcnt = cur ? cur << 1 : 16; \ 231 int newcnt = cur; \
232 do \
233 { \
234 newcnt = array_roundsize (base, newcnt << 1); \
235 } \
236 while ((cnt) > newcnt); \
237 \
88 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
89 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
90 cur = newcnt; \ 240 cur = newcnt; \
91 } 241 }
92 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
93/*****************************************************************************/ 254/*****************************************************************************/
94 255
95typedef struct
96{
97 struct ev_io *head;
98 unsigned char wev, rev; /* want, received event set */
99} ANFD;
100
101static ANFD *anfds;
102static int anfdmax;
103
104static int *fdchanges;
105static int fdchangemax, fdchangecnt;
106
107static void 256static void
108anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
109{ 258{
110 while (count--) 259 while (count--)
111 { 260 {
112 base->head = 0; 261 base->head = 0;
113 base->wev = base->rev = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
114 ++base; 265 ++base;
115 } 266 }
116} 267}
117 268
118typedef struct
119{
120 W w;
121 int events;
122} ANPENDING;
123
124static ANPENDING *pendings;
125static int pendingmax, pendingcnt;
126
127static void 269static void
128event (W w, int events) 270event (EV_P_ W w, int events)
129{ 271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
130 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
131 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
132 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
133 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
134} 282}
135 283
136static void 284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
137fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
138{ 295{
139 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
140 struct ev_io *w; 297 struct ev_io *w;
141 298
142 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
143 { 300 {
144 int ev = w->events & events; 301 int ev = w->events & events;
145 302
146 if (ev) 303 if (ev)
147 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
148 } 305 }
149} 306}
150 307
308/*****************************************************************************/
309
151static void 310static void
152queue_events (W *events, int eventcnt, int type) 311fd_reify (EV_P)
153{ 312{
154 int i; 313 int i;
155 314
156 for (i = 0; i < eventcnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
157 event (events [i], type); 316 {
317 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd;
319 struct ev_io *w;
320
321 int events = 0;
322
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333}
334
335static void
336fd_change (EV_P_ int fd)
337{
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346}
347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
360/* called on EBADF to verify fds */
361static void
362fd_ebadf (EV_P)
363{
364 int fd;
365
366 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 close (fd);
382 fd_kill (EV_A_ fd);
383 return;
384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
158} 400}
159 401
160/*****************************************************************************/ 402/*****************************************************************************/
161 403
162static struct ev_timer **timers;
163static int timermax, timercnt;
164
165static struct ev_periodic **periodics;
166static int periodicmax, periodiccnt;
167
168static void 404static void
169upheap (WT *timers, int k) 405upheap (WT *heap, int k)
170{ 406{
171 WT w = timers [k]; 407 WT w = heap [k];
172 408
173 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
174 { 410 {
175 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
176 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
177 k >>= 1; 413 k >>= 1;
178 } 414 }
179 415
180 timers [k] = w; 416 heap [k] = w;
181 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
182 418
183} 419}
184 420
185static void 421static void
186downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
187{ 423{
188 WT w = timers [k]; 424 WT w = heap [k];
189 425
190 while (k < (N >> 1)) 426 while (k < (N >> 1))
191 { 427 {
192 int j = k << 1; 428 int j = k << 1;
193 429
194 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
195 ++j; 431 ++j;
196 432
197 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
198 break; 434 break;
199 435
200 timers [k] = timers [j]; 436 heap [k] = heap [j];
201 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
202 k = j; 438 k = j;
203 } 439 }
204 440
205 timers [k] = w; 441 heap [k] = w;
206 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
207} 443}
208 444
209/*****************************************************************************/ 445/*****************************************************************************/
210 446
211typedef struct 447typedef struct
212{ 448{
213 struct ev_signal *head; 449 struct ev_watcher_list *head;
214 sig_atomic_t gotsig; 450 sig_atomic_t volatile gotsig;
215} ANSIG; 451} ANSIG;
216 452
217static ANSIG *signals; 453static ANSIG *signals;
218static int signalmax; 454static int signalmax;
219 455
220static int sigpipe [2]; 456static int sigpipe [2];
221static sig_atomic_t gotsig; 457static sig_atomic_t volatile gotsig;
222static struct ev_io sigev; 458static struct ev_io sigev;
223 459
224static void 460static void
225signals_init (ANSIG *base, int count) 461signals_init (ANSIG *base, int count)
226{ 462{
227 while (count--) 463 while (count--)
228 { 464 {
229 base->head = 0; 465 base->head = 0;
230 base->gotsig = 0; 466 base->gotsig = 0;
467
231 ++base; 468 ++base;
232 } 469 }
233} 470}
234 471
235static void 472static void
236sighandler (int signum) 473sighandler (int signum)
237{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
238 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
239 480
240 if (!gotsig) 481 if (!gotsig)
241 { 482 {
483 int old_errno = errno;
242 gotsig = 1; 484 gotsig = 1;
243 write (sigpipe [1], &gotsig, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
244 } 487 }
245} 488}
246 489
247static void 490static void
248sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
249{ 492{
250 struct ev_signal *w; 493 struct ev_watcher_list *w;
251 int sig; 494 int signum;
252 495
496 read (sigpipe [0], &revents, 1);
253 gotsig = 0; 497 gotsig = 0;
254 read (sigpipe [0], &revents, 1);
255 498
256 for (sig = signalmax; sig--; ) 499 for (signum = signalmax; signum--; )
257 if (signals [sig].gotsig) 500 if (signals [signum].gotsig)
258 { 501 {
259 signals [sig].gotsig = 0; 502 signals [signum].gotsig = 0;
260 503
261 for (w = signals [sig].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
262 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
263 } 506 }
264} 507}
265 508
266static void 509static void
267siginit (void) 510siginit (EV_P)
268{ 511{
512#ifndef WIN32
269 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
270 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
271 515
272 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
273 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
274 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
275 520
276 evio_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
277 evio_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
278} 524}
279 525
280/*****************************************************************************/ 526/*****************************************************************************/
281 527
282static struct ev_idle **idles; 528#ifndef WIN32
283static int idlemax, idlecnt;
284 529
285static struct ev_check **checks; 530static struct ev_child *childs [PID_HASHSIZE];
286static int checkmax, checkcnt; 531static struct ev_signal childev;
532
533#ifndef WCONTINUED
534# define WCONTINUED 0
535#endif
536
537static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
555 int pid, status;
556
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 {
559 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL);
561
562 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
565}
566
567#endif
287 568
288/*****************************************************************************/ 569/*****************************************************************************/
289 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
290#if HAVE_EPOLL 574#if EV_USE_EPOLL
291# include "ev_epoll.c" 575# include "ev_epoll.c"
292#endif 576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
293#if HAVE_SELECT 580#if EV_USE_SELECT
294# include "ev_select.c" 581# include "ev_select.c"
295#endif 582#endif
296 583
297int ev_init (int flags) 584int
585ev_version_major (void)
298{ 586{
587 return EV_VERSION_MAJOR;
588}
589
590int
591ev_version_minor (void)
592{
593 return EV_VERSION_MINOR;
594}
595
596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
617 if (!method)
618 {
299#if HAVE_MONOTONIC 619#if EV_USE_MONOTONIC
300 { 620 {
301 struct timespec ts; 621 struct timespec ts;
302 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
303 have_monotonic = 1; 623 have_monotonic = 1;
304 } 624 }
305#endif 625#endif
306 626
307 ev_now = ev_time (); 627 rt_now = ev_time ();
308 now = get_clock (); 628 mn_now = get_clock ();
309 diff = ev_now - now; 629 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now;
310 631
632 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
645#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif
651#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif
654 }
655}
656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
311 if (pipe (sigpipe)) 746 if (pipe (sigpipe))
312 return 0; 747 return 0;
313 748
314 ev_method = EVMETHOD_NONE; 749 if (!default_loop)
315#if HAVE_EPOLL
316 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
317#endif
318#if HAVE_SELECT
319 if (ev_method == EVMETHOD_NONE) select_init (flags);
320#endif
321
322 if (ev_method)
323 { 750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
759 if (ev_method (EV_A))
760 {
324 evw_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
325 siginit (); 763 siginit (EV_A);
326 }
327 764
328 return ev_method; 765#ifndef WIN32
329} 766 ev_signal_init (&childev, childcb, SIGCHLD);
330 767 ev_set_priority (&childev, EV_MAXPRI);
331/*****************************************************************************/ 768 ev_signal_start (EV_A_ &childev);
332 769 ev_unref (EV_A); /* child watcher should not keep loop alive */
333void ev_prefork (void)
334{
335 /* nop */
336}
337
338void ev_postfork_parent (void)
339{
340 /* nop */
341}
342
343void ev_postfork_child (void)
344{
345#if HAVE_EPOLL
346 if (ev_method == EVMETHOD_EPOLL)
347 epoll_postfork_child ();
348#endif 770#endif
771 }
772 else
773 default_loop = 0;
774 }
349 775
776 return default_loop;
777}
778
779void
780ev_default_destroy (void)
781{
782#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop;
784#endif
785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
350 evio_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
351 close (sigpipe [0]); 808 close (sigpipe [0]);
352 close (sigpipe [1]); 809 close (sigpipe [1]);
353 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
354 siginit (); 813 siginit (EV_A);
355} 814}
356 815
357/*****************************************************************************/ 816/*****************************************************************************/
358 817
359static void 818static void
360fd_reify (void) 819call_pending (EV_P)
361{ 820{
362 int i; 821 int pri;
363 822
364 for (i = 0; i < fdchangecnt; ++i) 823 for (pri = NUMPRI; pri--; )
365 { 824 while (pendingcnt [pri])
366 int fd = fdchanges [i];
367 ANFD *anfd = anfds + fd;
368 struct ev_io *w;
369
370 int wev = 0;
371
372 for (w = anfd->head; w; w = w->next)
373 wev |= w->events;
374
375 if (anfd->wev != wev)
376 { 825 {
377 method_modify (fd, anfd->wev, wev); 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
378 anfd->wev = wev;
379 }
380 }
381 827
382 fdchangecnt = 0;
383}
384
385static void
386call_pending ()
387{
388 int i;
389
390 for (i = 0; i < pendingcnt; ++i)
391 {
392 ANPENDING *p = pendings + i;
393
394 if (p->w) 828 if (p->w)
395 { 829 {
396 p->w->pending = 0; 830 p->w->pending = 0;
397 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
398 } 832 }
399 } 833 }
400
401 pendingcnt = 0;
402} 834}
403 835
404static void 836static void
405timers_reify () 837timers_reify (EV_P)
406{ 838{
407 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
408 { 840 {
409 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
410 844
411 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
412 if (w->repeat) 846 if (w->repeat)
413 { 847 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
414 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
415 assert (("timer timeout in the past, negative repeat?", w->at > now));
416 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
417 } 851 }
418 else 852 else
419 evtimer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
420 854
421 event ((W)w, EV_TIMEOUT); 855 event (EV_A_ (W)w, EV_TIMEOUT);
422 } 856 }
423} 857}
424 858
425static void 859static void
426periodics_reify () 860periodics_reify (EV_P)
427{ 861{
428 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
429 { 863 {
430 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
431 867
432 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
433 if (w->interval) 869 if (w->interval)
434 { 870 {
435 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
436 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
437 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
438 } 874 }
439 else 875 else
440 evperiodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
441 877
442 event ((W)w, EV_TIMEOUT); 878 event (EV_A_ (W)w, EV_PERIODIC);
443 } 879 }
444} 880}
445 881
446static void 882static void
447periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
448{ 884{
449 int i; 885 int i;
450 886
451 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
452 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
453 { 889 {
454 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
455 891
456 if (w->interval) 892 if (w->interval)
457 { 893 {
458 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
459 895
460 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
461 { 897 {
462 evperiodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
463 evperiodic_start (w); 899 ev_periodic_start (EV_A_ w);
464 900
465 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
466 } 902 }
467 } 903 }
468 } 904 }
469} 905}
470 906
907inline int
908time_update_monotonic (EV_P)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
471static void 925static void
472time_update () 926time_update (EV_P)
473{ 927{
474 int i; 928 int i;
475 929
476 ev_now = ev_time (); 930#if EV_USE_MONOTONIC
477
478 if (have_monotonic) 931 if (expect_true (have_monotonic))
479 { 932 {
480 ev_tstamp odiff = diff; 933 if (time_update_monotonic (EV_A))
481
482 for (i = 4; --i; ) /* loop a few times, before making important decisions */
483 { 934 {
484 now = get_clock (); 935 ev_tstamp odiff = rtmn_diff;
936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
485 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
486 940
487 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
488 return; /* all is well */ 942 return; /* all is well */
489 943
490 ev_now = ev_time (); 944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
491 } 952 }
492
493 periodics_reschedule (diff - odiff);
494 /* no timer adjustment, as the monotonic clock doesn't jump */
495 } 953 }
496 else 954 else
955#endif
497 { 956 {
498 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 957 rt_now = ev_time ();
958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
499 { 960 {
500 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
501 962
502 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
503 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
504 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
505 } 966 }
506 967
507 now = ev_now; 968 mn_now = rt_now;
508 } 969 }
509} 970}
510 971
511int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
512 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
513void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
514{ 988{
515 double block; 989 double block;
516 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
517
518 if (checkcnt)
519 {
520 queue_events ((W *)checks, checkcnt, EV_CHECK);
521 call_pending ();
522 }
523 991
524 do 992 do
525 { 993 {
994 /* queue check watchers (and execute them) */
995 if (expect_false (preparecnt))
996 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A);
999 }
1000
526 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
527 fd_reify (); 1002 fd_reify (EV_A);
528 1003
529 /* calculate blocking time */ 1004 /* calculate blocking time */
530 1005
531 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1006 /* we only need this for !monotonic clockor timers, but as we basically
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 {
532 ev_now = ev_time (); 1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
533 1017
534 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
535 block = 0.; 1019 block = 0.;
536 else 1020 else
537 { 1021 {
538 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
539 1023
540 if (timercnt) 1024 if (timercnt)
541 { 1025 {
542 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
543 if (block > to) block = to; 1027 if (block > to) block = to;
544 } 1028 }
545 1029
546 if (periodiccnt) 1030 if (periodiccnt)
547 { 1031 {
548 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
549 if (block > to) block = to; 1033 if (block > to) block = to;
550 } 1034 }
551 1035
552 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
553 } 1037 }
554 1038
555 method_poll (block); 1039 method_poll (EV_A_ block);
556 1040
557 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
558 time_update (); 1042 time_update (EV_A);
559 1043
560 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */
561 periodics_reify (); /* absolute timers first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
562 timers_reify (); /* relative timers second */
563 1047
564 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
565 if (!pendingcnt) 1049 if (!pendingcnt)
566 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
567 1051
568 /* queue check and possibly idle watchers */ 1052 /* queue check watchers, to be executed first */
1053 if (checkcnt)
569 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
570 1055
571 call_pending (); 1056 call_pending (EV_A);
572 } 1057 }
573 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
574 1059
575 if (ev_loop_done != 2) 1060 if (loop_done != 2)
576 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
577} 1068}
578 1069
579/*****************************************************************************/ 1070/*****************************************************************************/
580 1071
581static void 1072inline void
582wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
583{ 1074{
584 elem->next = *head; 1075 elem->next = *head;
585 *head = elem; 1076 *head = elem;
586} 1077}
587 1078
588static void 1079inline void
589wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
590{ 1081{
591 while (*head) 1082 while (*head)
592 { 1083 {
593 if (*head == elem) 1084 if (*head == elem)
598 1089
599 head = &(*head)->next; 1090 head = &(*head)->next;
600 } 1091 }
601} 1092}
602 1093
603static void 1094inline void
1095ev_clear_pending (EV_P_ W w)
1096{
1097 if (w->pending)
1098 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1100 w->pending = 0;
1101 }
1102}
1103
1104inline void
604ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
605{ 1106{
606 w->pending = 0; 1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
607 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
608} 1112}
609 1113
610static void 1114inline void
611ev_stop (W w) 1115ev_stop (EV_P_ W w)
612{ 1116{
613 if (w->pending) 1117 ev_unref (EV_A);
614 pendings [w->pending - 1].w = 0;
615
616 w->active = 0; 1118 w->active = 0;
617} 1119}
618 1120
619/*****************************************************************************/ 1121/*****************************************************************************/
620 1122
621void 1123void
622evio_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
623{ 1125{
1126 int fd = w->fd;
1127
624 if (ev_is_active (w)) 1128 if (ev_is_active (w))
625 return; 1129 return;
626 1130
627 int fd = w->fd; 1131 assert (("ev_io_start called with negative fd", fd >= 0));
628 1132
629 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
630 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
631 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
632 1136
633 ++fdchangecnt; 1137 fd_change (EV_A_ fd);
634 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
635 fdchanges [fdchangecnt - 1] = fd;
636} 1138}
637 1139
638void 1140void
639evio_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
640{ 1142{
1143 ev_clear_pending (EV_A_ (W)w);
641 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
642 return; 1145 return;
643 1146
644 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
645 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
646 1149
647 ++fdchangecnt; 1150 fd_change (EV_A_ w->fd);
648 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
649 fdchanges [fdchangecnt - 1] = w->fd;
650} 1151}
651 1152
652
653void 1153void
654evtimer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
655{ 1155{
656 if (ev_is_active (w)) 1156 if (ev_is_active (w))
657 return; 1157 return;
658 1158
659 w->at += now; 1159 ((WT)w)->at += mn_now;
660 1160
661 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
662 1162
663 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
664 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
665 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
666 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
667}
668 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
669void 1171void
670evtimer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
671{ 1173{
1174 ev_clear_pending (EV_A_ (W)w);
672 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
673 return; 1176 return;
674 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
675 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
676 { 1181 {
677 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
678 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
679 } 1184 }
680 1185
681 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
682 1187
683 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
684} 1189}
685 1190
686void 1191void
687evtimer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
688{ 1193{
689 if (ev_is_active (w)) 1194 if (ev_is_active (w))
690 { 1195 {
691 if (w->repeat) 1196 if (w->repeat)
692 { 1197 {
693 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
694 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
695 } 1200 }
696 else 1201 else
697 evtimer_stop (w); 1202 ev_timer_stop (EV_A_ w);
698 } 1203 }
699 else if (w->repeat) 1204 else if (w->repeat)
700 evtimer_start (w); 1205 ev_timer_start (EV_A_ w);
701} 1206}
702 1207
703void 1208void
704evperiodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
705{ 1210{
706 if (ev_is_active (w)) 1211 if (ev_is_active (w))
707 return; 1212 return;
708 1213
709 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
710 1215
711 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
712 if (w->interval) 1217 if (w->interval)
713 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
714 1219
715 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
716 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
717 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
718 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
719}
720 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
721void 1228void
722evperiodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
723{ 1230{
1231 ev_clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
725 return; 1233 return;
726 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
727 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
728 { 1238 {
729 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
730 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
731 } 1241 }
732 1242
733 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
734} 1244}
735 1245
736void 1246void
737evsignal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
738{ 1248{
739 if (ev_is_active (w)) 1249 if (ev_is_active (w))
740 return; 1250 return;
741 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326
742 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
743 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
744 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
745 1330
746 if (!w->next) 1331 if (!((WL)w)->next)
747 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
748 struct sigaction sa; 1336 struct sigaction sa;
749 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
750 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
751 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
752 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
753 } 1342 }
754} 1343}
755 1344
756void 1345void
757evsignal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
758{ 1347{
1348 ev_clear_pending (EV_A_ (W)w);
759 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
760 return; 1350 return;
761 1351
762 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
763 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
764 1354
765 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
766 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
767} 1357}
768 1358
769void evidle_start (struct ev_idle *w) 1359void
1360ev_child_start (EV_P_ struct ev_child *w)
770{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
771 if (ev_is_active (w)) 1365 if (ev_is_active (w))
772 return; 1366 return;
773 1367
774 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
775 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
776 idles [idlecnt - 1] = w;
777} 1370}
778 1371
779void evidle_stop (struct ev_idle *w) 1372void
1373ev_child_stop (EV_P_ struct ev_child *w)
780{ 1374{
781 idles [w->active - 1] = idles [--idlecnt]; 1375 ev_clear_pending (EV_A_ (W)w);
782 ev_stop ((W)w);
783}
784
785void evcheck_start (struct ev_check *w)
786{
787 if (ev_is_active (w)) 1376 if (ev_is_active (w))
788 return; 1377 return;
789 1378
790 ev_start ((W)w, ++checkcnt); 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
791 array_needsize (checks, checkmax, checkcnt, );
792 checks [checkcnt - 1] = w;
793}
794
795void evcheck_stop (struct ev_check *w)
796{
797 checks [w->active - 1] = checks [--checkcnt];
798 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
799} 1381}
800 1382
801/*****************************************************************************/ 1383/*****************************************************************************/
802 1384
803#if 0 1385struct ev_once
804 1386{
805struct ev_io wio; 1387 struct ev_io io;
806
807static void
808sin_cb (struct ev_io *w, int revents)
809{
810 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
811}
812
813static void
814ocb (struct ev_timer *w, int revents)
815{
816 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
817 evtimer_stop (w);
818 evtimer_start (w);
819}
820
821static void
822scb (struct ev_signal *w, int revents)
823{
824 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
825 evio_stop (&wio);
826 evio_start (&wio);
827}
828
829static void
830gcb (struct ev_signal *w, int revents)
831{
832 fprintf (stderr, "generic %x\n", revents);
833
834}
835
836int main (void)
837{
838 ev_init (0);
839
840 evio_init (&wio, sin_cb, 0, EV_READ);
841 evio_start (&wio);
842
843 struct ev_timer t[10000];
844
845#if 0
846 int i;
847 for (i = 0; i < 10000; ++i)
848 {
849 struct ev_timer *w = t + i;
850 evw_init (w, ocb, i);
851 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
852 evtimer_start (w);
853 if (drand48 () < 0.5)
854 evtimer_stop (w);
855 }
856#endif
857
858 struct ev_timer t1; 1388 struct ev_timer to;
859 evtimer_init (&t1, ocb, 5, 10); 1389 void (*cb)(int revents, void *arg);
860 evtimer_start (&t1); 1390 void *arg;
1391};
861 1392
862 struct ev_signal sig; 1393static void
863 evsignal_init (&sig, scb, SIGQUIT); 1394once_cb (EV_P_ struct ev_once *once, int revents)
864 evsignal_start (&sig); 1395{
1396 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg;
865 1398
866 struct ev_check cw; 1399 ev_io_stop (EV_A_ &once->io);
867 evcheck_init (&cw, gcb); 1400 ev_timer_stop (EV_A_ &once->to);
868 evcheck_start (&cw); 1401 free (once);
869 1402
870 struct ev_idle iw; 1403 cb (revents, arg);
871 evidle_init (&iw, gcb);
872 evidle_start (&iw);
873
874 ev_loop (0);
875
876 return 0;
877} 1404}
878 1405
879#endif 1406static void
1407once_cb_io (EV_P_ struct ev_io *w, int revents)
1408{
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410}
880 1411
1412static void
1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
1414{
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416}
881 1417
1418void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{
1421 struct ev_once *once = malloc (sizeof (struct ev_once));
882 1422
1423 if (!once)
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else
1426 {
1427 once->cb = cb;
1428 once->arg = arg;
883 1429
1430 ev_watcher_init (&once->io, once_cb_io);
1431 if (fd >= 0)
1432 {
1433 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io);
1435 }
1436
1437 ev_watcher_init (&once->to, once_cb_to);
1438 if (timeout >= 0.)
1439 {
1440 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to);
1442 }
1443 }
1444}
1445

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines