ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.212 by root, Tue Feb 19 19:01:13 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
31#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
32# include "config.h" 48# include "config.h"
49# endif
33 50
34# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
54# endif
55# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
37# endif 65# endif
38 66
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
41# endif 73# endif
42 74
43# if HAVE_POLL && HAVE_POLL_H 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
45# endif 81# endif
46 82
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
49# endif 89# endif
50 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
53# endif 121# endif
54 122
55#endif 123#endif
56 124
57#include <math.h> 125#include <math.h>
58#include <stdlib.h> 126#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 127#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 128#include <stddef.h>
63 129
64#include <stdio.h> 130#include <stdio.h>
65 131
66#include <assert.h> 132#include <assert.h>
67#include <errno.h> 133#include <errno.h>
68#include <sys/types.h> 134#include <sys/types.h>
135#include <time.h>
136
137#include <signal.h>
138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
69#ifndef WIN32 145#ifndef _WIN32
146# include <sys/time.h>
70# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
149#else
150# define WIN32_LEAN_AND_MEAN
151# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1
71#endif 154# endif
72#include <sys/time.h> 155#endif
73#include <time.h>
74 156
75/**/ 157/**/
76 158
77#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
79#endif 169#endif
80 170
81#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
83#endif 173#endif
84 174
85#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
87#endif 181#endif
88 182
89#ifndef EV_USE_EPOLL 183#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 184# define EV_USE_EPOLL 0
91#endif 185#endif
92 186
93#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
95#endif 189#endif
96 190
191#ifndef EV_USE_PORT
192# define EV_USE_PORT 0
193#endif
194
97#ifndef EV_USE_WIN32 195#ifndef EV_USE_INOTIFY
98# ifdef WIN32 196# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
100# else 202# else
101# define EV_USE_WIN32 0 203# define EV_PID_HASHSIZE 16
102# endif 204# endif
103#endif 205#endif
104 206
105#ifndef EV_USE_REALTIME 207#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
107#endif 213#endif
108 214
109/**/ 215/**/
110 216
111#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
119#endif 225#endif
120 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
242#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h>
244#endif
245
121/**/ 246/**/
122 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 261
128#include "ev.h"
129
130#if __GNUC__ >= 3 262#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 264# define noinline __attribute__ ((noinline))
133#else 265#else
134# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
135# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
136#endif 271#endif
137 272
138#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
140 282
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 285
286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288
144typedef struct ev_watcher *W; 289typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
147 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
149 298
150#if WIN32 299#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 300# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 301#endif
155 302
156/*****************************************************************************/ 303/*****************************************************************************/
157 304
305static void (*syserr_cb)(const char *msg);
306
307void
308ev_set_syserr_cb (void (*cb)(const char *msg))
309{
310 syserr_cb = cb;
311}
312
313static void noinline
314syserr (const char *msg)
315{
316 if (!msg)
317 msg = "(libev) system error";
318
319 if (syserr_cb)
320 syserr_cb (msg);
321 else
322 {
323 perror (msg);
324 abort ();
325 }
326}
327
328static void *(*alloc)(void *ptr, long size);
329
330void
331ev_set_allocator (void *(*cb)(void *ptr, long size))
332{
333 alloc = cb;
334}
335
336inline_speed void *
337ev_realloc (void *ptr, long size)
338{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
340
341 if (!ptr && size)
342 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort ();
345 }
346
347 return ptr;
348}
349
350#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0)
352
353/*****************************************************************************/
354
158typedef struct 355typedef struct
159{ 356{
160 struct ev_watcher_list *head; 357 WL head;
161 unsigned char events; 358 unsigned char events;
162 unsigned char reify; 359 unsigned char reify;
360#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle;
362#endif
163} ANFD; 363} ANFD;
164 364
165typedef struct 365typedef struct
166{ 366{
167 W w; 367 W w;
168 int events; 368 int events;
169} ANPENDING; 369} ANPENDING;
170 370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
377
171#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
172 379
173struct ev_loop 380 struct ev_loop
174{ 381 {
382 ev_tstamp ev_rt_now;
383 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 384 #define VAR(name,decl) decl;
176# include "ev_vars.h" 385 #include "ev_vars.h"
177};
178# undef VAR 386 #undef VAR
387 };
179# include "ev_wrap.h" 388 #include "ev_wrap.h"
389
390 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr;
180 392
181#else 393#else
182 394
395 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 397 #include "ev_vars.h"
185# undef VAR 398 #undef VAR
399
400 static int ev_default_loop_ptr;
186 401
187#endif 402#endif
188 403
189/*****************************************************************************/ 404/*****************************************************************************/
190 405
191inline ev_tstamp 406ev_tstamp
192ev_time (void) 407ev_time (void)
193{ 408{
194#if EV_USE_REALTIME 409#if EV_USE_REALTIME
195 struct timespec ts; 410 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 411 clock_gettime (CLOCK_REALTIME, &ts);
200 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif 417#endif
203} 418}
204 419
205inline ev_tstamp 420ev_tstamp inline_size
206get_clock (void) 421get_clock (void)
207{ 422{
208#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
210 { 425 {
215#endif 430#endif
216 431
217 return ev_time (); 432 return ev_time ();
218} 433}
219 434
435#if EV_MULTIPLICITY
220ev_tstamp 436ev_tstamp
221ev_now (EV_P) 437ev_now (EV_P)
222{ 438{
223 return rt_now; 439 return ev_rt_now;
224} 440}
441#endif
225 442
226#define array_roundsize(base,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
227 450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
497
228#define array_needsize(base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
230 { \ 500 { \
231 int newcnt = cur; \ 501 int ocur_ = (cur); \
232 do \ 502 (base) = (type *)array_realloc \
233 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 505 }
242 506
507#if 0
243#define array_slim(stem) \ 508#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 510 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 514 }
515#endif
250 516
251#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 519
254/*****************************************************************************/ 520/*****************************************************************************/
255 521
256static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
257anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
258{ 552{
259 while (count--) 553 while (count--)
260 { 554 {
261 base->head = 0; 555 base->head = 0;
264 558
265 ++base; 559 ++base;
266 } 560 }
267} 561}
268 562
269static void 563void inline_speed
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
294fd_event (EV_P_ int fd, int events) 564fd_event (EV_P_ int fd, int revents)
295{ 565{
296 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 567 ev_io *w;
298 568
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 570 {
301 int ev = w->events & events; 571 int ev = w->events & revents;
302 572
303 if (ev) 573 if (ev)
304 event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
305 } 575 }
306} 576}
307 577
308/*****************************************************************************/ 578void
579ev_feed_fd_event (EV_P_ int fd, int revents)
580{
581 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents);
583}
309 584
310static void 585void inline_size
311fd_reify (EV_P) 586fd_reify (EV_P)
312{ 587{
313 int i; 588 int i;
314 589
315 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
316 { 591 {
317 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 594 ev_io *w;
320 595
321 int events = 0; 596 unsigned char events = 0;
322 597
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 599 events |= (unsigned char)w->events;
325 600
601#if EV_SELECT_IS_WINSOCKET
602 if (events)
603 {
604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
611 }
612#endif
613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
326 anfd->reify = 0; 618 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
330 } 624 }
331 625
332 fdchangecnt = 0; 626 fdchangecnt = 0;
333} 627}
334 628
335static void 629void inline_size
336fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
337{ 631{
338 if (anfds [fd].reify || fdchangecnt < 0) 632 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
342 634
635 if (expect_true (!reify))
636 {
343 ++fdchangecnt; 637 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
346} 641}
347 642
348static void 643void inline_speed
349fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
350{ 645{
351 struct ev_io *w; 646 ev_io *w;
352 647
353 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
354 { 649 {
355 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 652 }
653}
654
655int inline_size
656fd_valid (int fd)
657{
658#ifdef _WIN32
659 return _get_osfhandle (fd) != -1;
660#else
661 return fcntl (fd, F_GETFD) != -1;
662#endif
358} 663}
359 664
360/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
361static void 666static void noinline
362fd_ebadf (EV_P) 667fd_ebadf (EV_P)
363{ 668{
364 int fd; 669 int fd;
365 670
366 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 672 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
370} 675}
371 676
372/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 678static void noinline
374fd_enomem (EV_P) 679fd_enomem (EV_P)
375{ 680{
376 int fd; 681 int fd;
377 682
378 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 684 if (anfds [fd].events)
380 { 685 {
381 close (fd);
382 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
383 return; 687 return;
384 } 688 }
385} 689}
386 690
387/* susually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
388static void 692static void noinline
389fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
390{ 694{
391 int fd; 695 int fd;
392 696
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events) 698 if (anfds [fd].events)
396 { 699 {
397 anfds [fd].events = 0; 700 anfds [fd].events = 0;
398 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
399 } 702 }
400} 703}
401 704
402/*****************************************************************************/ 705/*****************************************************************************/
403 706
404static void 707void inline_speed
405upheap (WT *heap, int k) 708upheap (WT *heap, int k)
406{ 709{
407 WT w = heap [k]; 710 WT w = heap [k];
408 711
409 while (k && heap [k >> 1]->at > w->at) 712 while (k)
410 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
411 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
412 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
413 k >>= 1; 721 k = p;
414 } 722 }
415 723
416 heap [k] = w; 724 heap [k] = w;
417 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
418
419} 726}
420 727
421static void 728void inline_speed
422downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
423{ 730{
424 WT w = heap [k]; 731 WT w = heap [k];
425 732
426 while (k < (N >> 1)) 733 for (;;)
427 { 734 {
428 int j = k << 1; 735 int c = (k << 1) + 1;
429 736
430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
431 ++j;
432
433 if (w->at <= heap [j]->at)
434 break; 738 break;
435 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
436 heap [k] = heap [j]; 746 heap [k] = heap [c];
437 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
438 k = j; 749 k = c;
439 } 750 }
440 751
441 heap [k] = w; 752 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
443} 754}
444 755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
445/*****************************************************************************/ 763/*****************************************************************************/
446 764
447typedef struct 765typedef struct
448{ 766{
449 struct ev_watcher_list *head; 767 WL head;
450 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
451} ANSIG; 769} ANSIG;
452 770
453static ANSIG *signals; 771static ANSIG *signals;
454static int signalmax; 772static int signalmax;
455 773
456static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
457static sig_atomic_t volatile gotsig;
458static struct ev_io sigev;
459 775
460static void 776void inline_size
461signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
462{ 778{
463 while (count--) 779 while (count--)
464 { 780 {
465 base->head = 0; 781 base->head = 0;
467 783
468 ++base; 784 ++base;
469 } 785 }
470} 786}
471 787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd)
792{
793#ifdef _WIN32
794 int arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif
800}
801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno; /* save errno becaue write might clobber it */
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830
831 errno = old_errno;
832 }
833}
834
835static void
836pipecb (EV_P_ ev_io *iow, int revents)
837{
838 {
839 int dummy;
840 read (evpipe [0], &dummy, 1);
841 }
842
843 if (gotsig && ev_is_default_loop (EV_A))
844 {
845 int signum;
846 gotsig = 0;
847
848 for (signum = signalmax; signum--; )
849 if (signals [signum].gotsig)
850 ev_feed_signal_event (EV_A_ signum + 1);
851 }
852
853#if EV_ASYNC_ENABLE
854 if (gotasync)
855 {
856 int i;
857 gotasync = 0;
858
859 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent)
861 {
862 asyncs [i]->sent = 0;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 }
865 }
866#endif
867}
868
869/*****************************************************************************/
870
472static void 871static void
473sighandler (int signum) 872sighandler (int signum)
474{ 873{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
475#if WIN32 878#if _WIN32
476 signal (signum, sighandler); 879 signal (signum, sighandler);
477#endif 880#endif
478 881
479 signals [signum - 1].gotsig = 1; 882 signals [signum - 1].gotsig = 1;
480 883 evpipe_write (EV_A_ 1, 0);
481 if (!gotsig)
482 {
483 int old_errno = errno;
484 gotsig = 1;
485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
487 }
488} 884}
489 885
490static void 886void noinline
491sigcb (EV_P_ struct ev_io *iow, int revents) 887ev_feed_signal_event (EV_P_ int signum)
492{ 888{
493 struct ev_watcher_list *w; 889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
494 int signum; 895 --signum;
495 896
496 read (sigpipe [0], &revents, 1); 897 if (signum < 0 || signum >= signalmax)
497 gotsig = 0; 898 return;
498 899
499 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig)
501 {
502 signals [signum].gotsig = 0; 900 signals [signum].gotsig = 0;
503 901
504 for (w = signals [signum].head; w; w = w->next) 902 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL); 903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
506 }
507}
508
509static void
510siginit (EV_P)
511{
512#ifndef WIN32
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
520
521 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 904}
525 905
526/*****************************************************************************/ 906/*****************************************************************************/
527 907
908static WL childs [EV_PID_HASHSIZE];
909
528#ifndef WIN32 910#ifndef _WIN32
529 911
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev; 912static ev_signal childev;
913
914#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0
916#endif
917
918void inline_speed
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
920{
921 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 {
926 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1)))
928 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
930 w->rpid = pid;
931 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 }
934 }
935}
532 936
533#ifndef WCONTINUED 937#ifndef WCONTINUED
534# define WCONTINUED 0 938# define WCONTINUED 0
535#endif 939#endif
536 940
537static void 941static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 942childcb (EV_P_ ev_signal *sw, int revents)
554{ 943{
555 int pid, status; 944 int pid, status;
556 945
946 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 947 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 948 if (!WCONTINUED
949 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return;
952
559 /* make sure we are called again until all childs have been reaped */ 953 /* make sure we are called again until all childs have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */
560 event (EV_A_ (W)sw, EV_SIGNAL); 955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 956
562 child_reap (EV_A_ sw, pid, pid, status); 957 child_reap (EV_A_ sw, pid, pid, status);
958 if (EV_PID_HASHSIZE > 1)
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
564 }
565} 960}
566 961
567#endif 962#endif
568 963
569/*****************************************************************************/ 964/*****************************************************************************/
570 965
966#if EV_USE_PORT
967# include "ev_port.c"
968#endif
571#if EV_USE_KQUEUE 969#if EV_USE_KQUEUE
572# include "ev_kqueue.c" 970# include "ev_kqueue.c"
573#endif 971#endif
574#if EV_USE_EPOLL 972#if EV_USE_EPOLL
575# include "ev_epoll.c" 973# include "ev_epoll.c"
592{ 990{
593 return EV_VERSION_MINOR; 991 return EV_VERSION_MINOR;
594} 992}
595 993
596/* return true if we are running with elevated privileges and should ignore env variables */ 994/* return true if we are running with elevated privileges and should ignore env variables */
597static int 995int inline_size
598enable_secure (void) 996enable_secure (void)
599{ 997{
600#ifdef WIN32 998#ifdef _WIN32
601 return 0; 999 return 0;
602#else 1000#else
603 return getuid () != geteuid () 1001 return getuid () != geteuid ()
604 || getgid () != getegid (); 1002 || getgid () != getegid ();
605#endif 1003#endif
606} 1004}
607 1005
608int 1006unsigned int
609ev_method (EV_P) 1007ev_supported_backends (void)
610{ 1008{
611 return method; 1009 unsigned int flags = 0;
612}
613 1010
614static void 1011 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
615loop_init (EV_P_ int methods) 1012 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1013 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1014 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1015 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1016
1017 return flags;
1018}
1019
1020unsigned int
1021ev_recommended_backends (void)
616{ 1022{
617 if (!method) 1023 unsigned int flags = ev_supported_backends ();
1024
1025#ifndef __NetBSD__
1026 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE;
1029#endif
1030#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation
1032 flags &= ~EVBACKEND_POLL;
1033#endif
1034
1035 return flags;
1036}
1037
1038unsigned int
1039ev_embeddable_backends (void)
1040{
1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1042
1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
1048}
1049
1050unsigned int
1051ev_backend (EV_P)
1052{
1053 return backend;
1054}
1055
1056unsigned int
1057ev_loop_count (EV_P)
1058{
1059 return loop_count;
1060}
1061
1062void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{
1065 io_blocktime = interval;
1066}
1067
1068void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{
1071 timeout_blocktime = interval;
1072}
1073
1074static void noinline
1075loop_init (EV_P_ unsigned int flags)
1076{
1077 if (!backend)
618 { 1078 {
619#if EV_USE_MONOTONIC 1079#if EV_USE_MONOTONIC
620 { 1080 {
621 struct timespec ts; 1081 struct timespec ts;
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 1083 have_monotonic = 1;
624 } 1084 }
625#endif 1085#endif
626 1086
627 rt_now = ev_time (); 1087 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 1088 mn_now = get_clock ();
629 now_floor = mn_now; 1089 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 1090 rtmn_diff = ev_rt_now - mn_now;
631 1091
632 if (methods == EVMETHOD_AUTO) 1092 io_blocktime = 0.;
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif
1100
1101 /* pid check not overridable via env */
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif
1106
1107 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 1110 flags = atoi (getenv ("LIBEV_FLAGS"));
635 else
636 methods = EVMETHOD_ANY;
637 1111
638 method = 0; 1112 if (!(flags & 0x0000ffffUL))
639#if EV_USE_WIN32 1113 flags |= ev_recommended_backends ();
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1114
1115#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
641#endif 1117#endif
642#if EV_USE_KQUEUE 1118#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
644#endif 1120#endif
645#if EV_USE_EPOLL 1121#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1122 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
647#endif 1123#endif
648#if EV_USE_POLL 1124#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1125 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
650#endif 1126#endif
651#if EV_USE_SELECT 1127#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
653#endif 1129#endif
654 }
655}
656 1130
657void 1131 ev_init (&pipeev, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI);
1133 }
1134}
1135
1136static void noinline
658loop_destroy (EV_P) 1137loop_destroy (EV_P)
659{ 1138{
660 int i; 1139 int i;
661 1140
1141 if (ev_is_active (&pipeev))
1142 {
1143 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev);
1145
1146 close (evpipe [0]); evpipe [0] = 0;
1147 close (evpipe [1]); evpipe [1] = 0;
1148 }
1149
662#if EV_USE_WIN32 1150#if EV_USE_INOTIFY
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1151 if (fs_fd >= 0)
1152 close (fs_fd);
1153#endif
1154
1155 if (backend_fd >= 0)
1156 close (backend_fd);
1157
1158#if EV_USE_PORT
1159 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
664#endif 1160#endif
665#if EV_USE_KQUEUE 1161#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1162 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
667#endif 1163#endif
668#if EV_USE_EPOLL 1164#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1165 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
670#endif 1166#endif
671#if EV_USE_POLL 1167#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1168 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
673#endif 1169#endif
674#if EV_USE_SELECT 1170#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1171 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
676#endif 1172#endif
677 1173
678 for (i = NUMPRI; i--; ) 1174 for (i = NUMPRI; i--; )
1175 {
679 array_free (pending, [i]); 1176 array_free (pending, [i]);
1177#if EV_IDLE_ENABLE
1178 array_free (idle, [i]);
1179#endif
1180 }
680 1181
1182 ev_free (anfds); anfdmax = 0;
1183
1184 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 1185 array_free (fdchange, EMPTY);
682 array_free (timer, ); 1186 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE
683 array_free (periodic, ); 1188 array_free (periodic, EMPTY);
684 array_free (idle, ); 1189#endif
1190#if EV_FORK_ENABLE
1191 array_free (fork, EMPTY);
1192#endif
685 array_free (prepare, ); 1193 array_free (prepare, EMPTY);
686 array_free (check, ); 1194 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY);
1197#endif
687 1198
688 method = 0; 1199 backend = 0;
689 /*TODO*/
690} 1200}
691 1201
692void 1202void inline_size infy_fork (EV_P);
1203
1204void inline_size
693loop_fork (EV_P) 1205loop_fork (EV_P)
694{ 1206{
695 /*TODO*/ 1207#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif
1210#if EV_USE_KQUEUE
1211 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1212#endif
696#if EV_USE_EPOLL 1213#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1214 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
698#endif 1215#endif
699#if EV_USE_KQUEUE 1216#if EV_USE_INOTIFY
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1217 infy_fork (EV_A);
701#endif 1218#endif
1219
1220 if (ev_is_active (&pipeev))
1221 {
1222 /* this "locks" the handlers against writing to the pipe */
1223 /* while we modify the fd vars */
1224 gotsig = 1;
1225#if EV_ASYNC_ENABLE
1226 gotasync = 1;
1227#endif
1228
1229 ev_ref (EV_A);
1230 ev_io_stop (EV_A_ &pipeev);
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233
1234 evpipe_init (EV_A);
1235 /* now iterate over everything, in case we missed something */
1236 pipecb (EV_A_ &pipeev, EV_READ);
1237 }
1238
1239 postfork = 0;
702} 1240}
703 1241
704#if EV_MULTIPLICITY 1242#if EV_MULTIPLICITY
705struct ev_loop * 1243struct ev_loop *
706ev_loop_new (int methods) 1244ev_loop_new (unsigned int flags)
707{ 1245{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1246 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
709 1247
1248 memset (loop, 0, sizeof (struct ev_loop));
1249
710 loop_init (EV_A_ methods); 1250 loop_init (EV_A_ flags);
711 1251
712 if (ev_method (EV_A)) 1252 if (ev_backend (EV_A))
713 return loop; 1253 return loop;
714 1254
715 return 0; 1255 return 0;
716} 1256}
717 1257
718void 1258void
719ev_loop_destroy (EV_P) 1259ev_loop_destroy (EV_P)
720{ 1260{
721 loop_destroy (EV_A); 1261 loop_destroy (EV_A);
722 free (loop); 1262 ev_free (loop);
723} 1263}
724 1264
725void 1265void
726ev_loop_fork (EV_P) 1266ev_loop_fork (EV_P)
727{ 1267{
728 loop_fork (EV_A); 1268 postfork = 1; /* must be in line with ev_default_fork */
729} 1269}
730 1270
731#endif 1271#endif
732 1272
733#if EV_MULTIPLICITY 1273#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 1274struct ev_loop *
1275ev_default_loop_init (unsigned int flags)
738#else 1276#else
739static int default_loop;
740
741int 1277int
1278ev_default_loop (unsigned int flags)
742#endif 1279#endif
743ev_default_loop (int methods)
744{ 1280{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop) 1281 if (!ev_default_loop_ptr)
750 { 1282 {
751#if EV_MULTIPLICITY 1283#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct; 1284 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
753#else 1285#else
754 default_loop = 1; 1286 ev_default_loop_ptr = 1;
755#endif 1287#endif
756 1288
757 loop_init (EV_A_ methods); 1289 loop_init (EV_A_ flags);
758 1290
759 if (ev_method (EV_A)) 1291 if (ev_backend (EV_A))
760 { 1292 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A);
764
765#ifndef WIN32 1293#ifndef _WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 1294 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 1295 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev); 1296 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1297 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif 1298#endif
771 } 1299 }
772 else 1300 else
773 default_loop = 0; 1301 ev_default_loop_ptr = 0;
774 } 1302 }
775 1303
776 return default_loop; 1304 return ev_default_loop_ptr;
777} 1305}
778 1306
779void 1307void
780ev_default_destroy (void) 1308ev_default_destroy (void)
781{ 1309{
782#if EV_MULTIPLICITY 1310#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 1311 struct ev_loop *loop = ev_default_loop_ptr;
784#endif 1312#endif
785 1313
1314#ifndef _WIN32
786 ev_ref (EV_A); /* child watcher */ 1315 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 1316 ev_signal_stop (EV_A_ &childev);
788 1317#endif
789 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794 1318
795 loop_destroy (EV_A); 1319 loop_destroy (EV_A);
796} 1320}
797 1321
798void 1322void
799ev_default_fork (void) 1323ev_default_fork (void)
800{ 1324{
801#if EV_MULTIPLICITY 1325#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 1326 struct ev_loop *loop = ev_default_loop_ptr;
803#endif 1327#endif
804 1328
805 loop_fork (EV_A); 1329 if (backend)
806 1330 postfork = 1; /* must be in line with ev_loop_fork */
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 1331}
815 1332
816/*****************************************************************************/ 1333/*****************************************************************************/
817 1334
818static void 1335void
1336ev_invoke (EV_P_ void *w, int revents)
1337{
1338 EV_CB_INVOKE ((W)w, revents);
1339}
1340
1341void inline_speed
819call_pending (EV_P) 1342call_pending (EV_P)
820{ 1343{
821 int pri; 1344 int pri;
822 1345
823 for (pri = NUMPRI; pri--; ) 1346 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri]) 1347 while (pendingcnt [pri])
825 { 1348 {
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1349 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 1350
828 if (p->w) 1351 if (expect_true (p->w))
829 { 1352 {
1353 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1354
830 p->w->pending = 0; 1355 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 1356 EV_CB_INVOKE (p->w, p->events);
832 } 1357 }
833 } 1358 }
834} 1359}
835 1360
836static void 1361void inline_size
837timers_reify (EV_P) 1362timers_reify (EV_P)
838{ 1363{
839 while (timercnt && ((WT)timers [0])->at <= mn_now) 1364 while (timercnt && ((WT)timers [0])->at <= mn_now)
840 { 1365 {
841 struct ev_timer *w = timers [0]; 1366 ev_timer *w = (ev_timer *)timers [0];
842 1367
843 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1368 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
844 1369
845 /* first reschedule or stop timer */ 1370 /* first reschedule or stop timer */
846 if (w->repeat) 1371 if (w->repeat)
847 { 1372 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1373 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1374
849 ((WT)w)->at = mn_now + w->repeat; 1375 ((WT)w)->at += w->repeat;
1376 if (((WT)w)->at < mn_now)
1377 ((WT)w)->at = mn_now;
1378
850 downheap ((WT *)timers, timercnt, 0); 1379 downheap (timers, timercnt, 0);
851 } 1380 }
852 else 1381 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1382 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 1383
855 event (EV_A_ (W)w, EV_TIMEOUT); 1384 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 1385 }
857} 1386}
858 1387
859static void 1388#if EV_PERIODIC_ENABLE
1389void inline_size
860periodics_reify (EV_P) 1390periodics_reify (EV_P)
861{ 1391{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1392 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
863 { 1393 {
864 struct ev_periodic *w = periodics [0]; 1394 ev_periodic *w = (ev_periodic *)periodics [0];
865 1395
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1396 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
867 1397
868 /* first reschedule or stop timer */ 1398 /* first reschedule or stop timer */
869 if (w->interval) 1399 if (w->reschedule_cb)
870 { 1400 {
1401 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1402 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1403 downheap (periodics, periodiccnt, 0);
1404 }
1405 else if (w->interval)
1406 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1407 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1408 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1409 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1410 downheap (periodics, periodiccnt, 0);
874 } 1411 }
875 else 1412 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1413 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1414
878 event (EV_A_ (W)w, EV_PERIODIC); 1415 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1416 }
880} 1417}
881 1418
882static void 1419static void noinline
883periodics_reschedule (EV_P) 1420periodics_reschedule (EV_P)
884{ 1421{
885 int i; 1422 int i;
886 1423
887 /* adjust periodics after time jump */ 1424 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1425 for (i = 0; i < periodiccnt; ++i)
889 { 1426 {
890 struct ev_periodic *w = periodics [i]; 1427 ev_periodic *w = (ev_periodic *)periodics [i];
891 1428
1429 if (w->reschedule_cb)
1430 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1431 else if (w->interval)
1432 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1433 }
1434
1435 /* now rebuild the heap */
1436 for (i = periodiccnt >> 1; i--; )
1437 downheap (periodics, periodiccnt, i);
1438}
1439#endif
1440
1441#if EV_IDLE_ENABLE
1442void inline_size
1443idle_reify (EV_P)
1444{
1445 if (expect_false (idleall))
1446 {
1447 int pri;
1448
1449 for (pri = NUMPRI; pri--; )
893 { 1450 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1451 if (pendingcnt [pri])
1452 break;
895 1453
896 if (fabs (diff) >= 1e-4) 1454 if (idlecnt [pri])
897 { 1455 {
898 ev_periodic_stop (EV_A_ w); 1456 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
899 ev_periodic_start (EV_A_ w); 1457 break;
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 } 1458 }
903 } 1459 }
904 } 1460 }
905} 1461}
1462#endif
906 1463
907inline int 1464void inline_speed
908time_update_monotonic (EV_P) 1465time_update (EV_P_ ev_tstamp max_block)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
925static void
926time_update (EV_P)
927{ 1466{
928 int i; 1467 int i;
929 1468
930#if EV_USE_MONOTONIC 1469#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1470 if (expect_true (have_monotonic))
932 { 1471 {
933 if (time_update_monotonic (EV_A)) 1472 ev_tstamp odiff = rtmn_diff;
1473
1474 mn_now = get_clock ();
1475
1476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1477 /* interpolate in the meantime */
1478 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
934 { 1479 {
935 ev_tstamp odiff = rtmn_diff; 1480 ev_rt_now = rtmn_diff + mn_now;
1481 return;
1482 }
936 1483
1484 now_floor = mn_now;
1485 ev_rt_now = ev_time ();
1486
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1487 /* loop a few times, before making important decisions.
1488 * on the choice of "4": one iteration isn't enough,
1489 * in case we get preempted during the calls to
1490 * ev_time and get_clock. a second call is almost guaranteed
1491 * to succeed in that case, though. and looping a few more times
1492 * doesn't hurt either as we only do this on time-jumps or
1493 * in the unlikely event of having been preempted here.
1494 */
1495 for (i = 4; --i; )
938 { 1496 {
939 rtmn_diff = rt_now - mn_now; 1497 rtmn_diff = ev_rt_now - mn_now;
940 1498
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1499 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1500 return; /* all is well */
943 1501
944 rt_now = ev_time (); 1502 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1503 mn_now = get_clock ();
946 now_floor = mn_now; 1504 now_floor = mn_now;
947 } 1505 }
948 1506
1507# if EV_PERIODIC_ENABLE
1508 periodics_reschedule (EV_A);
1509# endif
1510 /* no timer adjustment, as the monotonic clock doesn't jump */
1511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1512 }
1513 else
1514#endif
1515 {
1516 ev_rt_now = ev_time ();
1517
1518 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1519 {
1520#if EV_PERIODIC_ENABLE
949 periodics_reschedule (EV_A); 1521 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */ 1522#endif
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1523 /* adjust timers. this is easy, as the offset is the same for all of them */
1524 for (i = 0; i < timercnt; ++i)
1525 ((WT)timers [i])->at += ev_rt_now - mn_now;
952 } 1526 }
953 }
954 else
955#endif
956 {
957 rt_now = ev_time ();
958 1527
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 {
961 periodics_reschedule (EV_A);
962
963 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now;
966 }
967
968 mn_now = rt_now; 1528 mn_now = ev_rt_now;
969 } 1529 }
970} 1530}
971 1531
972void 1532void
973ev_ref (EV_P) 1533ev_ref (EV_P)
984static int loop_done; 1544static int loop_done;
985 1545
986void 1546void
987ev_loop (EV_P_ int flags) 1547ev_loop (EV_P_ int flags)
988{ 1548{
989 double block;
990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1549 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1550 ? EVUNLOOP_ONE
1551 : EVUNLOOP_CANCEL;
1552
1553 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
991 1554
992 do 1555 do
993 { 1556 {
1557#ifndef _WIN32
1558 if (expect_false (curpid)) /* penalise the forking check even more */
1559 if (expect_false (getpid () != curpid))
1560 {
1561 curpid = getpid ();
1562 postfork = 1;
1563 }
1564#endif
1565
1566#if EV_FORK_ENABLE
1567 /* we might have forked, so queue fork handlers */
1568 if (expect_false (postfork))
1569 if (forkcnt)
1570 {
1571 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1572 call_pending (EV_A);
1573 }
1574#endif
1575
994 /* queue check watchers (and execute them) */ 1576 /* queue prepare watchers (and execute them) */
995 if (expect_false (preparecnt)) 1577 if (expect_false (preparecnt))
996 { 1578 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1579 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1580 call_pending (EV_A);
999 } 1581 }
1000 1582
1583 if (expect_false (!activecnt))
1584 break;
1585
1586 /* we might have forked, so reify kernel state if necessary */
1587 if (expect_false (postfork))
1588 loop_fork (EV_A);
1589
1001 /* update fd-related kernel structures */ 1590 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1591 fd_reify (EV_A);
1003 1592
1004 /* calculate blocking time */ 1593 /* calculate blocking time */
1594 {
1595 ev_tstamp waittime = 0.;
1596 ev_tstamp sleeptime = 0.;
1005 1597
1006 /* we only need this for !monotonic clockor timers, but as we basically 1598 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 { 1599 {
1014 rt_now = ev_time (); 1600 /* update time to cancel out callback processing overhead */
1015 mn_now = rt_now; 1601 time_update (EV_A_ 1e100);
1016 }
1017 1602
1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.;
1020 else
1021 {
1022 block = MAX_BLOCKTIME; 1603 waittime = MAX_BLOCKTIME;
1023 1604
1024 if (timercnt) 1605 if (timercnt)
1025 { 1606 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1607 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1027 if (block > to) block = to; 1608 if (waittime > to) waittime = to;
1028 } 1609 }
1029 1610
1611#if EV_PERIODIC_ENABLE
1030 if (periodiccnt) 1612 if (periodiccnt)
1031 { 1613 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1614 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1033 if (block > to) block = to; 1615 if (waittime > to) waittime = to;
1034 } 1616 }
1617#endif
1035 1618
1036 if (block < 0.) block = 0.; 1619 if (expect_false (waittime < timeout_blocktime))
1620 waittime = timeout_blocktime;
1621
1622 sleeptime = waittime - backend_fudge;
1623
1624 if (expect_true (sleeptime > io_blocktime))
1625 sleeptime = io_blocktime;
1626
1627 if (sleeptime)
1628 {
1629 ev_sleep (sleeptime);
1630 waittime -= sleeptime;
1631 }
1037 } 1632 }
1038 1633
1039 method_poll (EV_A_ block); 1634 ++loop_count;
1635 backend_poll (EV_A_ waittime);
1040 1636
1041 /* update rt_now, do magic */ 1637 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1638 time_update (EV_A_ waittime + sleeptime);
1639 }
1043 1640
1044 /* queue pending timers and reschedule them */ 1641 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1642 timers_reify (EV_A); /* relative timers called last */
1643#if EV_PERIODIC_ENABLE
1046 periodics_reify (EV_A); /* absolute timers called first */ 1644 periodics_reify (EV_A); /* absolute timers called first */
1645#endif
1047 1646
1647#if EV_IDLE_ENABLE
1048 /* queue idle watchers unless io or timers are pending */ 1648 /* queue idle watchers unless other events are pending */
1049 if (!pendingcnt) 1649 idle_reify (EV_A);
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1650#endif
1051 1651
1052 /* queue check watchers, to be executed first */ 1652 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1653 if (expect_false (checkcnt))
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1654 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 1655
1056 call_pending (EV_A); 1656 call_pending (EV_A);
1657
1057 } 1658 }
1058 while (activecnt && !loop_done); 1659 while (expect_true (activecnt && !loop_done));
1059 1660
1060 if (loop_done != 2) 1661 if (loop_done == EVUNLOOP_ONE)
1061 loop_done = 0; 1662 loop_done = EVUNLOOP_CANCEL;
1062} 1663}
1063 1664
1064void 1665void
1065ev_unloop (EV_P_ int how) 1666ev_unloop (EV_P_ int how)
1066{ 1667{
1067 loop_done = how; 1668 loop_done = how;
1068} 1669}
1069 1670
1070/*****************************************************************************/ 1671/*****************************************************************************/
1071 1672
1072inline void 1673void inline_size
1073wlist_add (WL *head, WL elem) 1674wlist_add (WL *head, WL elem)
1074{ 1675{
1075 elem->next = *head; 1676 elem->next = *head;
1076 *head = elem; 1677 *head = elem;
1077} 1678}
1078 1679
1079inline void 1680void inline_size
1080wlist_del (WL *head, WL elem) 1681wlist_del (WL *head, WL elem)
1081{ 1682{
1082 while (*head) 1683 while (*head)
1083 { 1684 {
1084 if (*head == elem) 1685 if (*head == elem)
1089 1690
1090 head = &(*head)->next; 1691 head = &(*head)->next;
1091 } 1692 }
1092} 1693}
1093 1694
1094inline void 1695void inline_speed
1095ev_clear_pending (EV_P_ W w) 1696clear_pending (EV_P_ W w)
1096{ 1697{
1097 if (w->pending) 1698 if (w->pending)
1098 { 1699 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1700 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1100 w->pending = 0; 1701 w->pending = 0;
1101 } 1702 }
1102} 1703}
1103 1704
1104inline void 1705int
1706ev_clear_pending (EV_P_ void *w)
1707{
1708 W w_ = (W)w;
1709 int pending = w_->pending;
1710
1711 if (expect_true (pending))
1712 {
1713 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1714 w_->pending = 0;
1715 p->w = 0;
1716 return p->events;
1717 }
1718 else
1719 return 0;
1720}
1721
1722void inline_size
1723pri_adjust (EV_P_ W w)
1724{
1725 int pri = w->priority;
1726 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1727 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1728 w->priority = pri;
1729}
1730
1731void inline_speed
1105ev_start (EV_P_ W w, int active) 1732ev_start (EV_P_ W w, int active)
1106{ 1733{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1734 pri_adjust (EV_A_ w);
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
1110 w->active = active; 1735 w->active = active;
1111 ev_ref (EV_A); 1736 ev_ref (EV_A);
1112} 1737}
1113 1738
1114inline void 1739void inline_size
1115ev_stop (EV_P_ W w) 1740ev_stop (EV_P_ W w)
1116{ 1741{
1117 ev_unref (EV_A); 1742 ev_unref (EV_A);
1118 w->active = 0; 1743 w->active = 0;
1119} 1744}
1120 1745
1121/*****************************************************************************/ 1746/*****************************************************************************/
1122 1747
1123void 1748void noinline
1124ev_io_start (EV_P_ struct ev_io *w) 1749ev_io_start (EV_P_ ev_io *w)
1125{ 1750{
1126 int fd = w->fd; 1751 int fd = w->fd;
1127 1752
1128 if (ev_is_active (w)) 1753 if (expect_false (ev_is_active (w)))
1129 return; 1754 return;
1130 1755
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1756 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1757
1133 ev_start (EV_A_ (W)w, 1); 1758 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1759 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1760 wlist_add (&anfds[fd].head, (WL)w);
1136 1761
1137 fd_change (EV_A_ fd); 1762 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1763 w->events &= ~EV_IOFDSET;
1138} 1764}
1139 1765
1140void 1766void noinline
1141ev_io_stop (EV_P_ struct ev_io *w) 1767ev_io_stop (EV_P_ ev_io *w)
1142{ 1768{
1143 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w)) 1770 if (expect_false (!ev_is_active (w)))
1145 return; 1771 return;
1146 1772
1773 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1774
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1775 wlist_del (&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w); 1776 ev_stop (EV_A_ (W)w);
1149 1777
1150 fd_change (EV_A_ w->fd); 1778 fd_change (EV_A_ w->fd, 1);
1151} 1779}
1152 1780
1153void 1781void noinline
1154ev_timer_start (EV_P_ struct ev_timer *w) 1782ev_timer_start (EV_P_ ev_timer *w)
1155{ 1783{
1156 if (ev_is_active (w)) 1784 if (expect_false (ev_is_active (w)))
1157 return; 1785 return;
1158 1786
1159 ((WT)w)->at += mn_now; 1787 ((WT)w)->at += mn_now;
1160 1788
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1789 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1790
1163 ev_start (EV_A_ (W)w, ++timercnt); 1791 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1792 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1165 timers [timercnt - 1] = w; 1793 timers [timercnt - 1] = (WT)w;
1166 upheap ((WT *)timers, timercnt - 1); 1794 upheap (timers, timercnt - 1);
1167 1795
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1796 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1169} 1797}
1170 1798
1171void 1799void noinline
1172ev_timer_stop (EV_P_ struct ev_timer *w) 1800ev_timer_stop (EV_P_ ev_timer *w)
1173{ 1801{
1174 ev_clear_pending (EV_A_ (W)w); 1802 clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w)) 1803 if (expect_false (!ev_is_active (w)))
1176 return; 1804 return;
1177 1805
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1806 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1179 1807
1180 if (((W)w)->active < timercnt--) 1808 {
1809 int active = ((W)w)->active;
1810
1811 if (expect_true (--active < --timercnt))
1181 { 1812 {
1182 timers [((W)w)->active - 1] = timers [timercnt]; 1813 timers [active] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1814 adjustheap (timers, timercnt, active);
1184 } 1815 }
1816 }
1185 1817
1186 ((WT)w)->at = w->repeat; 1818 ((WT)w)->at -= mn_now;
1187 1819
1188 ev_stop (EV_A_ (W)w); 1820 ev_stop (EV_A_ (W)w);
1189} 1821}
1190 1822
1191void 1823void noinline
1192ev_timer_again (EV_P_ struct ev_timer *w) 1824ev_timer_again (EV_P_ ev_timer *w)
1193{ 1825{
1194 if (ev_is_active (w)) 1826 if (ev_is_active (w))
1195 { 1827 {
1196 if (w->repeat) 1828 if (w->repeat)
1197 { 1829 {
1198 ((WT)w)->at = mn_now + w->repeat; 1830 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1831 adjustheap (timers, timercnt, ((W)w)->active - 1);
1200 } 1832 }
1201 else 1833 else
1202 ev_timer_stop (EV_A_ w); 1834 ev_timer_stop (EV_A_ w);
1203 } 1835 }
1204 else if (w->repeat) 1836 else if (w->repeat)
1837 {
1838 w->at = w->repeat;
1205 ev_timer_start (EV_A_ w); 1839 ev_timer_start (EV_A_ w);
1840 }
1206} 1841}
1207 1842
1208void 1843#if EV_PERIODIC_ENABLE
1844void noinline
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1845ev_periodic_start (EV_P_ ev_periodic *w)
1210{ 1846{
1211 if (ev_is_active (w)) 1847 if (expect_false (ev_is_active (w)))
1212 return; 1848 return;
1213 1849
1850 if (w->reschedule_cb)
1851 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1852 else if (w->interval)
1853 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1854 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1855 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1856 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1857 }
1858 else
1859 ((WT)w)->at = w->offset;
1219 1860
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1861 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1862 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1222 periodics [periodiccnt - 1] = w; 1863 periodics [periodiccnt - 1] = (WT)w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1864 upheap (periodics, periodiccnt - 1);
1224 1865
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1866 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1226} 1867}
1227 1868
1228void 1869void noinline
1229ev_periodic_stop (EV_P_ struct ev_periodic *w) 1870ev_periodic_stop (EV_P_ ev_periodic *w)
1230{ 1871{
1231 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1873 if (expect_false (!ev_is_active (w)))
1233 return; 1874 return;
1234 1875
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1876 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1236 1877
1237 if (((W)w)->active < periodiccnt--) 1878 {
1879 int active = ((W)w)->active;
1880
1881 if (expect_true (--active < --periodiccnt))
1238 { 1882 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1883 periodics [active] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1884 adjustheap (periodics, periodiccnt, active);
1241 } 1885 }
1886 }
1242 1887
1243 ev_stop (EV_A_ (W)w); 1888 ev_stop (EV_A_ (W)w);
1244} 1889}
1245 1890
1246void 1891void noinline
1247ev_idle_start (EV_P_ struct ev_idle *w) 1892ev_periodic_again (EV_P_ ev_periodic *w)
1248{ 1893{
1249 if (ev_is_active (w)) 1894 /* TODO: use adjustheap and recalculation */
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w); 1895 ev_periodic_stop (EV_A_ w);
1896 ev_periodic_start (EV_A_ w);
1266} 1897}
1267 1898#endif
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311 1899
1312#ifndef SA_RESTART 1900#ifndef SA_RESTART
1313# define SA_RESTART 0 1901# define SA_RESTART 0
1314#endif 1902#endif
1315 1903
1316void 1904void noinline
1317ev_signal_start (EV_P_ struct ev_signal *w) 1905ev_signal_start (EV_P_ ev_signal *w)
1318{ 1906{
1319#if EV_MULTIPLICITY 1907#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1908 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1321#endif 1909#endif
1322 if (ev_is_active (w)) 1910 if (expect_false (ev_is_active (w)))
1323 return; 1911 return;
1324 1912
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1913 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 1914
1915 evpipe_init (EV_A);
1916
1917 {
1918#ifndef _WIN32
1919 sigset_t full, prev;
1920 sigfillset (&full);
1921 sigprocmask (SIG_SETMASK, &full, &prev);
1922#endif
1923
1924 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1925
1926#ifndef _WIN32
1927 sigprocmask (SIG_SETMASK, &prev, 0);
1928#endif
1929 }
1930
1327 ev_start (EV_A_ (W)w, 1); 1931 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1932 wlist_add (&signals [w->signum - 1].head, (WL)w);
1330 1933
1331 if (!((WL)w)->next) 1934 if (!((WL)w)->next)
1332 { 1935 {
1333#if WIN32 1936#if _WIN32
1334 signal (w->signum, sighandler); 1937 signal (w->signum, sighandler);
1335#else 1938#else
1336 struct sigaction sa; 1939 struct sigaction sa;
1337 sa.sa_handler = sighandler; 1940 sa.sa_handler = sighandler;
1338 sigfillset (&sa.sa_mask); 1941 sigfillset (&sa.sa_mask);
1340 sigaction (w->signum, &sa, 0); 1943 sigaction (w->signum, &sa, 0);
1341#endif 1944#endif
1342 } 1945 }
1343} 1946}
1344 1947
1345void 1948void noinline
1346ev_signal_stop (EV_P_ struct ev_signal *w) 1949ev_signal_stop (EV_P_ ev_signal *w)
1347{ 1950{
1348 ev_clear_pending (EV_A_ (W)w); 1951 clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w)) 1952 if (expect_false (!ev_is_active (w)))
1350 return; 1953 return;
1351 1954
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1955 wlist_del (&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1956 ev_stop (EV_A_ (W)w);
1354 1957
1355 if (!signals [w->signum - 1].head) 1958 if (!signals [w->signum - 1].head)
1356 signal (w->signum, SIG_DFL); 1959 signal (w->signum, SIG_DFL);
1357} 1960}
1358 1961
1359void 1962void
1360ev_child_start (EV_P_ struct ev_child *w) 1963ev_child_start (EV_P_ ev_child *w)
1361{ 1964{
1362#if EV_MULTIPLICITY 1965#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1966 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1364#endif 1967#endif
1365 if (ev_is_active (w)) 1968 if (expect_false (ev_is_active (w)))
1366 return; 1969 return;
1367 1970
1368 ev_start (EV_A_ (W)w, 1); 1971 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1972 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1370} 1973}
1371 1974
1372void 1975void
1373ev_child_stop (EV_P_ struct ev_child *w) 1976ev_child_stop (EV_P_ ev_child *w)
1374{ 1977{
1375 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w)) 1979 if (expect_false (!ev_is_active (w)))
1377 return; 1980 return;
1378 1981
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1982 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w); 1983 ev_stop (EV_A_ (W)w);
1381} 1984}
1382 1985
1986#if EV_STAT_ENABLE
1987
1988# ifdef _WIN32
1989# undef lstat
1990# define lstat(a,b) _stati64 (a,b)
1991# endif
1992
1993#define DEF_STAT_INTERVAL 5.0074891
1994#define MIN_STAT_INTERVAL 0.1074891
1995
1996static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1997
1998#if EV_USE_INOTIFY
1999# define EV_INOTIFY_BUFSIZE 8192
2000
2001static void noinline
2002infy_add (EV_P_ ev_stat *w)
2003{
2004 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2005
2006 if (w->wd < 0)
2007 {
2008 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2009
2010 /* monitor some parent directory for speedup hints */
2011 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2012 {
2013 char path [4096];
2014 strcpy (path, w->path);
2015
2016 do
2017 {
2018 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2019 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2020
2021 char *pend = strrchr (path, '/');
2022
2023 if (!pend)
2024 break; /* whoops, no '/', complain to your admin */
2025
2026 *pend = 0;
2027 w->wd = inotify_add_watch (fs_fd, path, mask);
2028 }
2029 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2030 }
2031 }
2032 else
2033 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2034
2035 if (w->wd >= 0)
2036 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2037}
2038
2039static void noinline
2040infy_del (EV_P_ ev_stat *w)
2041{
2042 int slot;
2043 int wd = w->wd;
2044
2045 if (wd < 0)
2046 return;
2047
2048 w->wd = -2;
2049 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2050 wlist_del (&fs_hash [slot].head, (WL)w);
2051
2052 /* remove this watcher, if others are watching it, they will rearm */
2053 inotify_rm_watch (fs_fd, wd);
2054}
2055
2056static void noinline
2057infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2058{
2059 if (slot < 0)
2060 /* overflow, need to check for all hahs slots */
2061 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2062 infy_wd (EV_A_ slot, wd, ev);
2063 else
2064 {
2065 WL w_;
2066
2067 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2068 {
2069 ev_stat *w = (ev_stat *)w_;
2070 w_ = w_->next; /* lets us remove this watcher and all before it */
2071
2072 if (w->wd == wd || wd == -1)
2073 {
2074 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2075 {
2076 w->wd = -1;
2077 infy_add (EV_A_ w); /* re-add, no matter what */
2078 }
2079
2080 stat_timer_cb (EV_A_ &w->timer, 0);
2081 }
2082 }
2083 }
2084}
2085
2086static void
2087infy_cb (EV_P_ ev_io *w, int revents)
2088{
2089 char buf [EV_INOTIFY_BUFSIZE];
2090 struct inotify_event *ev = (struct inotify_event *)buf;
2091 int ofs;
2092 int len = read (fs_fd, buf, sizeof (buf));
2093
2094 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2095 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2096}
2097
2098void inline_size
2099infy_init (EV_P)
2100{
2101 if (fs_fd != -2)
2102 return;
2103
2104 fs_fd = inotify_init ();
2105
2106 if (fs_fd >= 0)
2107 {
2108 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2109 ev_set_priority (&fs_w, EV_MAXPRI);
2110 ev_io_start (EV_A_ &fs_w);
2111 }
2112}
2113
2114void inline_size
2115infy_fork (EV_P)
2116{
2117 int slot;
2118
2119 if (fs_fd < 0)
2120 return;
2121
2122 close (fs_fd);
2123 fs_fd = inotify_init ();
2124
2125 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2126 {
2127 WL w_ = fs_hash [slot].head;
2128 fs_hash [slot].head = 0;
2129
2130 while (w_)
2131 {
2132 ev_stat *w = (ev_stat *)w_;
2133 w_ = w_->next; /* lets us add this watcher */
2134
2135 w->wd = -1;
2136
2137 if (fs_fd >= 0)
2138 infy_add (EV_A_ w); /* re-add, no matter what */
2139 else
2140 ev_timer_start (EV_A_ &w->timer);
2141 }
2142
2143 }
2144}
2145
2146#endif
2147
2148void
2149ev_stat_stat (EV_P_ ev_stat *w)
2150{
2151 if (lstat (w->path, &w->attr) < 0)
2152 w->attr.st_nlink = 0;
2153 else if (!w->attr.st_nlink)
2154 w->attr.st_nlink = 1;
2155}
2156
2157static void noinline
2158stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2159{
2160 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2161
2162 /* we copy this here each the time so that */
2163 /* prev has the old value when the callback gets invoked */
2164 w->prev = w->attr;
2165 ev_stat_stat (EV_A_ w);
2166
2167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2168 if (
2169 w->prev.st_dev != w->attr.st_dev
2170 || w->prev.st_ino != w->attr.st_ino
2171 || w->prev.st_mode != w->attr.st_mode
2172 || w->prev.st_nlink != w->attr.st_nlink
2173 || w->prev.st_uid != w->attr.st_uid
2174 || w->prev.st_gid != w->attr.st_gid
2175 || w->prev.st_rdev != w->attr.st_rdev
2176 || w->prev.st_size != w->attr.st_size
2177 || w->prev.st_atime != w->attr.st_atime
2178 || w->prev.st_mtime != w->attr.st_mtime
2179 || w->prev.st_ctime != w->attr.st_ctime
2180 ) {
2181 #if EV_USE_INOTIFY
2182 infy_del (EV_A_ w);
2183 infy_add (EV_A_ w);
2184 ev_stat_stat (EV_A_ w); /* avoid race... */
2185 #endif
2186
2187 ev_feed_event (EV_A_ w, EV_STAT);
2188 }
2189}
2190
2191void
2192ev_stat_start (EV_P_ ev_stat *w)
2193{
2194 if (expect_false (ev_is_active (w)))
2195 return;
2196
2197 /* since we use memcmp, we need to clear any padding data etc. */
2198 memset (&w->prev, 0, sizeof (ev_statdata));
2199 memset (&w->attr, 0, sizeof (ev_statdata));
2200
2201 ev_stat_stat (EV_A_ w);
2202
2203 if (w->interval < MIN_STAT_INTERVAL)
2204 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2205
2206 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2207 ev_set_priority (&w->timer, ev_priority (w));
2208
2209#if EV_USE_INOTIFY
2210 infy_init (EV_A);
2211
2212 if (fs_fd >= 0)
2213 infy_add (EV_A_ w);
2214 else
2215#endif
2216 ev_timer_start (EV_A_ &w->timer);
2217
2218 ev_start (EV_A_ (W)w, 1);
2219}
2220
2221void
2222ev_stat_stop (EV_P_ ev_stat *w)
2223{
2224 clear_pending (EV_A_ (W)w);
2225 if (expect_false (!ev_is_active (w)))
2226 return;
2227
2228#if EV_USE_INOTIFY
2229 infy_del (EV_A_ w);
2230#endif
2231 ev_timer_stop (EV_A_ &w->timer);
2232
2233 ev_stop (EV_A_ (W)w);
2234}
2235#endif
2236
2237#if EV_IDLE_ENABLE
2238void
2239ev_idle_start (EV_P_ ev_idle *w)
2240{
2241 if (expect_false (ev_is_active (w)))
2242 return;
2243
2244 pri_adjust (EV_A_ (W)w);
2245
2246 {
2247 int active = ++idlecnt [ABSPRI (w)];
2248
2249 ++idleall;
2250 ev_start (EV_A_ (W)w, active);
2251
2252 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2253 idles [ABSPRI (w)][active - 1] = w;
2254 }
2255}
2256
2257void
2258ev_idle_stop (EV_P_ ev_idle *w)
2259{
2260 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w)))
2262 return;
2263
2264 {
2265 int active = ((W)w)->active;
2266
2267 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2268 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2269
2270 ev_stop (EV_A_ (W)w);
2271 --idleall;
2272 }
2273}
2274#endif
2275
2276void
2277ev_prepare_start (EV_P_ ev_prepare *w)
2278{
2279 if (expect_false (ev_is_active (w)))
2280 return;
2281
2282 ev_start (EV_A_ (W)w, ++preparecnt);
2283 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2284 prepares [preparecnt - 1] = w;
2285}
2286
2287void
2288ev_prepare_stop (EV_P_ ev_prepare *w)
2289{
2290 clear_pending (EV_A_ (W)w);
2291 if (expect_false (!ev_is_active (w)))
2292 return;
2293
2294 {
2295 int active = ((W)w)->active;
2296 prepares [active - 1] = prepares [--preparecnt];
2297 ((W)prepares [active - 1])->active = active;
2298 }
2299
2300 ev_stop (EV_A_ (W)w);
2301}
2302
2303void
2304ev_check_start (EV_P_ ev_check *w)
2305{
2306 if (expect_false (ev_is_active (w)))
2307 return;
2308
2309 ev_start (EV_A_ (W)w, ++checkcnt);
2310 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2311 checks [checkcnt - 1] = w;
2312}
2313
2314void
2315ev_check_stop (EV_P_ ev_check *w)
2316{
2317 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w)))
2319 return;
2320
2321 {
2322 int active = ((W)w)->active;
2323 checks [active - 1] = checks [--checkcnt];
2324 ((W)checks [active - 1])->active = active;
2325 }
2326
2327 ev_stop (EV_A_ (W)w);
2328}
2329
2330#if EV_EMBED_ENABLE
2331void noinline
2332ev_embed_sweep (EV_P_ ev_embed *w)
2333{
2334 ev_loop (w->other, EVLOOP_NONBLOCK);
2335}
2336
2337static void
2338embed_io_cb (EV_P_ ev_io *io, int revents)
2339{
2340 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2341
2342 if (ev_cb (w))
2343 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2344 else
2345 ev_loop (w->other, EVLOOP_NONBLOCK);
2346}
2347
2348static void
2349embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2350{
2351 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2352
2353 {
2354 struct ev_loop *loop = w->other;
2355
2356 while (fdchangecnt)
2357 {
2358 fd_reify (EV_A);
2359 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2360 }
2361 }
2362}
2363
2364#if 0
2365static void
2366embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2367{
2368 ev_idle_stop (EV_A_ idle);
2369}
2370#endif
2371
2372void
2373ev_embed_start (EV_P_ ev_embed *w)
2374{
2375 if (expect_false (ev_is_active (w)))
2376 return;
2377
2378 {
2379 struct ev_loop *loop = w->other;
2380 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2382 }
2383
2384 ev_set_priority (&w->io, ev_priority (w));
2385 ev_io_start (EV_A_ &w->io);
2386
2387 ev_prepare_init (&w->prepare, embed_prepare_cb);
2388 ev_set_priority (&w->prepare, EV_MINPRI);
2389 ev_prepare_start (EV_A_ &w->prepare);
2390
2391 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2392
2393 ev_start (EV_A_ (W)w, 1);
2394}
2395
2396void
2397ev_embed_stop (EV_P_ ev_embed *w)
2398{
2399 clear_pending (EV_A_ (W)w);
2400 if (expect_false (!ev_is_active (w)))
2401 return;
2402
2403 ev_io_stop (EV_A_ &w->io);
2404 ev_prepare_stop (EV_A_ &w->prepare);
2405
2406 ev_stop (EV_A_ (W)w);
2407}
2408#endif
2409
2410#if EV_FORK_ENABLE
2411void
2412ev_fork_start (EV_P_ ev_fork *w)
2413{
2414 if (expect_false (ev_is_active (w)))
2415 return;
2416
2417 ev_start (EV_A_ (W)w, ++forkcnt);
2418 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2419 forks [forkcnt - 1] = w;
2420}
2421
2422void
2423ev_fork_stop (EV_P_ ev_fork *w)
2424{
2425 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w)))
2427 return;
2428
2429 {
2430 int active = ((W)w)->active;
2431 forks [active - 1] = forks [--forkcnt];
2432 ((W)forks [active - 1])->active = active;
2433 }
2434
2435 ev_stop (EV_A_ (W)w);
2436}
2437#endif
2438
2439#if EV_ASYNC_ENABLE
2440void
2441ev_async_start (EV_P_ ev_async *w)
2442{
2443 if (expect_false (ev_is_active (w)))
2444 return;
2445
2446 evpipe_init (EV_A);
2447
2448 ev_start (EV_A_ (W)w, ++asynccnt);
2449 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2450 asyncs [asynccnt - 1] = w;
2451}
2452
2453void
2454ev_async_stop (EV_P_ ev_async *w)
2455{
2456 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w)))
2458 return;
2459
2460 {
2461 int active = ((W)w)->active;
2462 asyncs [active - 1] = asyncs [--asynccnt];
2463 ((W)asyncs [active - 1])->active = active;
2464 }
2465
2466 ev_stop (EV_A_ (W)w);
2467}
2468
2469void
2470ev_async_send (EV_P_ ev_async *w)
2471{
2472 w->sent = 1;
2473 evpipe_write (EV_A_ 0, 1);
2474}
2475#endif
2476
1383/*****************************************************************************/ 2477/*****************************************************************************/
1384 2478
1385struct ev_once 2479struct ev_once
1386{ 2480{
1387 struct ev_io io; 2481 ev_io io;
1388 struct ev_timer to; 2482 ev_timer to;
1389 void (*cb)(int revents, void *arg); 2483 void (*cb)(int revents, void *arg);
1390 void *arg; 2484 void *arg;
1391}; 2485};
1392 2486
1393static void 2487static void
1396 void (*cb)(int revents, void *arg) = once->cb; 2490 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 2491 void *arg = once->arg;
1398 2492
1399 ev_io_stop (EV_A_ &once->io); 2493 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 2494 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 2495 ev_free (once);
1402 2496
1403 cb (revents, arg); 2497 cb (revents, arg);
1404} 2498}
1405 2499
1406static void 2500static void
1407once_cb_io (EV_P_ struct ev_io *w, int revents) 2501once_cb_io (EV_P_ ev_io *w, int revents)
1408{ 2502{
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410} 2504}
1411 2505
1412static void 2506static void
1413once_cb_to (EV_P_ struct ev_timer *w, int revents) 2507once_cb_to (EV_P_ ev_timer *w, int revents)
1414{ 2508{
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416} 2510}
1417 2511
1418void 2512void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2513ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 2514{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 2515 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 2516
1423 if (!once) 2517 if (expect_false (!once))
2518 {
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2519 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 2520 return;
1426 { 2521 }
2522
1427 once->cb = cb; 2523 once->cb = cb;
1428 once->arg = arg; 2524 once->arg = arg;
1429 2525
1430 ev_watcher_init (&once->io, once_cb_io); 2526 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 2527 if (fd >= 0)
1432 { 2528 {
1433 ev_io_set (&once->io, fd, events); 2529 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 2530 ev_io_start (EV_A_ &once->io);
1435 } 2531 }
1436 2532
1437 ev_watcher_init (&once->to, once_cb_to); 2533 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 2534 if (timeout >= 0.)
1439 { 2535 {
1440 ev_timer_set (&once->to, timeout, 0.); 2536 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 2537 ev_timer_start (EV_A_ &once->to);
1442 }
1443 } 2538 }
1444} 2539}
1445 2540
2541#if EV_MULTIPLICITY
2542 #include "ev_wrap.h"
2543#endif
2544
2545#ifdef __cplusplus
2546}
2547#endif
2548

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines