ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.215 by ayin, Thu Feb 21 10:34:15 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
31#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
32# include "config.h" 48# include "config.h"
49# endif
33 50
34# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
54# endif
55# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
37# endif 65# endif
38 66
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
41# endif 73# endif
42 74
43# if HAVE_POLL && HAVE_POLL_H 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
45# endif 81# endif
46 82
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
49# endif 89# endif
50 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
53# endif 121# endif
54 122
55#endif 123#endif
56 124
57#include <math.h> 125#include <math.h>
58#include <stdlib.h> 126#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 127#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 128#include <stddef.h>
63 129
64#include <stdio.h> 130#include <stdio.h>
65 131
66#include <assert.h> 132#include <assert.h>
67#include <errno.h> 133#include <errno.h>
68#include <sys/types.h> 134#include <sys/types.h>
135#include <time.h>
136
137#include <signal.h>
138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
69#ifndef WIN32 145#ifndef _WIN32
146# include <sys/time.h>
70# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
149#else
150# define WIN32_LEAN_AND_MEAN
151# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1
71#endif 154# endif
72#include <sys/time.h> 155#endif
73#include <time.h>
74 156
75/**/ 157/**/
76 158
77#ifndef EV_USE_MONOTONIC 159#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
79#endif 169#endif
80 170
81#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
83#endif 173#endif
84 174
85#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
87#endif 181#endif
88 182
89#ifndef EV_USE_EPOLL 183#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 184# define EV_USE_EPOLL 0
91#endif 185#endif
92 186
93#ifndef EV_USE_KQUEUE 187#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 188# define EV_USE_KQUEUE 0
95#endif 189#endif
96 190
191#ifndef EV_USE_PORT
192# define EV_USE_PORT 0
193#endif
194
97#ifndef EV_USE_WIN32 195#ifndef EV_USE_INOTIFY
98# ifdef WIN32 196# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
100# else 202# else
101# define EV_USE_WIN32 0 203# define EV_PID_HASHSIZE 16
102# endif 204# endif
103#endif 205#endif
104 206
105#ifndef EV_USE_REALTIME 207#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
107#endif 213#endif
108 214
109/**/ 215/**/
110 216
111#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
119#endif 225#endif
120 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
242#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h>
244#endif
245
121/**/ 246/**/
122 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 261
128#include "ev.h"
129
130#if __GNUC__ >= 3 262#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 264# define noinline __attribute__ ((noinline))
133#else 265#else
134# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
135# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
136#endif 271#endif
137 272
138#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
140 282
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 285
286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288
144typedef struct ev_watcher *W; 289typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
147 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
149 298
150#if WIN32 299#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 300# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 301#endif
155 302
156/*****************************************************************************/ 303/*****************************************************************************/
157 304
305static void (*syserr_cb)(const char *msg);
306
307void
308ev_set_syserr_cb (void (*cb)(const char *msg))
309{
310 syserr_cb = cb;
311}
312
313static void noinline
314syserr (const char *msg)
315{
316 if (!msg)
317 msg = "(libev) system error";
318
319 if (syserr_cb)
320 syserr_cb (msg);
321 else
322 {
323 perror (msg);
324 abort ();
325 }
326}
327
328static void *(*alloc)(void *ptr, long size);
329
330void
331ev_set_allocator (void *(*cb)(void *ptr, long size))
332{
333 alloc = cb;
334}
335
336inline_speed void *
337ev_realloc (void *ptr, long size)
338{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
340
341 if (!ptr && size)
342 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort ();
345 }
346
347 return ptr;
348}
349
350#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0)
352
353/*****************************************************************************/
354
158typedef struct 355typedef struct
159{ 356{
160 struct ev_watcher_list *head; 357 WL head;
161 unsigned char events; 358 unsigned char events;
162 unsigned char reify; 359 unsigned char reify;
360#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle;
362#endif
163} ANFD; 363} ANFD;
164 364
165typedef struct 365typedef struct
166{ 366{
167 W w; 367 W w;
168 int events; 368 int events;
169} ANPENDING; 369} ANPENDING;
170 370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
377
171#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
172 379
173struct ev_loop 380 struct ev_loop
174{ 381 {
382 ev_tstamp ev_rt_now;
383 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 384 #define VAR(name,decl) decl;
176# include "ev_vars.h" 385 #include "ev_vars.h"
177};
178# undef VAR 386 #undef VAR
387 };
179# include "ev_wrap.h" 388 #include "ev_wrap.h"
389
390 static struct ev_loop default_loop_struct;
391 struct ev_loop *ev_default_loop_ptr;
180 392
181#else 393#else
182 394
395 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 397 #include "ev_vars.h"
185# undef VAR 398 #undef VAR
399
400 static int ev_default_loop_ptr;
186 401
187#endif 402#endif
188 403
189/*****************************************************************************/ 404/*****************************************************************************/
190 405
191inline ev_tstamp 406ev_tstamp
192ev_time (void) 407ev_time (void)
193{ 408{
194#if EV_USE_REALTIME 409#if EV_USE_REALTIME
195 struct timespec ts; 410 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 411 clock_gettime (CLOCK_REALTIME, &ts);
200 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif 417#endif
203} 418}
204 419
205inline ev_tstamp 420ev_tstamp inline_size
206get_clock (void) 421get_clock (void)
207{ 422{
208#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
210 { 425 {
215#endif 430#endif
216 431
217 return ev_time (); 432 return ev_time ();
218} 433}
219 434
435#if EV_MULTIPLICITY
220ev_tstamp 436ev_tstamp
221ev_now (EV_P) 437ev_now (EV_P)
222{ 438{
223 return rt_now; 439 return ev_rt_now;
224} 440}
441#endif
225 442
226#define array_roundsize(base,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
227 450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
497
228#define array_needsize(base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
230 { \ 500 { \
231 int newcnt = cur; \ 501 int ocur_ = (cur); \
232 do \ 502 (base) = (type *)array_realloc \
233 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 505 }
242 506
507#if 0
243#define array_slim(stem) \ 508#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 510 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 514 }
515#endif
250 516
251#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 519
254/*****************************************************************************/ 520/*****************************************************************************/
255 521
256static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
257anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
258{ 552{
259 while (count--) 553 while (count--)
260 { 554 {
261 base->head = 0; 555 base->head = 0;
264 558
265 ++base; 559 ++base;
266 } 560 }
267} 561}
268 562
269static void 563void inline_speed
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
294fd_event (EV_P_ int fd, int events) 564fd_event (EV_P_ int fd, int revents)
295{ 565{
296 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 567 ev_io *w;
298 568
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 570 {
301 int ev = w->events & events; 571 int ev = w->events & revents;
302 572
303 if (ev) 573 if (ev)
304 event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
305 } 575 }
306} 576}
307 577
308/*****************************************************************************/ 578void
579ev_feed_fd_event (EV_P_ int fd, int revents)
580{
581 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents);
583}
309 584
310static void 585void inline_size
311fd_reify (EV_P) 586fd_reify (EV_P)
312{ 587{
313 int i; 588 int i;
314 589
315 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
316 { 591 {
317 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 594 ev_io *w;
320 595
321 int events = 0; 596 unsigned char events = 0;
322 597
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 599 events |= (unsigned char)w->events;
325 600
601#if EV_SELECT_IS_WINSOCKET
602 if (events)
603 {
604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
611 }
612#endif
613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
326 anfd->reify = 0; 618 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
330 } 624 }
331 625
332 fdchangecnt = 0; 626 fdchangecnt = 0;
333} 627}
334 628
335static void 629void inline_size
336fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
337{ 631{
338 if (anfds [fd].reify || fdchangecnt < 0) 632 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
342 634
635 if (expect_true (!reify))
636 {
343 ++fdchangecnt; 637 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
346} 641}
347 642
348static void 643void inline_speed
349fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
350{ 645{
351 struct ev_io *w; 646 ev_io *w;
352 647
353 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
354 { 649 {
355 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 652 }
653}
654
655int inline_size
656fd_valid (int fd)
657{
658#ifdef _WIN32
659 return _get_osfhandle (fd) != -1;
660#else
661 return fcntl (fd, F_GETFD) != -1;
662#endif
358} 663}
359 664
360/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
361static void 666static void noinline
362fd_ebadf (EV_P) 667fd_ebadf (EV_P)
363{ 668{
364 int fd; 669 int fd;
365 670
366 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 672 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
370} 675}
371 676
372/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 678static void noinline
374fd_enomem (EV_P) 679fd_enomem (EV_P)
375{ 680{
376 int fd; 681 int fd;
377 682
378 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 684 if (anfds [fd].events)
380 { 685 {
381 close (fd);
382 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
383 return; 687 return;
384 } 688 }
385} 689}
386 690
387/* susually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
388static void 692static void noinline
389fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
390{ 694{
391 int fd; 695 int fd;
392 696
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events) 698 if (anfds [fd].events)
396 { 699 {
397 anfds [fd].events = 0; 700 anfds [fd].events = 0;
398 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
399 } 702 }
400} 703}
401 704
402/*****************************************************************************/ 705/*****************************************************************************/
403 706
404static void 707void inline_speed
405upheap (WT *heap, int k) 708upheap (WT *heap, int k)
406{ 709{
407 WT w = heap [k]; 710 WT w = heap [k];
408 711
409 while (k && heap [k >> 1]->at > w->at) 712 while (k)
410 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
411 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
412 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
413 k >>= 1; 721 k = p;
414 } 722 }
415 723
416 heap [k] = w; 724 heap [k] = w;
417 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
418
419} 726}
420 727
421static void 728void inline_speed
422downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
423{ 730{
424 WT w = heap [k]; 731 WT w = heap [k];
425 732
426 while (k < (N >> 1)) 733 for (;;)
427 { 734 {
428 int j = k << 1; 735 int c = (k << 1) + 1;
429 736
430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
431 ++j;
432
433 if (w->at <= heap [j]->at)
434 break; 738 break;
435 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
436 heap [k] = heap [j]; 746 heap [k] = heap [c];
437 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
438 k = j; 749 k = c;
439 } 750 }
440 751
441 heap [k] = w; 752 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
443} 754}
444 755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
445/*****************************************************************************/ 763/*****************************************************************************/
446 764
447typedef struct 765typedef struct
448{ 766{
449 struct ev_watcher_list *head; 767 WL head;
450 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
451} ANSIG; 769} ANSIG;
452 770
453static ANSIG *signals; 771static ANSIG *signals;
454static int signalmax; 772static int signalmax;
455 773
456static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
457static sig_atomic_t volatile gotsig;
458static struct ev_io sigev;
459 775
460static void 776void inline_size
461signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
462{ 778{
463 while (count--) 779 while (count--)
464 { 780 {
465 base->head = 0; 781 base->head = 0;
467 783
468 ++base; 784 ++base;
469 } 785 }
470} 786}
471 787
788/*****************************************************************************/
789
790void inline_speed
791fd_intern (int fd)
792{
793#ifdef _WIN32
794 int arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif
800}
801
802static void noinline
803evpipe_init (EV_P)
804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
810 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ);
814 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{
822 if (!*flag)
823 {
824 int old_errno = errno; /* save errno because write might clobber it */
825
826 *flag = 1;
827 write (evpipe [1], &old_errno, 1);
828
829 errno = old_errno;
830 }
831}
832
833static void
834pipecb (EV_P_ ev_io *iow, int revents)
835{
836 {
837 int dummy;
838 read (evpipe [0], &dummy, 1);
839 }
840
841 if (gotsig && ev_is_default_loop (EV_A))
842 {
843 int signum;
844 gotsig = 0;
845
846 for (signum = signalmax; signum--; )
847 if (signals [signum].gotsig)
848 ev_feed_signal_event (EV_A_ signum + 1);
849 }
850
851#if EV_ASYNC_ENABLE
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
864#endif
865}
866
867/*****************************************************************************/
868
472static void 869static void
473sighandler (int signum) 870sighandler (int signum)
474{ 871{
872#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct;
874#endif
875
475#if WIN32 876#if _WIN32
476 signal (signum, sighandler); 877 signal (signum, sighandler);
477#endif 878#endif
478 879
479 signals [signum - 1].gotsig = 1; 880 signals [signum - 1].gotsig = 1;
480 881 evpipe_write (EV_A_ &gotsig);
481 if (!gotsig)
482 {
483 int old_errno = errno;
484 gotsig = 1;
485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
487 }
488} 882}
489 883
490static void 884void noinline
491sigcb (EV_P_ struct ev_io *iow, int revents) 885ev_feed_signal_event (EV_P_ int signum)
492{ 886{
493 struct ev_watcher_list *w; 887 WL w;
888
889#if EV_MULTIPLICITY
890 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
891#endif
892
494 int signum; 893 --signum;
495 894
496 read (sigpipe [0], &revents, 1); 895 if (signum < 0 || signum >= signalmax)
497 gotsig = 0; 896 return;
498 897
499 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig)
501 {
502 signals [signum].gotsig = 0; 898 signals [signum].gotsig = 0;
503 899
504 for (w = signals [signum].head; w; w = w->next) 900 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL); 901 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
506 }
507}
508
509static void
510siginit (EV_P)
511{
512#ifndef WIN32
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
520
521 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 902}
525 903
526/*****************************************************************************/ 904/*****************************************************************************/
527 905
906static WL childs [EV_PID_HASHSIZE];
907
528#ifndef WIN32 908#ifndef _WIN32
529 909
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev; 910static ev_signal childev;
911
912#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0
914#endif
915
916void inline_speed
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
918{
919 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 {
924 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1)))
926 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
928 w->rpid = pid;
929 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 }
932 }
933}
532 934
533#ifndef WCONTINUED 935#ifndef WCONTINUED
534# define WCONTINUED 0 936# define WCONTINUED 0
535#endif 937#endif
536 938
537static void 939static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 940childcb (EV_P_ ev_signal *sw, int revents)
554{ 941{
555 int pid, status; 942 int pid, status;
556 943
944 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 945 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 946 if (!WCONTINUED
947 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return;
950
559 /* make sure we are called again until all childs have been reaped */ 951 /* make sure we are called again until all childs have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */
560 event (EV_A_ (W)sw, EV_SIGNAL); 953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 954
562 child_reap (EV_A_ sw, pid, pid, status); 955 child_reap (EV_A_ sw, pid, pid, status);
956 if (EV_PID_HASHSIZE > 1)
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
564 }
565} 958}
566 959
567#endif 960#endif
568 961
569/*****************************************************************************/ 962/*****************************************************************************/
570 963
964#if EV_USE_PORT
965# include "ev_port.c"
966#endif
571#if EV_USE_KQUEUE 967#if EV_USE_KQUEUE
572# include "ev_kqueue.c" 968# include "ev_kqueue.c"
573#endif 969#endif
574#if EV_USE_EPOLL 970#if EV_USE_EPOLL
575# include "ev_epoll.c" 971# include "ev_epoll.c"
592{ 988{
593 return EV_VERSION_MINOR; 989 return EV_VERSION_MINOR;
594} 990}
595 991
596/* return true if we are running with elevated privileges and should ignore env variables */ 992/* return true if we are running with elevated privileges and should ignore env variables */
597static int 993int inline_size
598enable_secure (void) 994enable_secure (void)
599{ 995{
600#ifdef WIN32 996#ifdef _WIN32
601 return 0; 997 return 0;
602#else 998#else
603 return getuid () != geteuid () 999 return getuid () != geteuid ()
604 || getgid () != getegid (); 1000 || getgid () != getegid ();
605#endif 1001#endif
606} 1002}
607 1003
608int 1004unsigned int
609ev_method (EV_P) 1005ev_supported_backends (void)
610{ 1006{
611 return method; 1007 unsigned int flags = 0;
612}
613 1008
614static void 1009 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
615loop_init (EV_P_ int methods) 1010 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1011 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1012 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1013 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1014
1015 return flags;
1016}
1017
1018unsigned int
1019ev_recommended_backends (void)
616{ 1020{
617 if (!method) 1021 unsigned int flags = ev_supported_backends ();
1022
1023#ifndef __NetBSD__
1024 /* kqueue is borked on everything but netbsd apparently */
1025 /* it usually doesn't work correctly on anything but sockets and pipes */
1026 flags &= ~EVBACKEND_KQUEUE;
1027#endif
1028#ifdef __APPLE__
1029 // flags &= ~EVBACKEND_KQUEUE; for documentation
1030 flags &= ~EVBACKEND_POLL;
1031#endif
1032
1033 return flags;
1034}
1035
1036unsigned int
1037ev_embeddable_backends (void)
1038{
1039 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1040
1041 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1042 /* please fix it and tell me how to detect the fix */
1043 flags &= ~EVBACKEND_EPOLL;
1044
1045 return flags;
1046}
1047
1048unsigned int
1049ev_backend (EV_P)
1050{
1051 return backend;
1052}
1053
1054unsigned int
1055ev_loop_count (EV_P)
1056{
1057 return loop_count;
1058}
1059
1060void
1061ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1062{
1063 io_blocktime = interval;
1064}
1065
1066void
1067ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1068{
1069 timeout_blocktime = interval;
1070}
1071
1072static void noinline
1073loop_init (EV_P_ unsigned int flags)
1074{
1075 if (!backend)
618 { 1076 {
619#if EV_USE_MONOTONIC 1077#if EV_USE_MONOTONIC
620 { 1078 {
621 struct timespec ts; 1079 struct timespec ts;
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1080 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 1081 have_monotonic = 1;
624 } 1082 }
625#endif 1083#endif
626 1084
627 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 1086 mn_now = get_clock ();
629 now_floor = mn_now; 1087 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 1088 rtmn_diff = ev_rt_now - mn_now;
631 1089
632 if (methods == EVMETHOD_AUTO) 1090 io_blocktime = 0.;
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1091 timeout_blocktime = 0.;
1092 backend = 0;
1093 backend_fd = -1;
1094 gotasync = 0;
1095#if EV_USE_INOTIFY
1096 fs_fd = -2;
1097#endif
1098
1099 /* pid check not overridable via env */
1100#ifndef _WIN32
1101 if (flags & EVFLAG_FORKCHECK)
1102 curpid = getpid ();
1103#endif
1104
1105 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 1108 flags = atoi (getenv ("LIBEV_FLAGS"));
635 else
636 methods = EVMETHOD_ANY;
637 1109
638 method = 0; 1110 if (!(flags & 0x0000ffffUL))
639#if EV_USE_WIN32 1111 flags |= ev_recommended_backends ();
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1112
1113#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
641#endif 1115#endif
642#if EV_USE_KQUEUE 1116#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1117 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
644#endif 1118#endif
645#if EV_USE_EPOLL 1119#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1120 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
647#endif 1121#endif
648#if EV_USE_POLL 1122#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1123 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
650#endif 1124#endif
651#if EV_USE_SELECT 1125#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1126 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
653#endif 1127#endif
654 }
655}
656 1128
657void 1129 ev_init (&pipeev, pipecb);
1130 ev_set_priority (&pipeev, EV_MAXPRI);
1131 }
1132}
1133
1134static void noinline
658loop_destroy (EV_P) 1135loop_destroy (EV_P)
659{ 1136{
660 int i; 1137 int i;
661 1138
1139 if (ev_is_active (&pipeev))
1140 {
1141 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev);
1143
1144 close (evpipe [0]); evpipe [0] = 0;
1145 close (evpipe [1]); evpipe [1] = 0;
1146 }
1147
662#if EV_USE_WIN32 1148#if EV_USE_INOTIFY
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1149 if (fs_fd >= 0)
1150 close (fs_fd);
1151#endif
1152
1153 if (backend_fd >= 0)
1154 close (backend_fd);
1155
1156#if EV_USE_PORT
1157 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
664#endif 1158#endif
665#if EV_USE_KQUEUE 1159#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1160 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
667#endif 1161#endif
668#if EV_USE_EPOLL 1162#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1163 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
670#endif 1164#endif
671#if EV_USE_POLL 1165#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1166 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
673#endif 1167#endif
674#if EV_USE_SELECT 1168#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1169 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
676#endif 1170#endif
677 1171
678 for (i = NUMPRI; i--; ) 1172 for (i = NUMPRI; i--; )
1173 {
679 array_free (pending, [i]); 1174 array_free (pending, [i]);
1175#if EV_IDLE_ENABLE
1176 array_free (idle, [i]);
1177#endif
1178 }
680 1179
1180 ev_free (anfds); anfdmax = 0;
1181
1182 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 1183 array_free (fdchange, EMPTY);
682 array_free (timer, ); 1184 array_free (timer, EMPTY);
1185#if EV_PERIODIC_ENABLE
683 array_free (periodic, ); 1186 array_free (periodic, EMPTY);
684 array_free (idle, ); 1187#endif
1188#if EV_FORK_ENABLE
1189 array_free (fork, EMPTY);
1190#endif
685 array_free (prepare, ); 1191 array_free (prepare, EMPTY);
686 array_free (check, ); 1192 array_free (check, EMPTY);
1193#if EV_ASYNC_ENABLE
1194 array_free (async, EMPTY);
1195#endif
687 1196
688 method = 0; 1197 backend = 0;
689 /*TODO*/
690} 1198}
691 1199
692void 1200void inline_size infy_fork (EV_P);
1201
1202void inline_size
693loop_fork (EV_P) 1203loop_fork (EV_P)
694{ 1204{
695 /*TODO*/ 1205#if EV_USE_PORT
1206 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1207#endif
1208#if EV_USE_KQUEUE
1209 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1210#endif
696#if EV_USE_EPOLL 1211#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1212 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
698#endif 1213#endif
699#if EV_USE_KQUEUE 1214#if EV_USE_INOTIFY
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1215 infy_fork (EV_A);
701#endif 1216#endif
1217
1218 if (ev_is_active (&pipeev))
1219 {
1220 /* this "locks" the handlers against writing to the pipe */
1221 /* while we modify the fd vars */
1222 gotsig = 1;
1223#if EV_ASYNC_ENABLE
1224 gotasync = 1;
1225#endif
1226
1227 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev);
1229 close (evpipe [0]);
1230 close (evpipe [1]);
1231
1232 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ);
1235 }
1236
1237 postfork = 0;
702} 1238}
703 1239
704#if EV_MULTIPLICITY 1240#if EV_MULTIPLICITY
705struct ev_loop * 1241struct ev_loop *
706ev_loop_new (int methods) 1242ev_loop_new (unsigned int flags)
707{ 1243{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1244 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
709 1245
1246 memset (loop, 0, sizeof (struct ev_loop));
1247
710 loop_init (EV_A_ methods); 1248 loop_init (EV_A_ flags);
711 1249
712 if (ev_method (EV_A)) 1250 if (ev_backend (EV_A))
713 return loop; 1251 return loop;
714 1252
715 return 0; 1253 return 0;
716} 1254}
717 1255
718void 1256void
719ev_loop_destroy (EV_P) 1257ev_loop_destroy (EV_P)
720{ 1258{
721 loop_destroy (EV_A); 1259 loop_destroy (EV_A);
722 free (loop); 1260 ev_free (loop);
723} 1261}
724 1262
725void 1263void
726ev_loop_fork (EV_P) 1264ev_loop_fork (EV_P)
727{ 1265{
728 loop_fork (EV_A); 1266 postfork = 1; /* must be in line with ev_default_fork */
729} 1267}
730 1268
731#endif 1269#endif
732 1270
733#if EV_MULTIPLICITY 1271#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 1272struct ev_loop *
1273ev_default_loop_init (unsigned int flags)
738#else 1274#else
739static int default_loop;
740
741int 1275int
1276ev_default_loop (unsigned int flags)
742#endif 1277#endif
743ev_default_loop (int methods)
744{ 1278{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop) 1279 if (!ev_default_loop_ptr)
750 { 1280 {
751#if EV_MULTIPLICITY 1281#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct; 1282 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
753#else 1283#else
754 default_loop = 1; 1284 ev_default_loop_ptr = 1;
755#endif 1285#endif
756 1286
757 loop_init (EV_A_ methods); 1287 loop_init (EV_A_ flags);
758 1288
759 if (ev_method (EV_A)) 1289 if (ev_backend (EV_A))
760 { 1290 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A);
764
765#ifndef WIN32 1291#ifndef _WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 1292 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 1293 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev); 1294 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1295 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif 1296#endif
771 } 1297 }
772 else 1298 else
773 default_loop = 0; 1299 ev_default_loop_ptr = 0;
774 } 1300 }
775 1301
776 return default_loop; 1302 return ev_default_loop_ptr;
777} 1303}
778 1304
779void 1305void
780ev_default_destroy (void) 1306ev_default_destroy (void)
781{ 1307{
782#if EV_MULTIPLICITY 1308#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 1309 struct ev_loop *loop = ev_default_loop_ptr;
784#endif 1310#endif
785 1311
1312#ifndef _WIN32
786 ev_ref (EV_A); /* child watcher */ 1313 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 1314 ev_signal_stop (EV_A_ &childev);
788 1315#endif
789 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794 1316
795 loop_destroy (EV_A); 1317 loop_destroy (EV_A);
796} 1318}
797 1319
798void 1320void
799ev_default_fork (void) 1321ev_default_fork (void)
800{ 1322{
801#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 1324 struct ev_loop *loop = ev_default_loop_ptr;
803#endif 1325#endif
804 1326
805 loop_fork (EV_A); 1327 if (backend)
806 1328 postfork = 1; /* must be in line with ev_loop_fork */
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 1329}
815 1330
816/*****************************************************************************/ 1331/*****************************************************************************/
817 1332
818static void 1333void
1334ev_invoke (EV_P_ void *w, int revents)
1335{
1336 EV_CB_INVOKE ((W)w, revents);
1337}
1338
1339void inline_speed
819call_pending (EV_P) 1340call_pending (EV_P)
820{ 1341{
821 int pri; 1342 int pri;
822 1343
823 for (pri = NUMPRI; pri--; ) 1344 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri]) 1345 while (pendingcnt [pri])
825 { 1346 {
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1347 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 1348
828 if (p->w) 1349 if (expect_true (p->w))
829 { 1350 {
1351 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1352
830 p->w->pending = 0; 1353 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 1354 EV_CB_INVOKE (p->w, p->events);
832 } 1355 }
833 } 1356 }
834} 1357}
835 1358
836static void 1359void inline_size
837timers_reify (EV_P) 1360timers_reify (EV_P)
838{ 1361{
839 while (timercnt && ((WT)timers [0])->at <= mn_now) 1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
840 { 1363 {
841 struct ev_timer *w = timers [0]; 1364 ev_timer *w = (ev_timer *)timers [0];
842 1365
843 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
844 1367
845 /* first reschedule or stop timer */ 1368 /* first reschedule or stop timer */
846 if (w->repeat) 1369 if (w->repeat)
847 { 1370 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
849 ((WT)w)->at = mn_now + w->repeat; 1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
850 downheap ((WT *)timers, timercnt, 0); 1377 downheap (timers, timercnt, 0);
851 } 1378 }
852 else 1379 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 1381
855 event (EV_A_ (W)w, EV_TIMEOUT); 1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 1383 }
857} 1384}
858 1385
859static void 1386#if EV_PERIODIC_ENABLE
1387void inline_size
860periodics_reify (EV_P) 1388periodics_reify (EV_P)
861{ 1389{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
863 { 1391 {
864 struct ev_periodic *w = periodics [0]; 1392 ev_periodic *w = (ev_periodic *)periodics [0];
865 1393
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
867 1395
868 /* first reschedule or stop timer */ 1396 /* first reschedule or stop timer */
869 if (w->interval) 1397 if (w->reschedule_cb)
870 { 1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1408 downheap (periodics, periodiccnt, 0);
874 } 1409 }
875 else 1410 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1412
878 event (EV_A_ (W)w, EV_PERIODIC); 1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1414 }
880} 1415}
881 1416
882static void 1417static void noinline
883periodics_reschedule (EV_P) 1418periodics_reschedule (EV_P)
884{ 1419{
885 int i; 1420 int i;
886 1421
887 /* adjust periodics after time jump */ 1422 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1423 for (i = 0; i < periodiccnt; ++i)
889 { 1424 {
890 struct ev_periodic *w = periodics [i]; 1425 ev_periodic *w = (ev_periodic *)periodics [i];
891 1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE
1440void inline_size
1441idle_reify (EV_P)
1442{
1443 if (expect_false (idleall))
1444 {
1445 int pri;
1446
1447 for (pri = NUMPRI; pri--; )
893 { 1448 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1449 if (pendingcnt [pri])
1450 break;
895 1451
896 if (fabs (diff) >= 1e-4) 1452 if (idlecnt [pri])
897 { 1453 {
898 ev_periodic_stop (EV_A_ w); 1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
899 ev_periodic_start (EV_A_ w); 1455 break;
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 } 1456 }
903 } 1457 }
904 } 1458 }
905} 1459}
1460#endif
906 1461
907inline int 1462void inline_speed
908time_update_monotonic (EV_P) 1463time_update (EV_P_ ev_tstamp max_block)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
925static void
926time_update (EV_P)
927{ 1464{
928 int i; 1465 int i;
929 1466
930#if EV_USE_MONOTONIC 1467#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1468 if (expect_true (have_monotonic))
932 { 1469 {
933 if (time_update_monotonic (EV_A)) 1470 ev_tstamp odiff = rtmn_diff;
1471
1472 mn_now = get_clock ();
1473
1474 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1475 /* interpolate in the meantime */
1476 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
934 { 1477 {
935 ev_tstamp odiff = rtmn_diff; 1478 ev_rt_now = rtmn_diff + mn_now;
1479 return;
1480 }
936 1481
1482 now_floor = mn_now;
1483 ev_rt_now = ev_time ();
1484
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1485 /* loop a few times, before making important decisions.
1486 * on the choice of "4": one iteration isn't enough,
1487 * in case we get preempted during the calls to
1488 * ev_time and get_clock. a second call is almost guaranteed
1489 * to succeed in that case, though. and looping a few more times
1490 * doesn't hurt either as we only do this on time-jumps or
1491 * in the unlikely event of having been preempted here.
1492 */
1493 for (i = 4; --i; )
938 { 1494 {
939 rtmn_diff = rt_now - mn_now; 1495 rtmn_diff = ev_rt_now - mn_now;
940 1496
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1498 return; /* all is well */
943 1499
944 rt_now = ev_time (); 1500 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1501 mn_now = get_clock ();
946 now_floor = mn_now; 1502 now_floor = mn_now;
947 } 1503 }
948 1504
1505# if EV_PERIODIC_ENABLE
1506 periodics_reschedule (EV_A);
1507# endif
1508 /* no timer adjustment, as the monotonic clock doesn't jump */
1509 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1510 }
1511 else
1512#endif
1513 {
1514 ev_rt_now = ev_time ();
1515
1516 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1517 {
1518#if EV_PERIODIC_ENABLE
949 periodics_reschedule (EV_A); 1519 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */ 1520#endif
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1521 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i)
1523 ((WT)timers [i])->at += ev_rt_now - mn_now;
952 } 1524 }
953 }
954 else
955#endif
956 {
957 rt_now = ev_time ();
958 1525
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 {
961 periodics_reschedule (EV_A);
962
963 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now;
966 }
967
968 mn_now = rt_now; 1526 mn_now = ev_rt_now;
969 } 1527 }
970} 1528}
971 1529
972void 1530void
973ev_ref (EV_P) 1531ev_ref (EV_P)
984static int loop_done; 1542static int loop_done;
985 1543
986void 1544void
987ev_loop (EV_P_ int flags) 1545ev_loop (EV_P_ int flags)
988{ 1546{
989 double block;
990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
991 1552
992 do 1553 do
993 { 1554 {
1555#ifndef _WIN32
1556 if (expect_false (curpid)) /* penalise the forking check even more */
1557 if (expect_false (getpid () != curpid))
1558 {
1559 curpid = getpid ();
1560 postfork = 1;
1561 }
1562#endif
1563
1564#if EV_FORK_ENABLE
1565 /* we might have forked, so queue fork handlers */
1566 if (expect_false (postfork))
1567 if (forkcnt)
1568 {
1569 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1570 call_pending (EV_A);
1571 }
1572#endif
1573
994 /* queue check watchers (and execute them) */ 1574 /* queue prepare watchers (and execute them) */
995 if (expect_false (preparecnt)) 1575 if (expect_false (preparecnt))
996 { 1576 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1577 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1578 call_pending (EV_A);
999 } 1579 }
1000 1580
1581 if (expect_false (!activecnt))
1582 break;
1583
1584 /* we might have forked, so reify kernel state if necessary */
1585 if (expect_false (postfork))
1586 loop_fork (EV_A);
1587
1001 /* update fd-related kernel structures */ 1588 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1589 fd_reify (EV_A);
1003 1590
1004 /* calculate blocking time */ 1591 /* calculate blocking time */
1592 {
1593 ev_tstamp waittime = 0.;
1594 ev_tstamp sleeptime = 0.;
1005 1595
1006 /* we only need this for !monotonic clockor timers, but as we basically 1596 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 { 1597 {
1014 rt_now = ev_time (); 1598 /* update time to cancel out callback processing overhead */
1015 mn_now = rt_now; 1599 time_update (EV_A_ 1e100);
1016 }
1017 1600
1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.;
1020 else
1021 {
1022 block = MAX_BLOCKTIME; 1601 waittime = MAX_BLOCKTIME;
1023 1602
1024 if (timercnt) 1603 if (timercnt)
1025 { 1604 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1027 if (block > to) block = to; 1606 if (waittime > to) waittime = to;
1028 } 1607 }
1029 1608
1609#if EV_PERIODIC_ENABLE
1030 if (periodiccnt) 1610 if (periodiccnt)
1031 { 1611 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1033 if (block > to) block = to; 1613 if (waittime > to) waittime = to;
1034 } 1614 }
1615#endif
1035 1616
1036 if (block < 0.) block = 0.; 1617 if (expect_false (waittime < timeout_blocktime))
1618 waittime = timeout_blocktime;
1619
1620 sleeptime = waittime - backend_fudge;
1621
1622 if (expect_true (sleeptime > io_blocktime))
1623 sleeptime = io_blocktime;
1624
1625 if (sleeptime)
1626 {
1627 ev_sleep (sleeptime);
1628 waittime -= sleeptime;
1629 }
1037 } 1630 }
1038 1631
1039 method_poll (EV_A_ block); 1632 ++loop_count;
1633 backend_poll (EV_A_ waittime);
1040 1634
1041 /* update rt_now, do magic */ 1635 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1636 time_update (EV_A_ waittime + sleeptime);
1637 }
1043 1638
1044 /* queue pending timers and reschedule them */ 1639 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1640 timers_reify (EV_A); /* relative timers called last */
1641#if EV_PERIODIC_ENABLE
1046 periodics_reify (EV_A); /* absolute timers called first */ 1642 periodics_reify (EV_A); /* absolute timers called first */
1643#endif
1047 1644
1645#if EV_IDLE_ENABLE
1048 /* queue idle watchers unless io or timers are pending */ 1646 /* queue idle watchers unless other events are pending */
1049 if (!pendingcnt) 1647 idle_reify (EV_A);
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1648#endif
1051 1649
1052 /* queue check watchers, to be executed first */ 1650 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1651 if (expect_false (checkcnt))
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 1653
1056 call_pending (EV_A); 1654 call_pending (EV_A);
1655
1057 } 1656 }
1058 while (activecnt && !loop_done); 1657 while (expect_true (activecnt && !loop_done));
1059 1658
1060 if (loop_done != 2) 1659 if (loop_done == EVUNLOOP_ONE)
1061 loop_done = 0; 1660 loop_done = EVUNLOOP_CANCEL;
1062} 1661}
1063 1662
1064void 1663void
1065ev_unloop (EV_P_ int how) 1664ev_unloop (EV_P_ int how)
1066{ 1665{
1067 loop_done = how; 1666 loop_done = how;
1068} 1667}
1069 1668
1070/*****************************************************************************/ 1669/*****************************************************************************/
1071 1670
1072inline void 1671void inline_size
1073wlist_add (WL *head, WL elem) 1672wlist_add (WL *head, WL elem)
1074{ 1673{
1075 elem->next = *head; 1674 elem->next = *head;
1076 *head = elem; 1675 *head = elem;
1077} 1676}
1078 1677
1079inline void 1678void inline_size
1080wlist_del (WL *head, WL elem) 1679wlist_del (WL *head, WL elem)
1081{ 1680{
1082 while (*head) 1681 while (*head)
1083 { 1682 {
1084 if (*head == elem) 1683 if (*head == elem)
1089 1688
1090 head = &(*head)->next; 1689 head = &(*head)->next;
1091 } 1690 }
1092} 1691}
1093 1692
1094inline void 1693void inline_speed
1095ev_clear_pending (EV_P_ W w) 1694clear_pending (EV_P_ W w)
1096{ 1695{
1097 if (w->pending) 1696 if (w->pending)
1098 { 1697 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1698 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1100 w->pending = 0; 1699 w->pending = 0;
1101 } 1700 }
1102} 1701}
1103 1702
1104inline void 1703int
1704ev_clear_pending (EV_P_ void *w)
1705{
1706 W w_ = (W)w;
1707 int pending = w_->pending;
1708
1709 if (expect_true (pending))
1710 {
1711 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1712 w_->pending = 0;
1713 p->w = 0;
1714 return p->events;
1715 }
1716 else
1717 return 0;
1718}
1719
1720void inline_size
1721pri_adjust (EV_P_ W w)
1722{
1723 int pri = w->priority;
1724 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1725 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1726 w->priority = pri;
1727}
1728
1729void inline_speed
1105ev_start (EV_P_ W w, int active) 1730ev_start (EV_P_ W w, int active)
1106{ 1731{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1732 pri_adjust (EV_A_ w);
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
1110 w->active = active; 1733 w->active = active;
1111 ev_ref (EV_A); 1734 ev_ref (EV_A);
1112} 1735}
1113 1736
1114inline void 1737void inline_size
1115ev_stop (EV_P_ W w) 1738ev_stop (EV_P_ W w)
1116{ 1739{
1117 ev_unref (EV_A); 1740 ev_unref (EV_A);
1118 w->active = 0; 1741 w->active = 0;
1119} 1742}
1120 1743
1121/*****************************************************************************/ 1744/*****************************************************************************/
1122 1745
1123void 1746void noinline
1124ev_io_start (EV_P_ struct ev_io *w) 1747ev_io_start (EV_P_ ev_io *w)
1125{ 1748{
1126 int fd = w->fd; 1749 int fd = w->fd;
1127 1750
1128 if (ev_is_active (w)) 1751 if (expect_false (ev_is_active (w)))
1129 return; 1752 return;
1130 1753
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1754 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1755
1133 ev_start (EV_A_ (W)w, 1); 1756 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1757 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1758 wlist_add (&anfds[fd].head, (WL)w);
1136 1759
1137 fd_change (EV_A_ fd); 1760 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1761 w->events &= ~EV_IOFDSET;
1138} 1762}
1139 1763
1140void 1764void noinline
1141ev_io_stop (EV_P_ struct ev_io *w) 1765ev_io_stop (EV_P_ ev_io *w)
1142{ 1766{
1143 ev_clear_pending (EV_A_ (W)w); 1767 clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w)) 1768 if (expect_false (!ev_is_active (w)))
1145 return; 1769 return;
1146 1770
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1772
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1773 wlist_del (&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1149 1775
1150 fd_change (EV_A_ w->fd); 1776 fd_change (EV_A_ w->fd, 1);
1151} 1777}
1152 1778
1153void 1779void noinline
1154ev_timer_start (EV_P_ struct ev_timer *w) 1780ev_timer_start (EV_P_ ev_timer *w)
1155{ 1781{
1156 if (ev_is_active (w)) 1782 if (expect_false (ev_is_active (w)))
1157 return; 1783 return;
1158 1784
1159 ((WT)w)->at += mn_now; 1785 ((WT)w)->at += mn_now;
1160 1786
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1788
1163 ev_start (EV_A_ (W)w, ++timercnt); 1789 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1165 timers [timercnt - 1] = w; 1791 timers [timercnt - 1] = (WT)w;
1166 upheap ((WT *)timers, timercnt - 1); 1792 upheap (timers, timercnt - 1);
1167 1793
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1169} 1795}
1170 1796
1171void 1797void noinline
1172ev_timer_stop (EV_P_ struct ev_timer *w) 1798ev_timer_stop (EV_P_ ev_timer *w)
1173{ 1799{
1174 ev_clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w)) 1801 if (expect_false (!ev_is_active (w)))
1176 return; 1802 return;
1177 1803
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1179 1805
1180 if (((W)w)->active < timercnt--) 1806 {
1807 int active = ((W)w)->active;
1808
1809 if (expect_true (--active < --timercnt))
1181 { 1810 {
1182 timers [((W)w)->active - 1] = timers [timercnt]; 1811 timers [active] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1812 adjustheap (timers, timercnt, active);
1184 } 1813 }
1814 }
1185 1815
1186 ((WT)w)->at = w->repeat; 1816 ((WT)w)->at -= mn_now;
1187 1817
1188 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1189} 1819}
1190 1820
1191void 1821void noinline
1192ev_timer_again (EV_P_ struct ev_timer *w) 1822ev_timer_again (EV_P_ ev_timer *w)
1193{ 1823{
1194 if (ev_is_active (w)) 1824 if (ev_is_active (w))
1195 { 1825 {
1196 if (w->repeat) 1826 if (w->repeat)
1197 { 1827 {
1198 ((WT)w)->at = mn_now + w->repeat; 1828 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1829 adjustheap (timers, timercnt, ((W)w)->active - 1);
1200 } 1830 }
1201 else 1831 else
1202 ev_timer_stop (EV_A_ w); 1832 ev_timer_stop (EV_A_ w);
1203 } 1833 }
1204 else if (w->repeat) 1834 else if (w->repeat)
1835 {
1836 w->at = w->repeat;
1205 ev_timer_start (EV_A_ w); 1837 ev_timer_start (EV_A_ w);
1838 }
1206} 1839}
1207 1840
1208void 1841#if EV_PERIODIC_ENABLE
1842void noinline
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1843ev_periodic_start (EV_P_ ev_periodic *w)
1210{ 1844{
1211 if (ev_is_active (w)) 1845 if (expect_false (ev_is_active (w)))
1212 return; 1846 return;
1213 1847
1848 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval)
1851 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1853 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 }
1856 else
1857 ((WT)w)->at = w->offset;
1219 1858
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1859 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1222 periodics [periodiccnt - 1] = w; 1861 periodics [periodiccnt - 1] = (WT)w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1862 upheap (periodics, periodiccnt - 1);
1224 1863
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1226} 1865}
1227 1866
1228void 1867void noinline
1229ev_periodic_stop (EV_P_ struct ev_periodic *w) 1868ev_periodic_stop (EV_P_ ev_periodic *w)
1230{ 1869{
1231 ev_clear_pending (EV_A_ (W)w); 1870 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1871 if (expect_false (!ev_is_active (w)))
1233 return; 1872 return;
1234 1873
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1236 1875
1237 if (((W)w)->active < periodiccnt--) 1876 {
1877 int active = ((W)w)->active;
1878
1879 if (expect_true (--active < --periodiccnt))
1238 { 1880 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1881 periodics [active] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1882 adjustheap (periodics, periodiccnt, active);
1241 } 1883 }
1884 }
1242 1885
1243 ev_stop (EV_A_ (W)w); 1886 ev_stop (EV_A_ (W)w);
1244} 1887}
1245 1888
1246void 1889void noinline
1247ev_idle_start (EV_P_ struct ev_idle *w) 1890ev_periodic_again (EV_P_ ev_periodic *w)
1248{ 1891{
1249 if (ev_is_active (w)) 1892 /* TODO: use adjustheap and recalculation */
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w); 1893 ev_periodic_stop (EV_A_ w);
1894 ev_periodic_start (EV_A_ w);
1266} 1895}
1267 1896#endif
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311 1897
1312#ifndef SA_RESTART 1898#ifndef SA_RESTART
1313# define SA_RESTART 0 1899# define SA_RESTART 0
1314#endif 1900#endif
1315 1901
1316void 1902void noinline
1317ev_signal_start (EV_P_ struct ev_signal *w) 1903ev_signal_start (EV_P_ ev_signal *w)
1318{ 1904{
1319#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1906 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1321#endif 1907#endif
1322 if (ev_is_active (w)) 1908 if (expect_false (ev_is_active (w)))
1323 return; 1909 return;
1324 1910
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1911 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 1912
1913 evpipe_init (EV_A);
1914
1915 {
1916#ifndef _WIN32
1917 sigset_t full, prev;
1918 sigfillset (&full);
1919 sigprocmask (SIG_SETMASK, &full, &prev);
1920#endif
1921
1922 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1923
1924#ifndef _WIN32
1925 sigprocmask (SIG_SETMASK, &prev, 0);
1926#endif
1927 }
1928
1327 ev_start (EV_A_ (W)w, 1); 1929 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1930 wlist_add (&signals [w->signum - 1].head, (WL)w);
1330 1931
1331 if (!((WL)w)->next) 1932 if (!((WL)w)->next)
1332 { 1933 {
1333#if WIN32 1934#if _WIN32
1334 signal (w->signum, sighandler); 1935 signal (w->signum, sighandler);
1335#else 1936#else
1336 struct sigaction sa; 1937 struct sigaction sa;
1337 sa.sa_handler = sighandler; 1938 sa.sa_handler = sighandler;
1338 sigfillset (&sa.sa_mask); 1939 sigfillset (&sa.sa_mask);
1340 sigaction (w->signum, &sa, 0); 1941 sigaction (w->signum, &sa, 0);
1341#endif 1942#endif
1342 } 1943 }
1343} 1944}
1344 1945
1345void 1946void noinline
1346ev_signal_stop (EV_P_ struct ev_signal *w) 1947ev_signal_stop (EV_P_ ev_signal *w)
1347{ 1948{
1348 ev_clear_pending (EV_A_ (W)w); 1949 clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w)) 1950 if (expect_false (!ev_is_active (w)))
1350 return; 1951 return;
1351 1952
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1953 wlist_del (&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1954 ev_stop (EV_A_ (W)w);
1354 1955
1355 if (!signals [w->signum - 1].head) 1956 if (!signals [w->signum - 1].head)
1356 signal (w->signum, SIG_DFL); 1957 signal (w->signum, SIG_DFL);
1357} 1958}
1358 1959
1359void 1960void
1360ev_child_start (EV_P_ struct ev_child *w) 1961ev_child_start (EV_P_ ev_child *w)
1361{ 1962{
1362#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1964 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1364#endif 1965#endif
1365 if (ev_is_active (w)) 1966 if (expect_false (ev_is_active (w)))
1366 return; 1967 return;
1367 1968
1368 ev_start (EV_A_ (W)w, 1); 1969 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1970 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1370} 1971}
1371 1972
1372void 1973void
1373ev_child_stop (EV_P_ struct ev_child *w) 1974ev_child_stop (EV_P_ ev_child *w)
1374{ 1975{
1375 ev_clear_pending (EV_A_ (W)w); 1976 clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w)) 1977 if (expect_false (!ev_is_active (w)))
1377 return; 1978 return;
1378 1979
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1980 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w); 1981 ev_stop (EV_A_ (W)w);
1381} 1982}
1382 1983
1984#if EV_STAT_ENABLE
1985
1986# ifdef _WIN32
1987# undef lstat
1988# define lstat(a,b) _stati64 (a,b)
1989# endif
1990
1991#define DEF_STAT_INTERVAL 5.0074891
1992#define MIN_STAT_INTERVAL 0.1074891
1993
1994static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1995
1996#if EV_USE_INOTIFY
1997# define EV_INOTIFY_BUFSIZE 8192
1998
1999static void noinline
2000infy_add (EV_P_ ev_stat *w)
2001{
2002 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2003
2004 if (w->wd < 0)
2005 {
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007
2008 /* monitor some parent directory for speedup hints */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 {
2011 char path [4096];
2012 strcpy (path, w->path);
2013
2014 do
2015 {
2016 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2017 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2018
2019 char *pend = strrchr (path, '/');
2020
2021 if (!pend)
2022 break; /* whoops, no '/', complain to your admin */
2023
2024 *pend = 0;
2025 w->wd = inotify_add_watch (fs_fd, path, mask);
2026 }
2027 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2028 }
2029 }
2030 else
2031 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2032
2033 if (w->wd >= 0)
2034 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2035}
2036
2037static void noinline
2038infy_del (EV_P_ ev_stat *w)
2039{
2040 int slot;
2041 int wd = w->wd;
2042
2043 if (wd < 0)
2044 return;
2045
2046 w->wd = -2;
2047 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2048 wlist_del (&fs_hash [slot].head, (WL)w);
2049
2050 /* remove this watcher, if others are watching it, they will rearm */
2051 inotify_rm_watch (fs_fd, wd);
2052}
2053
2054static void noinline
2055infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2056{
2057 if (slot < 0)
2058 /* overflow, need to check for all hahs slots */
2059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2060 infy_wd (EV_A_ slot, wd, ev);
2061 else
2062 {
2063 WL w_;
2064
2065 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2066 {
2067 ev_stat *w = (ev_stat *)w_;
2068 w_ = w_->next; /* lets us remove this watcher and all before it */
2069
2070 if (w->wd == wd || wd == -1)
2071 {
2072 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2073 {
2074 w->wd = -1;
2075 infy_add (EV_A_ w); /* re-add, no matter what */
2076 }
2077
2078 stat_timer_cb (EV_A_ &w->timer, 0);
2079 }
2080 }
2081 }
2082}
2083
2084static void
2085infy_cb (EV_P_ ev_io *w, int revents)
2086{
2087 char buf [EV_INOTIFY_BUFSIZE];
2088 struct inotify_event *ev = (struct inotify_event *)buf;
2089 int ofs;
2090 int len = read (fs_fd, buf, sizeof (buf));
2091
2092 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2093 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2094}
2095
2096void inline_size
2097infy_init (EV_P)
2098{
2099 if (fs_fd != -2)
2100 return;
2101
2102 fs_fd = inotify_init ();
2103
2104 if (fs_fd >= 0)
2105 {
2106 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2107 ev_set_priority (&fs_w, EV_MAXPRI);
2108 ev_io_start (EV_A_ &fs_w);
2109 }
2110}
2111
2112void inline_size
2113infy_fork (EV_P)
2114{
2115 int slot;
2116
2117 if (fs_fd < 0)
2118 return;
2119
2120 close (fs_fd);
2121 fs_fd = inotify_init ();
2122
2123 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2124 {
2125 WL w_ = fs_hash [slot].head;
2126 fs_hash [slot].head = 0;
2127
2128 while (w_)
2129 {
2130 ev_stat *w = (ev_stat *)w_;
2131 w_ = w_->next; /* lets us add this watcher */
2132
2133 w->wd = -1;
2134
2135 if (fs_fd >= 0)
2136 infy_add (EV_A_ w); /* re-add, no matter what */
2137 else
2138 ev_timer_start (EV_A_ &w->timer);
2139 }
2140
2141 }
2142}
2143
2144#endif
2145
2146void
2147ev_stat_stat (EV_P_ ev_stat *w)
2148{
2149 if (lstat (w->path, &w->attr) < 0)
2150 w->attr.st_nlink = 0;
2151 else if (!w->attr.st_nlink)
2152 w->attr.st_nlink = 1;
2153}
2154
2155static void noinline
2156stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2157{
2158 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2159
2160 /* we copy this here each the time so that */
2161 /* prev has the old value when the callback gets invoked */
2162 w->prev = w->attr;
2163 ev_stat_stat (EV_A_ w);
2164
2165 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2166 if (
2167 w->prev.st_dev != w->attr.st_dev
2168 || w->prev.st_ino != w->attr.st_ino
2169 || w->prev.st_mode != w->attr.st_mode
2170 || w->prev.st_nlink != w->attr.st_nlink
2171 || w->prev.st_uid != w->attr.st_uid
2172 || w->prev.st_gid != w->attr.st_gid
2173 || w->prev.st_rdev != w->attr.st_rdev
2174 || w->prev.st_size != w->attr.st_size
2175 || w->prev.st_atime != w->attr.st_atime
2176 || w->prev.st_mtime != w->attr.st_mtime
2177 || w->prev.st_ctime != w->attr.st_ctime
2178 ) {
2179 #if EV_USE_INOTIFY
2180 infy_del (EV_A_ w);
2181 infy_add (EV_A_ w);
2182 ev_stat_stat (EV_A_ w); /* avoid race... */
2183 #endif
2184
2185 ev_feed_event (EV_A_ w, EV_STAT);
2186 }
2187}
2188
2189void
2190ev_stat_start (EV_P_ ev_stat *w)
2191{
2192 if (expect_false (ev_is_active (w)))
2193 return;
2194
2195 /* since we use memcmp, we need to clear any padding data etc. */
2196 memset (&w->prev, 0, sizeof (ev_statdata));
2197 memset (&w->attr, 0, sizeof (ev_statdata));
2198
2199 ev_stat_stat (EV_A_ w);
2200
2201 if (w->interval < MIN_STAT_INTERVAL)
2202 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2203
2204 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2205 ev_set_priority (&w->timer, ev_priority (w));
2206
2207#if EV_USE_INOTIFY
2208 infy_init (EV_A);
2209
2210 if (fs_fd >= 0)
2211 infy_add (EV_A_ w);
2212 else
2213#endif
2214 ev_timer_start (EV_A_ &w->timer);
2215
2216 ev_start (EV_A_ (W)w, 1);
2217}
2218
2219void
2220ev_stat_stop (EV_P_ ev_stat *w)
2221{
2222 clear_pending (EV_A_ (W)w);
2223 if (expect_false (!ev_is_active (w)))
2224 return;
2225
2226#if EV_USE_INOTIFY
2227 infy_del (EV_A_ w);
2228#endif
2229 ev_timer_stop (EV_A_ &w->timer);
2230
2231 ev_stop (EV_A_ (W)w);
2232}
2233#endif
2234
2235#if EV_IDLE_ENABLE
2236void
2237ev_idle_start (EV_P_ ev_idle *w)
2238{
2239 if (expect_false (ev_is_active (w)))
2240 return;
2241
2242 pri_adjust (EV_A_ (W)w);
2243
2244 {
2245 int active = ++idlecnt [ABSPRI (w)];
2246
2247 ++idleall;
2248 ev_start (EV_A_ (W)w, active);
2249
2250 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2251 idles [ABSPRI (w)][active - 1] = w;
2252 }
2253}
2254
2255void
2256ev_idle_stop (EV_P_ ev_idle *w)
2257{
2258 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w)))
2260 return;
2261
2262 {
2263 int active = ((W)w)->active;
2264
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2267
2268 ev_stop (EV_A_ (W)w);
2269 --idleall;
2270 }
2271}
2272#endif
2273
2274void
2275ev_prepare_start (EV_P_ ev_prepare *w)
2276{
2277 if (expect_false (ev_is_active (w)))
2278 return;
2279
2280 ev_start (EV_A_ (W)w, ++preparecnt);
2281 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2282 prepares [preparecnt - 1] = w;
2283}
2284
2285void
2286ev_prepare_stop (EV_P_ ev_prepare *w)
2287{
2288 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w)))
2290 return;
2291
2292 {
2293 int active = ((W)w)->active;
2294 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active;
2296 }
2297
2298 ev_stop (EV_A_ (W)w);
2299}
2300
2301void
2302ev_check_start (EV_P_ ev_check *w)
2303{
2304 if (expect_false (ev_is_active (w)))
2305 return;
2306
2307 ev_start (EV_A_ (W)w, ++checkcnt);
2308 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2309 checks [checkcnt - 1] = w;
2310}
2311
2312void
2313ev_check_stop (EV_P_ ev_check *w)
2314{
2315 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w)))
2317 return;
2318
2319 {
2320 int active = ((W)w)->active;
2321 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active;
2323 }
2324
2325 ev_stop (EV_A_ (W)w);
2326}
2327
2328#if EV_EMBED_ENABLE
2329void noinline
2330ev_embed_sweep (EV_P_ ev_embed *w)
2331{
2332 ev_loop (w->other, EVLOOP_NONBLOCK);
2333}
2334
2335static void
2336embed_io_cb (EV_P_ ev_io *io, int revents)
2337{
2338 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2339
2340 if (ev_cb (w))
2341 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2342 else
2343 ev_loop (w->other, EVLOOP_NONBLOCK);
2344}
2345
2346static void
2347embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2348{
2349 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2350
2351 {
2352 struct ev_loop *loop = w->other;
2353
2354 while (fdchangecnt)
2355 {
2356 fd_reify (EV_A);
2357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2358 }
2359 }
2360}
2361
2362#if 0
2363static void
2364embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2365{
2366 ev_idle_stop (EV_A_ idle);
2367}
2368#endif
2369
2370void
2371ev_embed_start (EV_P_ ev_embed *w)
2372{
2373 if (expect_false (ev_is_active (w)))
2374 return;
2375
2376 {
2377 struct ev_loop *loop = w->other;
2378 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2379 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2380 }
2381
2382 ev_set_priority (&w->io, ev_priority (w));
2383 ev_io_start (EV_A_ &w->io);
2384
2385 ev_prepare_init (&w->prepare, embed_prepare_cb);
2386 ev_set_priority (&w->prepare, EV_MINPRI);
2387 ev_prepare_start (EV_A_ &w->prepare);
2388
2389 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2390
2391 ev_start (EV_A_ (W)w, 1);
2392}
2393
2394void
2395ev_embed_stop (EV_P_ ev_embed *w)
2396{
2397 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w)))
2399 return;
2400
2401 ev_io_stop (EV_A_ &w->io);
2402 ev_prepare_stop (EV_A_ &w->prepare);
2403
2404 ev_stop (EV_A_ (W)w);
2405}
2406#endif
2407
2408#if EV_FORK_ENABLE
2409void
2410ev_fork_start (EV_P_ ev_fork *w)
2411{
2412 if (expect_false (ev_is_active (w)))
2413 return;
2414
2415 ev_start (EV_A_ (W)w, ++forkcnt);
2416 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2417 forks [forkcnt - 1] = w;
2418}
2419
2420void
2421ev_fork_stop (EV_P_ ev_fork *w)
2422{
2423 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w)))
2425 return;
2426
2427 {
2428 int active = ((W)w)->active;
2429 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active;
2431 }
2432
2433 ev_stop (EV_A_ (W)w);
2434}
2435#endif
2436
2437#if EV_ASYNC_ENABLE
2438void
2439ev_async_start (EV_P_ ev_async *w)
2440{
2441 if (expect_false (ev_is_active (w)))
2442 return;
2443
2444 evpipe_init (EV_A);
2445
2446 ev_start (EV_A_ (W)w, ++asynccnt);
2447 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2448 asyncs [asynccnt - 1] = w;
2449}
2450
2451void
2452ev_async_stop (EV_P_ ev_async *w)
2453{
2454 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w)))
2456 return;
2457
2458 {
2459 int active = ((W)w)->active;
2460 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active;
2462 }
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466
2467void
2468ev_async_send (EV_P_ ev_async *w)
2469{
2470 w->sent = 1;
2471 evpipe_write (EV_A_ &gotasync);
2472}
2473#endif
2474
1383/*****************************************************************************/ 2475/*****************************************************************************/
1384 2476
1385struct ev_once 2477struct ev_once
1386{ 2478{
1387 struct ev_io io; 2479 ev_io io;
1388 struct ev_timer to; 2480 ev_timer to;
1389 void (*cb)(int revents, void *arg); 2481 void (*cb)(int revents, void *arg);
1390 void *arg; 2482 void *arg;
1391}; 2483};
1392 2484
1393static void 2485static void
1396 void (*cb)(int revents, void *arg) = once->cb; 2488 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 2489 void *arg = once->arg;
1398 2490
1399 ev_io_stop (EV_A_ &once->io); 2491 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 2492 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 2493 ev_free (once);
1402 2494
1403 cb (revents, arg); 2495 cb (revents, arg);
1404} 2496}
1405 2497
1406static void 2498static void
1407once_cb_io (EV_P_ struct ev_io *w, int revents) 2499once_cb_io (EV_P_ ev_io *w, int revents)
1408{ 2500{
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410} 2502}
1411 2503
1412static void 2504static void
1413once_cb_to (EV_P_ struct ev_timer *w, int revents) 2505once_cb_to (EV_P_ ev_timer *w, int revents)
1414{ 2506{
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2507 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416} 2508}
1417 2509
1418void 2510void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2511ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 2512{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 2513 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 2514
1423 if (!once) 2515 if (expect_false (!once))
2516 {
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2517 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 2518 return;
1426 { 2519 }
2520
1427 once->cb = cb; 2521 once->cb = cb;
1428 once->arg = arg; 2522 once->arg = arg;
1429 2523
1430 ev_watcher_init (&once->io, once_cb_io); 2524 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 2525 if (fd >= 0)
1432 { 2526 {
1433 ev_io_set (&once->io, fd, events); 2527 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 2528 ev_io_start (EV_A_ &once->io);
1435 } 2529 }
1436 2530
1437 ev_watcher_init (&once->to, once_cb_to); 2531 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 2532 if (timeout >= 0.)
1439 { 2533 {
1440 ev_timer_set (&once->to, timeout, 0.); 2534 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 2535 ev_timer_start (EV_A_ &once->to);
1442 }
1443 } 2536 }
1444} 2537}
1445 2538
2539#if EV_MULTIPLICITY
2540 #include "ev_wrap.h"
2541#endif
2542
2543#ifdef __cplusplus
2544}
2545#endif
2546

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines