ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
71#endif 163# endif
72#include <sys/time.h> 164#endif
73#include <time.h>
74 165
75/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
76 167
77#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
79#endif 178#endif
80 179
81#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
83#endif 182#endif
84 183
85#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
87#endif 190#endif
88 191
89#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
90# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
91#endif 198#endif
92 199
93#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
95#endif 202#endif
96 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
97#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
98# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 210# define EV_USE_INOTIFY 1
100# else 211# else
101# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
102# endif 213# endif
103#endif 214#endif
104 215
105#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
107#endif 221# endif
222#endif
108 223
109/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 241
111#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
114#endif 245#endif
116#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
119#endif 250#endif
120 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
121/**/ 283/**/
122 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 298
128#include "ev.h"
129
130#if __GNUC__ >= 3 299#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 301# define noinline __attribute__ ((noinline))
133#else 302#else
134# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
135# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
136#endif 308#endif
137 309
138#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
140 319
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
144typedef struct ev_watcher *W; 326typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
147 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
149 338
150#if WIN32 339#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 340# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 341#endif
155 342
156/*****************************************************************************/ 343/*****************************************************************************/
157 344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
158typedef struct 410typedef struct
159{ 411{
160 struct ev_watcher_list *head; 412 WL head;
161 unsigned char events; 413 unsigned char events;
162 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
163} ANFD; 418} ANFD;
164 419
165typedef struct 420typedef struct
166{ 421{
167 W w; 422 W w;
168 int events; 423 int events;
169} ANPENDING; 424} ANPENDING;
170 425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
171#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
172 434
173struct ev_loop 435 struct ev_loop
174{ 436 {
437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 439 #define VAR(name,decl) decl;
176# include "ev_vars.h" 440 #include "ev_vars.h"
177};
178# undef VAR 441 #undef VAR
442 };
179# include "ev_wrap.h" 443 #include "ev_wrap.h"
444
445 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr;
180 447
181#else 448#else
182 449
450 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 451 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 452 #include "ev_vars.h"
185# undef VAR 453 #undef VAR
454
455 static int ev_default_loop_ptr;
186 456
187#endif 457#endif
188 458
189/*****************************************************************************/ 459/*****************************************************************************/
190 460
191inline ev_tstamp 461ev_tstamp
192ev_time (void) 462ev_time (void)
193{ 463{
194#if EV_USE_REALTIME 464#if EV_USE_REALTIME
195 struct timespec ts; 465 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 466 clock_gettime (CLOCK_REALTIME, &ts);
200 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif 472#endif
203} 473}
204 474
205inline ev_tstamp 475ev_tstamp inline_size
206get_clock (void) 476get_clock (void)
207{ 477{
208#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
210 { 480 {
215#endif 485#endif
216 486
217 return ev_time (); 487 return ev_time ();
218} 488}
219 489
490#if EV_MULTIPLICITY
220ev_tstamp 491ev_tstamp
221ev_now (EV_P) 492ev_now (EV_P)
222{ 493{
223 return rt_now; 494 return ev_rt_now;
224} 495}
496#endif
225 497
226#define array_roundsize(base,n) ((n) | 4 & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
227 505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525int inline_size
526array_nextsize (int elem, int cur, int cnt)
527{
528 int ncur = cur + 1;
529
530 do
531 ncur <<= 1;
532 while (cnt > ncur);
533
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
552
228#define array_needsize(base,cur,cnt,init) \ 553#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 554 if (expect_false ((cnt) > (cur))) \
230 { \ 555 { \
231 int newcnt = cur; \ 556 int ocur_ = (cur); \
232 do \ 557 (base) = (type *)array_realloc \
233 { \ 558 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 559 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 560 }
242 561
562#if 0
243#define array_slim(stem) \ 563#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 565 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 566 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 569 }
570#endif
250 571
251#define array_free(stem, idx) \ 572#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 574
254/*****************************************************************************/ 575/*****************************************************************************/
255 576
256static void 577void noinline
578ev_feed_event (EV_P_ void *w, int revents)
579{
580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
582
583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents;
591 }
592}
593
594void inline_speed
595queue_events (EV_P_ W *events, int eventcnt, int type)
596{
597 int i;
598
599 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type);
601}
602
603/*****************************************************************************/
604
605void inline_size
257anfds_init (ANFD *base, int count) 606anfds_init (ANFD *base, int count)
258{ 607{
259 while (count--) 608 while (count--)
260 { 609 {
261 base->head = 0; 610 base->head = 0;
264 613
265 ++base; 614 ++base;
266 } 615 }
267} 616}
268 617
269static void 618void inline_speed
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
294fd_event (EV_P_ int fd, int events) 619fd_event (EV_P_ int fd, int revents)
295{ 620{
296 ANFD *anfd = anfds + fd; 621 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 622 ev_io *w;
298 623
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 625 {
301 int ev = w->events & events; 626 int ev = w->events & revents;
302 627
303 if (ev) 628 if (ev)
304 event (EV_A_ (W)w, ev); 629 ev_feed_event (EV_A_ (W)w, ev);
305 } 630 }
306} 631}
307 632
308/*****************************************************************************/ 633void
634ev_feed_fd_event (EV_P_ int fd, int revents)
635{
636 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents);
638}
309 639
310static void 640void inline_size
311fd_reify (EV_P) 641fd_reify (EV_P)
312{ 642{
313 int i; 643 int i;
314 644
315 for (i = 0; i < fdchangecnt; ++i) 645 for (i = 0; i < fdchangecnt; ++i)
316 { 646 {
317 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 649 ev_io *w;
320 650
321 int events = 0; 651 unsigned char events = 0;
322 652
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 654 events |= (unsigned char)w->events;
325 655
656#if EV_SELECT_IS_WINSOCKET
657 if (events)
658 {
659 unsigned long argp;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
663 anfd->handle = _get_osfhandle (fd);
664 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
666 }
667#endif
668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
326 anfd->reify = 0; 673 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
330 } 679 }
331 680
332 fdchangecnt = 0; 681 fdchangecnt = 0;
333} 682}
334 683
335static void 684void inline_size
336fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
337{ 686{
338 if (anfds [fd].reify || fdchangecnt < 0) 687 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
342 689
690 if (expect_true (!reify))
691 {
343 ++fdchangecnt; 692 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
346} 696}
347 697
348static void 698void inline_speed
349fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
350{ 700{
351 struct ev_io *w; 701 ev_io *w;
352 702
353 while ((w = (struct ev_io *)anfds [fd].head)) 703 while ((w = (ev_io *)anfds [fd].head))
354 { 704 {
355 ev_io_stop (EV_A_ w); 705 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 707 }
708}
709
710int inline_size
711fd_valid (int fd)
712{
713#ifdef _WIN32
714 return _get_osfhandle (fd) != -1;
715#else
716 return fcntl (fd, F_GETFD) != -1;
717#endif
358} 718}
359 719
360/* called on EBADF to verify fds */ 720/* called on EBADF to verify fds */
361static void 721static void noinline
362fd_ebadf (EV_P) 722fd_ebadf (EV_P)
363{ 723{
364 int fd; 724 int fd;
365 725
366 for (fd = 0; fd < anfdmax; ++fd) 726 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 727 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 728 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 729 fd_kill (EV_A_ fd);
370} 730}
371 731
372/* called on ENOMEM in select/poll to kill some fds and retry */ 732/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 733static void noinline
374fd_enomem (EV_P) 734fd_enomem (EV_P)
375{ 735{
376 int fd; 736 int fd;
377 737
378 for (fd = anfdmax; fd--; ) 738 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 739 if (anfds [fd].events)
380 { 740 {
381 close (fd);
382 fd_kill (EV_A_ fd); 741 fd_kill (EV_A_ fd);
383 return; 742 return;
384 } 743 }
385} 744}
386 745
387/* susually called after fork if method needs to re-arm all fds from scratch */ 746/* usually called after fork if backend needs to re-arm all fds from scratch */
388static void 747static void noinline
389fd_rearm_all (EV_P) 748fd_rearm_all (EV_P)
390{ 749{
391 int fd; 750 int fd;
392 751
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events) 753 if (anfds [fd].events)
396 { 754 {
397 anfds [fd].events = 0; 755 anfds [fd].events = 0;
398 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
399 } 757 }
400} 758}
401 759
402/*****************************************************************************/ 760/*****************************************************************************/
403 761
404static void 762/* towards the root */
763void inline_speed
405upheap (WT *heap, int k) 764upheap (WT *heap, int k)
406{ 765{
407 WT w = heap [k]; 766 WT w = heap [k];
408 767
409 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
410 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
411 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
412 ((W)heap [k])->active = k + 1; 777 ev_active (heap [k]) = k;
413 k >>= 1; 778 k = p;
414 } 779 }
415 780
416 heap [k] = w; 781 heap [k] = w;
417 ((W)heap [k])->active = k + 1; 782 ev_active (heap [k]) = k;
418
419} 783}
420 784
421static void 785/* away from the root */
786void inline_speed
422downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
423{ 788{
424 WT w = heap [k]; 789 WT w = heap [k];
425 790
426 while (k < (N >> 1)) 791 for (;;)
427 { 792 {
428 int j = k << 1; 793 int c = k << 1;
429 794
430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
431 ++j;
432
433 if (w->at <= heap [j]->at)
434 break; 796 break;
435 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
436 heap [k] = heap [j]; 804 heap [k] = heap [c];
437 ((W)heap [k])->active = k + 1; 805 ev_active (heap [k]) = k;
806
438 k = j; 807 k = c;
439 } 808 }
440 809
441 heap [k] = w; 810 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 811 ev_active (heap [k]) = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k)
816{
817 upheap (heap, k);
818 downheap (heap, N, k);
443} 819}
444 820
445/*****************************************************************************/ 821/*****************************************************************************/
446 822
447typedef struct 823typedef struct
448{ 824{
449 struct ev_watcher_list *head; 825 WL head;
450 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
451} ANSIG; 827} ANSIG;
452 828
453static ANSIG *signals; 829static ANSIG *signals;
454static int signalmax; 830static int signalmax;
455 831
456static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
457static sig_atomic_t volatile gotsig;
458static struct ev_io sigev;
459 833
460static void 834void inline_size
461signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
462{ 836{
463 while (count--) 837 while (count--)
464 { 838 {
465 base->head = 0; 839 base->head = 0;
467 841
468 ++base; 842 ++base;
469 } 843 }
470} 844}
471 845
846/*****************************************************************************/
847
848void inline_speed
849fd_intern (int fd)
850{
851#ifdef _WIN32
852 int arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
854#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif
858}
859
860static void noinline
861evpipe_init (EV_P)
862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
878 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
882
883 ev_io_start (EV_A_ &pipeev);
884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
472static void 911static void
912pipecb (EV_P_ ev_io *iow, int revents)
913{
914#if EV_USE_EVENTFD
915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
926
927 if (gotsig && ev_is_default_loop (EV_A))
928 {
929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
951}
952
953/*****************************************************************************/
954
955static void
473sighandler (int signum) 956ev_sighandler (int signum)
474{ 957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
475#if WIN32 962#if _WIN32
476 signal (signum, sighandler); 963 signal (signum, ev_sighandler);
477#endif 964#endif
478 965
479 signals [signum - 1].gotsig = 1; 966 signals [signum - 1].gotsig = 1;
480 967 evpipe_write (EV_A_ &gotsig);
481 if (!gotsig)
482 {
483 int old_errno = errno;
484 gotsig = 1;
485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
487 }
488} 968}
489 969
490static void 970void noinline
491sigcb (EV_P_ struct ev_io *iow, int revents) 971ev_feed_signal_event (EV_P_ int signum)
492{ 972{
493 struct ev_watcher_list *w; 973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
494 int signum; 979 --signum;
495 980
496 read (sigpipe [0], &revents, 1); 981 if (signum < 0 || signum >= signalmax)
497 gotsig = 0; 982 return;
498 983
499 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig)
501 {
502 signals [signum].gotsig = 0; 984 signals [signum].gotsig = 0;
503 985
504 for (w = signals [signum].head; w; w = w->next) 986 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL); 987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
506 }
507}
508
509static void
510siginit (EV_P)
511{
512#ifndef WIN32
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
520
521 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 988}
525 989
526/*****************************************************************************/ 990/*****************************************************************************/
527 991
992static WL childs [EV_PID_HASHSIZE];
993
528#ifndef WIN32 994#ifndef _WIN32
529 995
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev; 996static ev_signal childev;
997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
1002void inline_speed
1003child_reap (EV_P_ int chain, int pid, int status)
1004{
1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
1012 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 w->rpid = pid;
1015 w->rstatus = status;
1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1017 }
1018 }
1019}
532 1020
533#ifndef WCONTINUED 1021#ifndef WCONTINUED
534# define WCONTINUED 0 1022# define WCONTINUED 0
535#endif 1023#endif
536 1024
537static void 1025static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 1026childcb (EV_P_ ev_signal *sw, int revents)
554{ 1027{
555 int pid, status; 1028 int pid, status;
556 1029
1030 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1031 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 1032 if (!WCONTINUED
1033 || errno != EINVAL
1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1035 return;
1036
559 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */
560 event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 1040
562 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1)
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
564 }
565} 1044}
566 1045
567#endif 1046#endif
568 1047
569/*****************************************************************************/ 1048/*****************************************************************************/
570 1049
1050#if EV_USE_PORT
1051# include "ev_port.c"
1052#endif
571#if EV_USE_KQUEUE 1053#if EV_USE_KQUEUE
572# include "ev_kqueue.c" 1054# include "ev_kqueue.c"
573#endif 1055#endif
574#if EV_USE_EPOLL 1056#if EV_USE_EPOLL
575# include "ev_epoll.c" 1057# include "ev_epoll.c"
592{ 1074{
593 return EV_VERSION_MINOR; 1075 return EV_VERSION_MINOR;
594} 1076}
595 1077
596/* return true if we are running with elevated privileges and should ignore env variables */ 1078/* return true if we are running with elevated privileges and should ignore env variables */
597static int 1079int inline_size
598enable_secure (void) 1080enable_secure (void)
599{ 1081{
600#ifdef WIN32 1082#ifdef _WIN32
601 return 0; 1083 return 0;
602#else 1084#else
603 return getuid () != geteuid () 1085 return getuid () != geteuid ()
604 || getgid () != getegid (); 1086 || getgid () != getegid ();
605#endif 1087#endif
606} 1088}
607 1089
608int 1090unsigned int
609ev_method (EV_P) 1091ev_supported_backends (void)
610{ 1092{
611 return method; 1093 unsigned int flags = 0;
612}
613 1094
614static void 1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
615loop_init (EV_P_ int methods) 1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1097 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1098 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100
1101 return flags;
1102}
1103
1104unsigned int
1105ev_recommended_backends (void)
616{ 1106{
617 if (!method) 1107 unsigned int flags = ev_supported_backends ();
1108
1109#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE;
1113#endif
1114#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation
1116 flags &= ~EVBACKEND_POLL;
1117#endif
1118
1119 return flags;
1120}
1121
1122unsigned int
1123ev_embeddable_backends (void)
1124{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132}
1133
1134unsigned int
1135ev_backend (EV_P)
1136{
1137 return backend;
1138}
1139
1140unsigned int
1141ev_loop_count (EV_P)
1142{
1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
1156}
1157
1158static void noinline
1159loop_init (EV_P_ unsigned int flags)
1160{
1161 if (!backend)
618 { 1162 {
619#if EV_USE_MONOTONIC 1163#if EV_USE_MONOTONIC
620 { 1164 {
621 struct timespec ts; 1165 struct timespec ts;
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 1167 have_monotonic = 1;
624 } 1168 }
625#endif 1169#endif
626 1170
627 rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 1172 mn_now = get_clock ();
629 now_floor = mn_now; 1173 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
631 1175
632 if (methods == EVMETHOD_AUTO) 1176 io_blocktime = 0.;
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
1184
1185 /* pid check not overridable via env */
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
635 else
636 methods = EVMETHOD_ANY;
637 1195
638 method = 0; 1196 if (!(flags & 0x0000ffffU))
639#if EV_USE_WIN32 1197 flags |= ev_recommended_backends ();
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1198
1199#if EV_USE_PORT
1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
641#endif 1201#endif
642#if EV_USE_KQUEUE 1202#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
644#endif 1204#endif
645#if EV_USE_EPOLL 1205#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1206 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
647#endif 1207#endif
648#if EV_USE_POLL 1208#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1209 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
650#endif 1210#endif
651#if EV_USE_SELECT 1211#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
653#endif 1213#endif
654 }
655}
656 1214
657void 1215 ev_init (&pipeev, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI);
1217 }
1218}
1219
1220static void noinline
658loop_destroy (EV_P) 1221loop_destroy (EV_P)
659{ 1222{
660 int i; 1223 int i;
661 1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
1241
662#if EV_USE_WIN32 1242#if EV_USE_INOTIFY
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1243 if (fs_fd >= 0)
1244 close (fs_fd);
1245#endif
1246
1247 if (backend_fd >= 0)
1248 close (backend_fd);
1249
1250#if EV_USE_PORT
1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
664#endif 1252#endif
665#if EV_USE_KQUEUE 1253#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
667#endif 1255#endif
668#if EV_USE_EPOLL 1256#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1257 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
670#endif 1258#endif
671#if EV_USE_POLL 1259#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1260 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
673#endif 1261#endif
674#if EV_USE_SELECT 1262#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
676#endif 1264#endif
677 1265
678 for (i = NUMPRI; i--; ) 1266 for (i = NUMPRI; i--; )
1267 {
679 array_free (pending, [i]); 1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
680 1273
1274 ev_free (anfds); anfdmax = 0;
1275
1276 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 1277 array_free (fdchange, EMPTY);
682 array_free (timer, ); 1278 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE
683 array_free (periodic, ); 1280 array_free (periodic, EMPTY);
684 array_free (idle, ); 1281#endif
1282#if EV_FORK_ENABLE
1283 array_free (fork, EMPTY);
1284#endif
685 array_free (prepare, ); 1285 array_free (prepare, EMPTY);
686 array_free (check, ); 1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
687 1290
688 method = 0; 1291 backend = 0;
689 /*TODO*/
690} 1292}
691 1293
692void 1294#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P);
1296#endif
1297
1298void inline_size
693loop_fork (EV_P) 1299loop_fork (EV_P)
694{ 1300{
695 /*TODO*/ 1301#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif
1304#if EV_USE_KQUEUE
1305 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1306#endif
696#if EV_USE_EPOLL 1307#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1308 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
698#endif 1309#endif
699#if EV_USE_KQUEUE 1310#if EV_USE_INOTIFY
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1311 infy_fork (EV_A);
701#endif 1312#endif
1313
1314 if (ev_is_active (&pipeev))
1315 {
1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
1322
1323 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
1333 close (evpipe [0]);
1334 close (evpipe [1]);
1335 }
1336
1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
1340 }
1341
1342 postfork = 0;
702} 1343}
703 1344
704#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
705struct ev_loop * 1346struct ev_loop *
706ev_loop_new (int methods) 1347ev_loop_new (unsigned int flags)
707{ 1348{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
709 1350
1351 memset (loop, 0, sizeof (struct ev_loop));
1352
710 loop_init (EV_A_ methods); 1353 loop_init (EV_A_ flags);
711 1354
712 if (ev_method (EV_A)) 1355 if (ev_backend (EV_A))
713 return loop; 1356 return loop;
714 1357
715 return 0; 1358 return 0;
716} 1359}
717 1360
718void 1361void
719ev_loop_destroy (EV_P) 1362ev_loop_destroy (EV_P)
720{ 1363{
721 loop_destroy (EV_A); 1364 loop_destroy (EV_A);
722 free (loop); 1365 ev_free (loop);
723} 1366}
724 1367
725void 1368void
726ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
727{ 1370{
728 loop_fork (EV_A); 1371 postfork = 1; /* must be in line with ev_default_fork */
729} 1372}
730 1373
731#endif 1374#endif
732 1375
733#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 1377struct ev_loop *
1378ev_default_loop_init (unsigned int flags)
738#else 1379#else
739static int default_loop;
740
741int 1380int
1381ev_default_loop (unsigned int flags)
742#endif 1382#endif
743ev_default_loop (int methods)
744{ 1383{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop) 1384 if (!ev_default_loop_ptr)
750 { 1385 {
751#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
753#else 1388#else
754 default_loop = 1; 1389 ev_default_loop_ptr = 1;
755#endif 1390#endif
756 1391
757 loop_init (EV_A_ methods); 1392 loop_init (EV_A_ flags);
758 1393
759 if (ev_method (EV_A)) 1394 if (ev_backend (EV_A))
760 { 1395 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A);
764
765#ifndef WIN32 1396#ifndef _WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif 1401#endif
771 } 1402 }
772 else 1403 else
773 default_loop = 0; 1404 ev_default_loop_ptr = 0;
774 } 1405 }
775 1406
776 return default_loop; 1407 return ev_default_loop_ptr;
777} 1408}
778 1409
779void 1410void
780ev_default_destroy (void) 1411ev_default_destroy (void)
781{ 1412{
782#if EV_MULTIPLICITY 1413#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 1414 struct ev_loop *loop = ev_default_loop_ptr;
784#endif 1415#endif
785 1416
1417#ifndef _WIN32
786 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
788 1420#endif
789 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794 1421
795 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
796} 1423}
797 1424
798void 1425void
799ev_default_fork (void) 1426ev_default_fork (void)
800{ 1427{
801#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 1429 struct ev_loop *loop = ev_default_loop_ptr;
803#endif 1430#endif
804 1431
805 loop_fork (EV_A); 1432 if (backend)
806 1433 postfork = 1; /* must be in line with ev_loop_fork */
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 1434}
815 1435
816/*****************************************************************************/ 1436/*****************************************************************************/
817 1437
818static void 1438void
1439ev_invoke (EV_P_ void *w, int revents)
1440{
1441 EV_CB_INVOKE ((W)w, revents);
1442}
1443
1444void inline_speed
819call_pending (EV_P) 1445call_pending (EV_P)
820{ 1446{
821 int pri; 1447 int pri;
822 1448
823 for (pri = NUMPRI; pri--; ) 1449 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri]) 1450 while (pendingcnt [pri])
825 { 1451 {
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 1453
828 if (p->w) 1454 if (expect_true (p->w))
829 { 1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
830 p->w->pending = 0; 1458 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 1459 EV_CB_INVOKE (p->w, p->events);
832 } 1460 }
833 } 1461 }
834} 1462}
835 1463
836static void 1464void inline_size
837timers_reify (EV_P) 1465timers_reify (EV_P)
838{ 1466{
839 while (timercnt && ((WT)timers [0])->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
840 { 1468 {
841 struct ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
842 1470
843 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
844 1472
845 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
846 if (w->repeat) 1474 if (w->repeat)
847 { 1475 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
849 ((WT)w)->at = mn_now + w->repeat; 1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
850 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
851 } 1483 }
852 else 1484 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 1486
855 event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 1488 }
857} 1489}
858 1490
859static void 1491#if EV_PERIODIC_ENABLE
1492void inline_size
860periodics_reify (EV_P) 1493periodics_reify (EV_P)
861{ 1494{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
863 { 1496 {
864 struct ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
865 1498
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
867 1500
868 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
869 if (w->interval) 1502 if (w->reschedule_cb)
870 { 1503 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
874 } 1514 }
875 else 1515 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1517
878 event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1519 }
880} 1520}
881 1521
882static void 1522static void noinline
883periodics_reschedule (EV_P) 1523periodics_reschedule (EV_P)
884{ 1524{
885 int i; 1525 int i;
886 1526
887 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 0; i < periodiccnt; ++i)
889 { 1529 {
890 struct ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
891 1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE
1545void inline_size
1546idle_reify (EV_P)
1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
893 { 1553 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1554 if (pendingcnt [pri])
1555 break;
895 1556
896 if (fabs (diff) >= 1e-4) 1557 if (idlecnt [pri])
897 { 1558 {
898 ev_periodic_stop (EV_A_ w); 1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
899 ev_periodic_start (EV_A_ w); 1560 break;
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 } 1561 }
903 } 1562 }
904 } 1563 }
905} 1564}
1565#endif
906 1566
907inline int 1567void inline_speed
908time_update_monotonic (EV_P) 1568time_update (EV_P_ ev_tstamp max_block)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
925static void
926time_update (EV_P)
927{ 1569{
928 int i; 1570 int i;
929 1571
930#if EV_USE_MONOTONIC 1572#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1573 if (expect_true (have_monotonic))
932 { 1574 {
933 if (time_update_monotonic (EV_A)) 1575 ev_tstamp odiff = rtmn_diff;
1576
1577 mn_now = get_clock ();
1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
934 { 1582 {
935 ev_tstamp odiff = rtmn_diff; 1583 ev_rt_now = rtmn_diff + mn_now;
1584 return;
1585 }
936 1586
1587 now_floor = mn_now;
1588 ev_rt_now = ev_time ();
1589
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1590 /* loop a few times, before making important decisions.
1591 * on the choice of "4": one iteration isn't enough,
1592 * in case we get preempted during the calls to
1593 * ev_time and get_clock. a second call is almost guaranteed
1594 * to succeed in that case, though. and looping a few more times
1595 * doesn't hurt either as we only do this on time-jumps or
1596 * in the unlikely event of having been preempted here.
1597 */
1598 for (i = 4; --i; )
938 { 1599 {
939 rtmn_diff = rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
940 1601
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1603 return; /* all is well */
943 1604
944 rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1606 mn_now = get_clock ();
946 now_floor = mn_now; 1607 now_floor = mn_now;
947 } 1608 }
948 1609
1610# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A);
1612# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 }
1616 else
1617#endif
1618 {
1619 ev_rt_now = ev_time ();
1620
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 {
1623#if EV_PERIODIC_ENABLE
949 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */ 1625#endif
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
952 } 1629 }
953 }
954 else
955#endif
956 {
957 rt_now = ev_time ();
958 1630
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 {
961 periodics_reschedule (EV_A);
962
963 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now;
966 }
967
968 mn_now = rt_now; 1631 mn_now = ev_rt_now;
969 } 1632 }
970} 1633}
971 1634
972void 1635void
973ev_ref (EV_P) 1636ev_ref (EV_P)
984static int loop_done; 1647static int loop_done;
985 1648
986void 1649void
987ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
988{ 1651{
989 double block; 1652 loop_done = EVUNLOOP_CANCEL;
990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1653
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
991 1655
992 do 1656 do
993 { 1657 {
1658#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid))
1661 {
1662 curpid = getpid ();
1663 postfork = 1;
1664 }
1665#endif
1666
1667#if EV_FORK_ENABLE
1668 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork))
1670 if (forkcnt)
1671 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A);
1674 }
1675#endif
1676
994 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
995 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
996 { 1679 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1681 call_pending (EV_A);
999 } 1682 }
1000 1683
1684 if (expect_false (!activecnt))
1685 break;
1686
1687 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork))
1689 loop_fork (EV_A);
1690
1001 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1692 fd_reify (EV_A);
1003 1693
1004 /* calculate blocking time */ 1694 /* calculate blocking time */
1695 {
1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
1005 1698
1006 /* we only need this for !monotonic clockor timers, but as we basically 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 { 1700 {
1014 rt_now = ev_time (); 1701 /* update time to cancel out callback processing overhead */
1015 mn_now = rt_now; 1702 time_update (EV_A_ 1e100);
1016 }
1017 1703
1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.;
1020 else
1021 {
1022 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
1023 1705
1024 if (timercnt) 1706 if (timercnt)
1025 { 1707 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1027 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
1028 } 1710 }
1029 1711
1712#if EV_PERIODIC_ENABLE
1030 if (periodiccnt) 1713 if (periodiccnt)
1031 { 1714 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1033 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
1034 } 1717 }
1718#endif
1035 1719
1036 if (block < 0.) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
1037 } 1733 }
1038 1734
1039 method_poll (EV_A_ block); 1735 ++loop_count;
1736 backend_poll (EV_A_ waittime);
1040 1737
1041 /* update rt_now, do magic */ 1738 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1739 time_update (EV_A_ waittime + sleeptime);
1740 }
1043 1741
1044 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1744#if EV_PERIODIC_ENABLE
1046 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1746#endif
1047 1747
1748#if EV_IDLE_ENABLE
1048 /* queue idle watchers unless io or timers are pending */ 1749 /* queue idle watchers unless other events are pending */
1049 if (!pendingcnt) 1750 idle_reify (EV_A);
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1751#endif
1051 1752
1052 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1754 if (expect_false (checkcnt))
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 1756
1056 call_pending (EV_A); 1757 call_pending (EV_A);
1057 } 1758 }
1058 while (activecnt && !loop_done); 1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1059 1764
1060 if (loop_done != 2) 1765 if (loop_done == EVUNLOOP_ONE)
1061 loop_done = 0; 1766 loop_done = EVUNLOOP_CANCEL;
1062} 1767}
1063 1768
1064void 1769void
1065ev_unloop (EV_P_ int how) 1770ev_unloop (EV_P_ int how)
1066{ 1771{
1067 loop_done = how; 1772 loop_done = how;
1068} 1773}
1069 1774
1070/*****************************************************************************/ 1775/*****************************************************************************/
1071 1776
1072inline void 1777void inline_size
1073wlist_add (WL *head, WL elem) 1778wlist_add (WL *head, WL elem)
1074{ 1779{
1075 elem->next = *head; 1780 elem->next = *head;
1076 *head = elem; 1781 *head = elem;
1077} 1782}
1078 1783
1079inline void 1784void inline_size
1080wlist_del (WL *head, WL elem) 1785wlist_del (WL *head, WL elem)
1081{ 1786{
1082 while (*head) 1787 while (*head)
1083 { 1788 {
1084 if (*head == elem) 1789 if (*head == elem)
1089 1794
1090 head = &(*head)->next; 1795 head = &(*head)->next;
1091 } 1796 }
1092} 1797}
1093 1798
1094inline void 1799void inline_speed
1095ev_clear_pending (EV_P_ W w) 1800clear_pending (EV_P_ W w)
1096{ 1801{
1097 if (w->pending) 1802 if (w->pending)
1098 { 1803 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1100 w->pending = 0; 1805 w->pending = 0;
1101 } 1806 }
1102} 1807}
1103 1808
1104inline void 1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1835void inline_speed
1105ev_start (EV_P_ W w, int active) 1836ev_start (EV_P_ W w, int active)
1106{ 1837{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
1110 w->active = active; 1839 w->active = active;
1111 ev_ref (EV_A); 1840 ev_ref (EV_A);
1112} 1841}
1113 1842
1114inline void 1843void inline_size
1115ev_stop (EV_P_ W w) 1844ev_stop (EV_P_ W w)
1116{ 1845{
1117 ev_unref (EV_A); 1846 ev_unref (EV_A);
1118 w->active = 0; 1847 w->active = 0;
1119} 1848}
1120 1849
1121/*****************************************************************************/ 1850/*****************************************************************************/
1122 1851
1123void 1852void noinline
1124ev_io_start (EV_P_ struct ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
1125{ 1854{
1126 int fd = w->fd; 1855 int fd = w->fd;
1127 1856
1128 if (ev_is_active (w)) 1857 if (expect_false (ev_is_active (w)))
1129 return; 1858 return;
1130 1859
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1861
1133 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1136 1865
1137 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1138} 1868}
1139 1869
1140void 1870void noinline
1141ev_io_stop (EV_P_ struct ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1142{ 1872{
1143 ev_clear_pending (EV_A_ (W)w); 1873 clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w)) 1874 if (expect_false (!ev_is_active (w)))
1145 return; 1875 return;
1146 1876
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1878
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1149 1881
1150 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1151} 1883}
1152 1884
1153void 1885void noinline
1154ev_timer_start (EV_P_ struct ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1155{ 1887{
1156 if (ev_is_active (w)) 1888 if (expect_false (ev_is_active (w)))
1157 return; 1889 return;
1158 1890
1159 ((WT)w)->at += mn_now; 1891 ev_at (w) += mn_now;
1160 1892
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1894
1163 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1165 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1166 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1167 1899
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1169} 1901}
1170 1902
1171void 1903void noinline
1172ev_timer_stop (EV_P_ struct ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1173{ 1905{
1174 ev_clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w)) 1907 if (expect_false (!ev_is_active (w)))
1176 return; 1908 return;
1177 1909
1910 {
1911 int active = ev_active (w);
1912
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1913 assert (("internal timer heap corruption", timers [active] == (WT)w));
1179 1914
1180 if (((W)w)->active < timercnt--) 1915 if (expect_true (active < timercnt))
1181 { 1916 {
1182 timers [((W)w)->active - 1] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1918 adjustheap (timers, timercnt, active);
1184 } 1919 }
1185 1920
1186 ((WT)w)->at = w->repeat; 1921 --timercnt;
1922 }
1923
1924 ev_at (w) -= mn_now;
1187 1925
1188 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1189} 1927}
1190 1928
1191void 1929void noinline
1192ev_timer_again (EV_P_ struct ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
1193{ 1931{
1194 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1195 { 1933 {
1196 if (w->repeat) 1934 if (w->repeat)
1197 { 1935 {
1198 ((WT)w)->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1937 adjustheap (timers, timercnt, ev_active (w));
1200 } 1938 }
1201 else 1939 else
1202 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1203 } 1941 }
1204 else if (w->repeat) 1942 else if (w->repeat)
1943 {
1944 ev_at (w) = w->repeat;
1205 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1946 }
1206} 1947}
1207 1948
1208void 1949#if EV_PERIODIC_ENABLE
1950void noinline
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
1210{ 1952{
1211 if (ev_is_active (w)) 1953 if (expect_false (ev_is_active (w)))
1212 return; 1954 return;
1213 1955
1956 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval)
1959 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 }
1964 else
1965 ev_at (w) = w->offset;
1219 1966
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1222 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1224 1971
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1226} 1973}
1227 1974
1228void 1975void noinline
1229ev_periodic_stop (EV_P_ struct ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1230{ 1977{
1231 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1979 if (expect_false (!ev_is_active (w)))
1233 return; 1980 return;
1234 1981
1982 {
1983 int active = ev_active (w);
1984
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1236 1986
1237 if (((W)w)->active < periodiccnt--) 1987 if (expect_true (active < periodiccnt))
1238 { 1988 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1990 adjustheap (periodics, periodiccnt, active);
1241 } 1991 }
1992
1993 --periodiccnt;
1994 }
1242 1995
1243 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1244} 1997}
1245 1998
1246void 1999void noinline
1247ev_idle_start (EV_P_ struct ev_idle *w) 2000ev_periodic_again (EV_P_ ev_periodic *w)
1248{ 2001{
1249 if (ev_is_active (w)) 2002 /* TODO: use adjustheap and recalculation */
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w); 2003 ev_periodic_stop (EV_A_ w);
2004 ev_periodic_start (EV_A_ w);
1266} 2005}
1267 2006#endif
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311 2007
1312#ifndef SA_RESTART 2008#ifndef SA_RESTART
1313# define SA_RESTART 0 2009# define SA_RESTART 0
1314#endif 2010#endif
1315 2011
1316void 2012void noinline
1317ev_signal_start (EV_P_ struct ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
1318{ 2014{
1319#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1321#endif 2017#endif
1322 if (ev_is_active (w)) 2018 if (expect_false (ev_is_active (w)))
1323 return; 2019 return;
1324 2020
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1327 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1330 2041
1331 if (!((WL)w)->next) 2042 if (!((WL)w)->next)
1332 { 2043 {
1333#if WIN32 2044#if _WIN32
1334 signal (w->signum, sighandler); 2045 signal (w->signum, ev_sighandler);
1335#else 2046#else
1336 struct sigaction sa; 2047 struct sigaction sa;
1337 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1338 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1340 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
1341#endif 2052#endif
1342 } 2053 }
1343} 2054}
1344 2055
1345void 2056void noinline
1346ev_signal_stop (EV_P_ struct ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1347{ 2058{
1348 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w)) 2060 if (expect_false (!ev_is_active (w)))
1350 return; 2061 return;
1351 2062
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1354 2065
1355 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1356 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1357} 2068}
1358 2069
1359void 2070void
1360ev_child_start (EV_P_ struct ev_child *w) 2071ev_child_start (EV_P_ ev_child *w)
1361{ 2072{
1362#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1364#endif 2075#endif
1365 if (ev_is_active (w)) 2076 if (expect_false (ev_is_active (w)))
1366 return; 2077 return;
1367 2078
1368 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1370} 2081}
1371 2082
1372void 2083void
1373ev_child_stop (EV_P_ struct ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1374{ 2085{
1375 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w)) 2087 if (expect_false (!ev_is_active (w)))
1377 return; 2088 return;
1378 2089
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1381} 2092}
1382 2093
2094#if EV_STAT_ENABLE
2095
2096# ifdef _WIN32
2097# undef lstat
2098# define lstat(a,b) _stati64 (a,b)
2099# endif
2100
2101#define DEF_STAT_INTERVAL 5.0074891
2102#define MIN_STAT_INTERVAL 0.1074891
2103
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105
2106#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192
2108
2109static void noinline
2110infy_add (EV_P_ ev_stat *w)
2111{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113
2114 if (w->wd < 0)
2115 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117
2118 /* monitor some parent directory for speedup hints */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 {
2121 char path [4096];
2122 strcpy (path, w->path);
2123
2124 do
2125 {
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128
2129 char *pend = strrchr (path, '/');
2130
2131 if (!pend)
2132 break; /* whoops, no '/', complain to your admin */
2133
2134 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 }
2139 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142
2143 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2145}
2146
2147static void noinline
2148infy_del (EV_P_ ev_stat *w)
2149{
2150 int slot;
2151 int wd = w->wd;
2152
2153 if (wd < 0)
2154 return;
2155
2156 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w);
2159
2160 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd);
2162}
2163
2164static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{
2167 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev);
2171 else
2172 {
2173 WL w_;
2174
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2176 {
2177 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */
2179
2180 if (w->wd == wd || wd == -1)
2181 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 {
2184 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */
2186 }
2187
2188 stat_timer_cb (EV_A_ &w->timer, 0);
2189 }
2190 }
2191 }
2192}
2193
2194static void
2195infy_cb (EV_P_ ev_io *w, int revents)
2196{
2197 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf));
2201
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204}
2205
2206void inline_size
2207infy_init (EV_P)
2208{
2209 if (fs_fd != -2)
2210 return;
2211
2212 fs_fd = inotify_init ();
2213
2214 if (fs_fd >= 0)
2215 {
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w);
2219 }
2220}
2221
2222void inline_size
2223infy_fork (EV_P)
2224{
2225 int slot;
2226
2227 if (fs_fd < 0)
2228 return;
2229
2230 close (fs_fd);
2231 fs_fd = inotify_init ();
2232
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 {
2235 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0;
2237
2238 while (w_)
2239 {
2240 ev_stat *w = (ev_stat *)w_;
2241 w_ = w_->next; /* lets us add this watcher */
2242
2243 w->wd = -1;
2244
2245 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else
2248 ev_timer_start (EV_A_ &w->timer);
2249 }
2250
2251 }
2252}
2253
2254#endif
2255
2256void
2257ev_stat_stat (EV_P_ ev_stat *w)
2258{
2259 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1;
2263}
2264
2265static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269
2270 /* we copy this here each the time so that */
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w);
2274
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if (
2277 w->prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime
2288 ) {
2289 #if EV_USE_INOTIFY
2290 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */
2293 #endif
2294
2295 ev_feed_event (EV_A_ w, EV_STAT);
2296 }
2297}
2298
2299void
2300ev_stat_start (EV_P_ ev_stat *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w);
2310
2311 if (w->interval < MIN_STAT_INTERVAL)
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2315 ev_set_priority (&w->timer, ev_priority (w));
2316
2317#if EV_USE_INOTIFY
2318 infy_init (EV_A);
2319
2320 if (fs_fd >= 0)
2321 infy_add (EV_A_ w);
2322 else
2323#endif
2324 ev_timer_start (EV_A_ &w->timer);
2325
2326 ev_start (EV_A_ (W)w, 1);
2327}
2328
2329void
2330ev_stat_stop (EV_P_ ev_stat *w)
2331{
2332 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w)))
2334 return;
2335
2336#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w);
2338#endif
2339 ev_timer_stop (EV_A_ &w->timer);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_IDLE_ENABLE
2346void
2347ev_idle_start (EV_P_ ev_idle *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
2358 ev_start (EV_A_ (W)w, active);
2359
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
2363}
2364
2365void
2366ev_idle_stop (EV_P_ ev_idle *w)
2367{
2368 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w)))
2370 return;
2371
2372 {
2373 int active = ev_active (w);
2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2380 }
2381}
2382#endif
2383
2384void
2385ev_prepare_start (EV_P_ ev_prepare *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w;
2393}
2394
2395void
2396ev_prepare_stop (EV_P_ ev_prepare *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ev_active (w);
2404
2405 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active;
2407 }
2408
2409 ev_stop (EV_A_ (W)w);
2410}
2411
2412void
2413ev_check_start (EV_P_ ev_check *w)
2414{
2415 if (expect_false (ev_is_active (w)))
2416 return;
2417
2418 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w;
2421}
2422
2423void
2424ev_check_stop (EV_P_ ev_check *w)
2425{
2426 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w)))
2428 return;
2429
2430 {
2431 int active = ev_active (w);
2432
2433 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active;
2435 }
2436
2437 ev_stop (EV_A_ (W)w);
2438}
2439
2440#if EV_EMBED_ENABLE
2441void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w)
2443{
2444 ev_loop (w->other, EVLOOP_NONBLOCK);
2445}
2446
2447static void
2448embed_io_cb (EV_P_ ev_io *io, int revents)
2449{
2450 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2451
2452 if (ev_cb (w))
2453 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2454 else
2455 ev_loop (w->other, EVLOOP_NONBLOCK);
2456}
2457
2458static void
2459embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2460{
2461 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2462
2463 {
2464 struct ev_loop *loop = w->other;
2465
2466 while (fdchangecnt)
2467 {
2468 fd_reify (EV_A);
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 }
2471 }
2472}
2473
2474#if 0
2475static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{
2478 ev_idle_stop (EV_A_ idle);
2479}
2480#endif
2481
2482void
2483ev_embed_start (EV_P_ ev_embed *w)
2484{
2485 if (expect_false (ev_is_active (w)))
2486 return;
2487
2488 {
2489 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 }
2493
2494 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io);
2496
2497 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare);
2500
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502
2503 ev_start (EV_A_ (W)w, 1);
2504}
2505
2506void
2507ev_embed_stop (EV_P_ ev_embed *w)
2508{
2509 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w)))
2511 return;
2512
2513 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare);
2515
2516 ev_stop (EV_A_ (W)w);
2517}
2518#endif
2519
2520#if EV_FORK_ENABLE
2521void
2522ev_fork_start (EV_P_ ev_fork *w)
2523{
2524 if (expect_false (ev_is_active (w)))
2525 return;
2526
2527 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w;
2530}
2531
2532void
2533ev_fork_stop (EV_P_ ev_fork *w)
2534{
2535 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w)))
2537 return;
2538
2539 {
2540 int active = ev_active (w);
2541
2542 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active;
2544 }
2545
2546 ev_stop (EV_A_ (W)w);
2547}
2548#endif
2549
2550#if EV_ASYNC_ENABLE
2551void
2552ev_async_start (EV_P_ ev_async *w)
2553{
2554 if (expect_false (ev_is_active (w)))
2555 return;
2556
2557 evpipe_init (EV_A);
2558
2559 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w;
2562}
2563
2564void
2565ev_async_stop (EV_P_ ev_async *w)
2566{
2567 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w)))
2569 return;
2570
2571 {
2572 int active = ev_active (w);
2573
2574 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active;
2576 }
2577
2578 ev_stop (EV_A_ (W)w);
2579}
2580
2581void
2582ev_async_send (EV_P_ ev_async *w)
2583{
2584 w->sent = 1;
2585 evpipe_write (EV_A_ &gotasync);
2586}
2587#endif
2588
1383/*****************************************************************************/ 2589/*****************************************************************************/
1384 2590
1385struct ev_once 2591struct ev_once
1386{ 2592{
1387 struct ev_io io; 2593 ev_io io;
1388 struct ev_timer to; 2594 ev_timer to;
1389 void (*cb)(int revents, void *arg); 2595 void (*cb)(int revents, void *arg);
1390 void *arg; 2596 void *arg;
1391}; 2597};
1392 2598
1393static void 2599static void
1396 void (*cb)(int revents, void *arg) = once->cb; 2602 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 2603 void *arg = once->arg;
1398 2604
1399 ev_io_stop (EV_A_ &once->io); 2605 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 2606 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 2607 ev_free (once);
1402 2608
1403 cb (revents, arg); 2609 cb (revents, arg);
1404} 2610}
1405 2611
1406static void 2612static void
1407once_cb_io (EV_P_ struct ev_io *w, int revents) 2613once_cb_io (EV_P_ ev_io *w, int revents)
1408{ 2614{
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2615 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410} 2616}
1411 2617
1412static void 2618static void
1413once_cb_to (EV_P_ struct ev_timer *w, int revents) 2619once_cb_to (EV_P_ ev_timer *w, int revents)
1414{ 2620{
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2621 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416} 2622}
1417 2623
1418void 2624void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2625ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 2626{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 2627 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 2628
1423 if (!once) 2629 if (expect_false (!once))
2630 {
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2631 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 2632 return;
1426 { 2633 }
2634
1427 once->cb = cb; 2635 once->cb = cb;
1428 once->arg = arg; 2636 once->arg = arg;
1429 2637
1430 ev_watcher_init (&once->io, once_cb_io); 2638 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 2639 if (fd >= 0)
1432 { 2640 {
1433 ev_io_set (&once->io, fd, events); 2641 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 2642 ev_io_start (EV_A_ &once->io);
1435 } 2643 }
1436 2644
1437 ev_watcher_init (&once->to, once_cb_to); 2645 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 2646 if (timeout >= 0.)
1439 { 2647 {
1440 ev_timer_set (&once->to, timeout, 0.); 2648 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 2649 ev_timer_start (EV_A_ &once->to);
1442 }
1443 } 2650 }
1444} 2651}
1445 2652
2653#if EV_MULTIPLICITY
2654 #include "ev_wrap.h"
2655#endif
2656
2657#ifdef __cplusplus
2658}
2659#endif
2660

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines