ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.30 by root, Thu Nov 1 08:28:33 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
63#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
65#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
66 122
67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
68#define MAX_BLOCKTIME 59.731 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
70 127
71#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
72 143
73typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
74typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
75typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
76 147
77static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
78ev_tstamp ev_now;
79int ev_method;
80 149
81static int have_monotonic; /* runtime */ 150#if WIN32
82 151/* note: the comment below could not be substantiated, but what would I care */
83static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
84static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
85static void (*method_poll)(ev_tstamp timeout); 154#endif
86 155
87/*****************************************************************************/ 156/*****************************************************************************/
88 157
89ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
90ev_time (void) 192ev_time (void)
91{ 193{
92#if EV_USE_REALTIME 194#if EV_USE_REALTIME
93 struct timespec ts; 195 struct timespec ts;
94 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
98 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
99 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
100#endif 202#endif
101} 203}
102 204
103static ev_tstamp 205inline ev_tstamp
104get_clock (void) 206get_clock (void)
105{ 207{
106#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
107 if (have_monotonic) 209 if (expect_true (have_monotonic))
108 { 210 {
109 struct timespec ts; 211 struct timespec ts;
110 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
111 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
112 } 214 }
113#endif 215#endif
114 216
115 return ev_time (); 217 return ev_time ();
116} 218}
117 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
118#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
119 227
120#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
121 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
122 { \ 230 { \
123 int newcnt = cur; \ 231 int newcnt = cur; \
124 do \ 232 do \
125 { \ 233 { \
126 newcnt = array_roundsize (base, newcnt << 1); \ 234 newcnt = array_roundsize (base, newcnt << 1); \
130 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
131 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
132 cur = newcnt; \ 240 cur = newcnt; \
133 } 241 }
134 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
135/*****************************************************************************/ 254/*****************************************************************************/
136
137typedef struct
138{
139 struct ev_io *head;
140 int events;
141} ANFD;
142
143static ANFD *anfds;
144static int anfdmax;
145 255
146static void 256static void
147anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
148{ 258{
149 while (count--) 259 while (count--)
150 { 260 {
151 base->head = 0; 261 base->head = 0;
152 base->events = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
153 ++base; 265 ++base;
154 } 266 }
155} 267}
156 268
157typedef struct
158{
159 W w;
160 int events;
161} ANPENDING;
162
163static ANPENDING *pendings;
164static int pendingmax, pendingcnt;
165
166static void 269static void
167event (W w, int events) 270event (EV_P_ W w, int events)
168{ 271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
169 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
170 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
171 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
173} 282}
174 283
175static void 284static void
176queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
177{ 286{
178 int i; 287 int i;
179 288
180 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
181 event (events [i], type); 290 event (EV_A_ events [i], type);
182} 291}
183 292
184static void 293static void
185fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
186{ 295{
187 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
188 struct ev_io *w; 297 struct ev_io *w;
189 298
190 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
191 { 300 {
192 int ev = w->events & events; 301 int ev = w->events & events;
193 302
194 if (ev) 303 if (ev)
195 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
196 } 305 }
197} 306}
198 307
199/*****************************************************************************/ 308/*****************************************************************************/
200 309
201static int *fdchanges;
202static int fdchangemax, fdchangecnt;
203
204static void 310static void
205fd_reify (void) 311fd_reify (EV_P)
206{ 312{
207 int i; 313 int i;
208 314
209 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
210 { 316 {
212 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
213 struct ev_io *w; 319 struct ev_io *w;
214 320
215 int events = 0; 321 int events = 0;
216 322
217 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
218 events |= w->events; 324 events |= w->events;
219 325
220 anfd->events &= ~EV_REIFY; 326 anfd->reify = 0;
221 327
222 if (anfd->events != events)
223 {
224 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
225 anfd->events = events; 329 anfd->events = events;
226 }
227 } 330 }
228 331
229 fdchangecnt = 0; 332 fdchangecnt = 0;
230} 333}
231 334
232static void 335static void
233fd_change (int fd) 336fd_change (EV_P_ int fd)
234{ 337{
235 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
236 return; 339 return;
237 340
238 anfds [fd].events |= EV_REIFY; 341 anfds [fd].reify = 1;
239 342
240 ++fdchangecnt; 343 ++fdchangecnt;
241 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
242 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
243} 346}
244 347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
245/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
246static void 361static void
247fd_recheck (void) 362fd_ebadf (EV_P)
248{ 363{
249 int fd; 364 int fd;
250 365
251 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
252 if (anfds [fd].events) 367 if (anfds [fd].events)
253 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
254 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
255 { 380 {
256 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 381 close (fd);
257 ev_io_stop (anfds [fd].head); 382 fd_kill (EV_A_ fd);
383 return;
258 } 384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
259} 400}
260 401
261/*****************************************************************************/ 402/*****************************************************************************/
262 403
263static struct ev_timer **timers;
264static int timermax, timercnt;
265
266static struct ev_periodic **periodics;
267static int periodicmax, periodiccnt;
268
269static void 404static void
270upheap (WT *timers, int k) 405upheap (WT *heap, int k)
271{ 406{
272 WT w = timers [k]; 407 WT w = heap [k];
273 408
274 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
275 { 410 {
276 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
277 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
278 k >>= 1; 413 k >>= 1;
279 } 414 }
280 415
281 timers [k] = w; 416 heap [k] = w;
282 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
283 418
284} 419}
285 420
286static void 421static void
287downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
288{ 423{
289 WT w = timers [k]; 424 WT w = heap [k];
290 425
291 while (k < (N >> 1)) 426 while (k < (N >> 1))
292 { 427 {
293 int j = k << 1; 428 int j = k << 1;
294 429
295 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
296 ++j; 431 ++j;
297 432
298 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
299 break; 434 break;
300 435
301 timers [k] = timers [j]; 436 heap [k] = heap [j];
302 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
303 k = j; 438 k = j;
304 } 439 }
305 440
306 timers [k] = w; 441 heap [k] = w;
307 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
308} 443}
309 444
310/*****************************************************************************/ 445/*****************************************************************************/
311 446
312typedef struct 447typedef struct
313{ 448{
314 struct ev_signal *head; 449 struct ev_watcher_list *head;
315 sig_atomic_t gotsig; 450 sig_atomic_t volatile gotsig;
316} ANSIG; 451} ANSIG;
317 452
318static ANSIG *signals; 453static ANSIG *signals;
319static int signalmax; 454static int signalmax;
320 455
321static int sigpipe [2]; 456static int sigpipe [2];
322static sig_atomic_t gotsig; 457static sig_atomic_t volatile gotsig;
323static struct ev_io sigev; 458static struct ev_io sigev;
324 459
325static void 460static void
326signals_init (ANSIG *base, int count) 461signals_init (ANSIG *base, int count)
327{ 462{
328 while (count--) 463 while (count--)
329 { 464 {
330 base->head = 0; 465 base->head = 0;
331 base->gotsig = 0; 466 base->gotsig = 0;
467
332 ++base; 468 ++base;
333 } 469 }
334} 470}
335 471
336static void 472static void
337sighandler (int signum) 473sighandler (int signum)
338{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
339 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
340 480
341 if (!gotsig) 481 if (!gotsig)
342 { 482 {
483 int old_errno = errno;
343 gotsig = 1; 484 gotsig = 1;
344 write (sigpipe [1], &gotsig, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
345 } 487 }
346} 488}
347 489
348static void 490static void
349sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
350{ 492{
351 struct ev_signal *w; 493 struct ev_watcher_list *w;
352 int sig; 494 int signum;
353 495
496 read (sigpipe [0], &revents, 1);
354 gotsig = 0; 497 gotsig = 0;
355 read (sigpipe [0], &revents, 1);
356 498
357 for (sig = signalmax; sig--; ) 499 for (signum = signalmax; signum--; )
358 if (signals [sig].gotsig) 500 if (signals [signum].gotsig)
359 { 501 {
360 signals [sig].gotsig = 0; 502 signals [signum].gotsig = 0;
361 503
362 for (w = signals [sig].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
363 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
364 } 506 }
365} 507}
366 508
367static void 509static void
368siginit (void) 510siginit (EV_P)
369{ 511{
512#ifndef WIN32
370 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
371 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
372 515
373 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
374 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
375 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
376 520
377 ev_io_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
378 ev_io_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
379} 524}
380 525
381/*****************************************************************************/ 526/*****************************************************************************/
382 527
383static struct ev_idle **idles; 528#ifndef WIN32
384static int idlemax, idlecnt;
385
386static struct ev_prepare **prepares;
387static int preparemax, preparecnt;
388
389static struct ev_check **checks;
390static int checkmax, checkcnt;
391
392/*****************************************************************************/
393 529
394static struct ev_child *childs [PID_HASHSIZE]; 530static struct ev_child *childs [PID_HASHSIZE];
395static struct ev_signal childev; 531static struct ev_signal childev;
396 532
397#ifndef WCONTINUED 533#ifndef WCONTINUED
398# define WCONTINUED 0 534# define WCONTINUED 0
399#endif 535#endif
400 536
401static void 537static void
402childcb (struct ev_signal *sw, int revents) 538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
403{ 539{
404 struct ev_child *w; 540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
405 int pid, status; 555 int pid, status;
406 556
407 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
408 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 558 {
409 if (w->pid == pid || w->pid == -1) 559 /* make sure we are called again until all childs have been reaped */
410 { 560 event (EV_A_ (W)sw, EV_SIGNAL);
411 w->status = status; 561
412 event ((W)w, EV_CHILD); 562 child_reap (EV_A_ sw, pid, pid, status);
413 } 563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
414} 565}
566
567#endif
415 568
416/*****************************************************************************/ 569/*****************************************************************************/
417 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
418#if EV_USE_EPOLL 574#if EV_USE_EPOLL
419# include "ev_epoll.c" 575# include "ev_epoll.c"
420#endif 576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
421#if EV_USE_SELECT 580#if EV_USE_SELECT
422# include "ev_select.c" 581# include "ev_select.c"
423#endif 582#endif
424 583
425int 584int
432ev_version_minor (void) 591ev_version_minor (void)
433{ 592{
434 return EV_VERSION_MINOR; 593 return EV_VERSION_MINOR;
435} 594}
436 595
437int ev_init (int flags) 596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
438{ 599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
439 if (!ev_method) 617 if (!method)
440 { 618 {
441#if EV_USE_MONOTONIC 619#if EV_USE_MONOTONIC
442 { 620 {
443 struct timespec ts; 621 struct timespec ts;
444 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
445 have_monotonic = 1; 623 have_monotonic = 1;
446 } 624 }
447#endif 625#endif
448 626
449 ev_now = ev_time (); 627 rt_now = ev_time ();
450 now = get_clock (); 628 mn_now = get_clock ();
629 now_floor = mn_now;
451 diff = ev_now - now; 630 rtmn_diff = rt_now - mn_now;
452 631
453 if (pipe (sigpipe)) 632 if (methods == EVMETHOD_AUTO)
454 return 0; 633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
455 634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
456 ev_method = EVMETHOD_NONE; 636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
457#if EV_USE_EPOLL 645#if EV_USE_EPOLL
458 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
459#endif 650#endif
460#if EV_USE_SELECT 651#if EV_USE_SELECT
461 if (ev_method == EVMETHOD_NONE) select_init (flags); 652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
462#endif 653#endif
654 }
655}
463 656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
464 if (ev_method) 759 if (ev_method (EV_A))
465 { 760 {
466 ev_watcher_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
467 siginit (); 763 siginit (EV_A);
468 764
765#ifndef WIN32
469 ev_signal_init (&childev, childcb, SIGCHLD); 766 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI);
470 ev_signal_start (&childev); 768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif
471 } 771 }
772 else
773 default_loop = 0;
472 } 774 }
473 775
474 return ev_method; 776 return default_loop;
475} 777}
476 778
477/*****************************************************************************/
478
479void 779void
480ev_prefork (void) 780ev_default_destroy (void)
481{ 781{
482 /* nop */ 782#if EV_MULTIPLICITY
483} 783 struct ev_loop *loop = default_loop;
484
485void
486ev_postfork_parent (void)
487{
488 /* nop */
489}
490
491void
492ev_postfork_child (void)
493{
494#if EV_USE_EPOLL
495 if (ev_method == EVMETHOD_EPOLL)
496 epoll_postfork_child ();
497#endif 784#endif
498 785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
499 ev_io_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
500 close (sigpipe [0]); 808 close (sigpipe [0]);
501 close (sigpipe [1]); 809 close (sigpipe [1]);
502 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
503 siginit (); 813 siginit (EV_A);
504} 814}
505 815
506/*****************************************************************************/ 816/*****************************************************************************/
507 817
508static void 818static void
509call_pending (void) 819call_pending (EV_P)
510{ 820{
821 int pri;
822
823 for (pri = NUMPRI; pri--; )
511 while (pendingcnt) 824 while (pendingcnt [pri])
512 { 825 {
513 ANPENDING *p = pendings + --pendingcnt; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
514 827
515 if (p->w) 828 if (p->w)
516 { 829 {
517 p->w->pending = 0; 830 p->w->pending = 0;
518 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
519 } 832 }
520 } 833 }
521} 834}
522 835
523static void 836static void
524timers_reify (void) 837timers_reify (EV_P)
525{ 838{
526 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
527 { 840 {
528 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
529 844
530 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
531 if (w->repeat) 846 if (w->repeat)
532 { 847 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
536 } 851 }
537 else 852 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 854
540 event ((W)w, EV_TIMEOUT); 855 event (EV_A_ (W)w, EV_TIMEOUT);
541 } 856 }
542} 857}
543 858
544static void 859static void
545periodics_reify (void) 860periodics_reify (EV_P)
546{ 861{
547 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
548 { 863 {
549 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
550 867
551 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
552 if (w->interval) 869 if (w->interval)
553 { 870 {
554 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
555 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
556 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
557 } 874 }
558 else 875 else
559 ev_periodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
560 877
561 event ((W)w, EV_TIMEOUT); 878 event (EV_A_ (W)w, EV_PERIODIC);
562 } 879 }
563} 880}
564 881
565static void 882static void
566periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
567{ 884{
568 int i; 885 int i;
569 886
570 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
571 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
572 { 889 {
573 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
574 891
575 if (w->interval) 892 if (w->interval)
576 { 893 {
577 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
578 895
579 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
580 { 897 {
581 ev_periodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
582 ev_periodic_start (w); 899 ev_periodic_start (EV_A_ w);
583 900
584 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
585 } 902 }
586 } 903 }
587 } 904 }
588} 905}
589 906
907inline int
908time_update_monotonic (EV_P)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
590static void 925static void
591time_update (void) 926time_update (EV_P)
592{ 927{
593 int i; 928 int i;
594 929
595 ev_now = ev_time (); 930#if EV_USE_MONOTONIC
596
597 if (have_monotonic) 931 if (expect_true (have_monotonic))
598 { 932 {
599 ev_tstamp odiff = diff; 933 if (time_update_monotonic (EV_A))
600
601 for (i = 4; --i; ) /* loop a few times, before making important decisions */
602 { 934 {
603 now = get_clock (); 935 ev_tstamp odiff = rtmn_diff;
936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
604 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
605 940
606 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
607 return; /* all is well */ 942 return; /* all is well */
608 943
609 ev_now = ev_time (); 944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
610 } 952 }
611
612 periodics_reschedule (diff - odiff);
613 /* no timer adjustment, as the monotonic clock doesn't jump */
614 } 953 }
615 else 954 else
955#endif
616 { 956 {
617 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 957 rt_now = ev_time ();
958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
618 { 960 {
619 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
620 962
621 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
622 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
623 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
624 } 966 }
625 967
626 now = ev_now; 968 mn_now = rt_now;
627 } 969 }
628} 970}
629 971
630int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
631 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
632void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
633{ 988{
634 double block; 989 double block;
635 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
636 991
637 do 992 do
638 { 993 {
639 /* queue check watchers (and execute them) */ 994 /* queue check watchers (and execute them) */
640 if (preparecnt) 995 if (expect_false (preparecnt))
641 { 996 {
642 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
643 call_pending (); 998 call_pending (EV_A);
644 } 999 }
645 1000
646 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
647 fd_reify (); 1002 fd_reify (EV_A);
648 1003
649 /* calculate blocking time */ 1004 /* calculate blocking time */
650 1005
651 /* we only need this for !monotonic clockor timers, but as we basically 1006 /* we only need this for !monotonic clockor timers, but as we basically
652 always have timers, we just calculate it always */ 1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 {
653 ev_now = ev_time (); 1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
654 1017
655 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
656 block = 0.; 1019 block = 0.;
657 else 1020 else
658 { 1021 {
659 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
660 1023
661 if (timercnt) 1024 if (timercnt)
662 { 1025 {
663 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
664 if (block > to) block = to; 1027 if (block > to) block = to;
665 } 1028 }
666 1029
667 if (periodiccnt) 1030 if (periodiccnt)
668 { 1031 {
669 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
670 if (block > to) block = to; 1033 if (block > to) block = to;
671 } 1034 }
672 1035
673 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
674 } 1037 }
675 1038
676 method_poll (block); 1039 method_poll (EV_A_ block);
677 1040
678 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
679 time_update (); 1042 time_update (EV_A);
680 1043
681 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
682 timers_reify (); /* relative timers called last */ 1045 timers_reify (EV_A); /* relative timers called last */
683 periodics_reify (); /* absolute timers called first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
684 1047
685 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
686 if (!pendingcnt) 1049 if (!pendingcnt)
687 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
688 1051
689 /* queue check watchers, to be executed first */ 1052 /* queue check watchers, to be executed first */
690 if (checkcnt) 1053 if (checkcnt)
691 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
692 1055
693 call_pending (); 1056 call_pending (EV_A);
694 } 1057 }
695 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
696 1059
697 if (ev_loop_done != 2) 1060 if (loop_done != 2)
698 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
699} 1068}
700 1069
701/*****************************************************************************/ 1070/*****************************************************************************/
702 1071
703static void 1072inline void
704wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
705{ 1074{
706 elem->next = *head; 1075 elem->next = *head;
707 *head = elem; 1076 *head = elem;
708} 1077}
709 1078
710static void 1079inline void
711wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
712{ 1081{
713 while (*head) 1082 while (*head)
714 { 1083 {
715 if (*head == elem) 1084 if (*head == elem)
720 1089
721 head = &(*head)->next; 1090 head = &(*head)->next;
722 } 1091 }
723} 1092}
724 1093
725static void 1094inline void
726ev_clear (W w) 1095ev_clear_pending (EV_P_ W w)
727{ 1096{
728 if (w->pending) 1097 if (w->pending)
729 { 1098 {
730 pendings [w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
731 w->pending = 0; 1100 w->pending = 0;
732 } 1101 }
733} 1102}
734 1103
735static void 1104inline void
736ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
737{ 1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
738 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
739} 1112}
740 1113
741static void 1114inline void
742ev_stop (W w) 1115ev_stop (EV_P_ W w)
743{ 1116{
1117 ev_unref (EV_A);
744 w->active = 0; 1118 w->active = 0;
745} 1119}
746 1120
747/*****************************************************************************/ 1121/*****************************************************************************/
748 1122
749void 1123void
750ev_io_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
751{ 1125{
1126 int fd = w->fd;
1127
752 if (ev_is_active (w)) 1128 if (ev_is_active (w))
753 return; 1129 return;
754 1130
755 int fd = w->fd; 1131 assert (("ev_io_start called with negative fd", fd >= 0));
756 1132
757 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
758 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
759 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
760 1136
761 fd_change (fd); 1137 fd_change (EV_A_ fd);
762} 1138}
763 1139
764void 1140void
765ev_io_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
766{ 1142{
767 ev_clear ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
768 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
769 return; 1145 return;
770 1146
771 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
772 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
773 1149
774 fd_change (w->fd); 1150 fd_change (EV_A_ w->fd);
775} 1151}
776 1152
777void 1153void
778ev_timer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
779{ 1155{
780 if (ev_is_active (w)) 1156 if (ev_is_active (w))
781 return; 1157 return;
782 1158
783 w->at += now; 1159 ((WT)w)->at += mn_now;
784 1160
785 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
786 1162
787 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
788 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
789 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
790 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
791}
792 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
793void 1171void
794ev_timer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
795{ 1173{
796 ev_clear ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
797 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
798 return; 1176 return;
799 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
800 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
801 { 1181 {
802 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
803 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
804 } 1184 }
805 1185
806 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
807 1187
808 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
809} 1189}
810 1190
811void 1191void
812ev_timer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
813{ 1193{
814 if (ev_is_active (w)) 1194 if (ev_is_active (w))
815 { 1195 {
816 if (w->repeat) 1196 if (w->repeat)
817 { 1197 {
818 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
819 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
820 } 1200 }
821 else 1201 else
822 ev_timer_stop (w); 1202 ev_timer_stop (EV_A_ w);
823 } 1203 }
824 else if (w->repeat) 1204 else if (w->repeat)
825 ev_timer_start (w); 1205 ev_timer_start (EV_A_ w);
826} 1206}
827 1207
828void 1208void
829ev_periodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
830{ 1210{
831 if (ev_is_active (w)) 1211 if (ev_is_active (w))
832 return; 1212 return;
833 1213
834 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
835 1215
836 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
837 if (w->interval) 1217 if (w->interval)
838 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
839 1219
840 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
841 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
842 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
843 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
844}
845 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
846void 1228void
847ev_periodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
848{ 1230{
849 ev_clear ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
850 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
851 return; 1233 return;
852 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
853 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
854 { 1238 {
855 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
856 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
857 } 1241 }
858 1242
859 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
860} 1244}
861 1245
862void 1246void
863ev_signal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
864{ 1248{
865 if (ev_is_active (w)) 1249 if (ev_is_active (w))
866 return; 1250 return;
867 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326
868 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
869 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
870 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
871 1330
872 if (!w->next) 1331 if (!((WL)w)->next)
873 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
874 struct sigaction sa; 1336 struct sigaction sa;
875 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
876 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
877 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
878 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
879 } 1342 }
880} 1343}
881 1344
882void 1345void
883ev_signal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
884{ 1347{
885 ev_clear ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
886 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
887 return; 1350 return;
888 1351
889 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
890 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
891 1354
892 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
893 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
894} 1357}
895 1358
896void 1359void
897ev_idle_start (struct ev_idle *w) 1360ev_child_start (EV_P_ struct ev_child *w)
898{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
899 if (ev_is_active (w)) 1365 if (ev_is_active (w))
900 return; 1366 return;
901 1367
902 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
903 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
904 idles [idlecnt - 1] = w;
905} 1370}
906 1371
907void 1372void
908ev_idle_stop (struct ev_idle *w) 1373ev_child_stop (EV_P_ struct ev_child *w)
909{ 1374{
910 ev_clear ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
911 if (ev_is_active (w)) 1376 if (ev_is_active (w))
912 return; 1377 return;
913 1378
914 idles [w->active - 1] = idles [--idlecnt];
915 ev_stop ((W)w);
916}
917
918void
919ev_prepare_start (struct ev_prepare *w)
920{
921 if (ev_is_active (w))
922 return;
923
924 ev_start ((W)w, ++preparecnt);
925 array_needsize (prepares, preparemax, preparecnt, );
926 prepares [preparecnt - 1] = w;
927}
928
929void
930ev_prepare_stop (struct ev_prepare *w)
931{
932 ev_clear ((W)w);
933 if (ev_is_active (w))
934 return;
935
936 prepares [w->active - 1] = prepares [--preparecnt];
937 ev_stop ((W)w);
938}
939
940void
941ev_check_start (struct ev_check *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, ++checkcnt);
947 array_needsize (checks, checkmax, checkcnt, );
948 checks [checkcnt - 1] = w;
949}
950
951void
952ev_check_stop (struct ev_check *w)
953{
954 ev_clear ((W)w);
955 if (ev_is_active (w))
956 return;
957
958 checks [w->active - 1] = checks [--checkcnt];
959 ev_stop ((W)w);
960}
961
962void
963ev_child_start (struct ev_child *w)
964{
965 if (ev_is_active (w))
966 return;
967
968 ev_start ((W)w, 1);
969 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
970}
971
972void
973ev_child_stop (struct ev_child *w)
974{
975 ev_clear ((W)w);
976 if (ev_is_active (w))
977 return;
978
979 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
980 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
981} 1381}
982 1382
983/*****************************************************************************/ 1383/*****************************************************************************/
984 1384
985struct ev_once 1385struct ev_once
989 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
990 void *arg; 1390 void *arg;
991}; 1391};
992 1392
993static void 1393static void
994once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
995{ 1395{
996 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
997 void *arg = once->arg; 1397 void *arg = once->arg;
998 1398
999 ev_io_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
1000 ev_timer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
1001 free (once); 1401 free (once);
1002 1402
1003 cb (revents, arg); 1403 cb (revents, arg);
1004} 1404}
1005 1405
1006static void 1406static void
1007once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
1008{ 1408{
1009 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1010} 1410}
1011 1411
1012static void 1412static void
1013once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
1014{ 1414{
1015 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1016} 1416}
1017 1417
1018void 1418void
1019ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1020{ 1420{
1021 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
1022 1422
1023 if (!once) 1423 if (!once)
1024 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 1429
1030 ev_watcher_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
1031 if (fd >= 0) 1431 if (fd >= 0)
1032 { 1432 {
1033 ev_io_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
1034 ev_io_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
1035 } 1435 }
1036 1436
1037 ev_watcher_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
1038 if (timeout >= 0.) 1438 if (timeout >= 0.)
1039 { 1439 {
1040 ev_timer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
1042 } 1442 }
1043 } 1443 }
1044} 1444}
1045 1445
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines