ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
55#endif 154#endif
56 155
57#include <math.h> 156#include <math.h>
58#include <stdlib.h> 157#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 158#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 159#include <stddef.h>
63 160
64#include <stdio.h> 161#include <stdio.h>
65 162
66#include <assert.h> 163#include <assert.h>
67#include <errno.h> 164#include <errno.h>
68#include <sys/types.h> 165#include <sys/types.h>
166#include <time.h>
167
168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
69#ifndef WIN32 176#ifndef _WIN32
177# include <sys/time.h>
70# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
71#endif 186# endif
72#include <sys/time.h> 187#endif
73#include <time.h>
74 188
75/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
76 198
77#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 201# define EV_USE_MONOTONIC 1
202# else
203# define EV_USE_MONOTONIC 0
204# endif
205#endif
206
207#ifndef EV_USE_REALTIME
208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209#endif
210
211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
215# define EV_USE_NANOSLEEP 0
216# endif
79#endif 217#endif
80 218
81#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
83#endif 221#endif
84 222
85#ifndef EV_USE_POLL 223#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 224# ifdef _WIN32
225# define EV_USE_POLL 0
226# else
227# define EV_USE_POLL 1
228# endif
87#endif 229#endif
88 230
89#ifndef EV_USE_EPOLL 231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
90# define EV_USE_EPOLL 0 235# define EV_USE_EPOLL 0
236# endif
91#endif 237#endif
92 238
93#ifndef EV_USE_KQUEUE 239#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 240# define EV_USE_KQUEUE 0
95#endif 241#endif
96 242
243#ifndef EV_USE_PORT
244# define EV_USE_PORT 0
245#endif
246
97#ifndef EV_USE_WIN32 247#ifndef EV_USE_INOTIFY
98# ifdef WIN32 248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 249# define EV_USE_INOTIFY 1
100# else 250# else
101# define EV_USE_WIN32 0 251# define EV_USE_INOTIFY 0
102# endif 252# endif
103#endif 253#endif
104 254
105#ifndef EV_USE_REALTIME 255#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 256# if EV_MINIMAL
257# define EV_PID_HASHSIZE 1
258# else
259# define EV_PID_HASHSIZE 16
107#endif 260# endif
261#endif
108 262
109/**/ 263#ifndef EV_INOTIFY_HASHSIZE
264# if EV_MINIMAL
265# define EV_INOTIFY_HASHSIZE 1
266# else
267# define EV_INOTIFY_HASHSIZE 16
268# endif
269#endif
270
271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 320
111#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
114#endif 324#endif
116#ifndef CLOCK_REALTIME 326#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 327# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 328# define EV_USE_REALTIME 0
119#endif 329#endif
120 330
331#if !EV_STAT_ENABLE
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334#endif
335
336#if !EV_USE_NANOSLEEP
337# ifndef _WIN32
338# include <sys/select.h>
339# endif
340#endif
341
342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
353#if EV_SELECT_IS_WINSOCKET
354# include <winsock.h>
355#endif
356
357#if EV_USE_EVENTFD
358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
121/**/ 379/**/
122 380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
386
387/*
388 * This is used to avoid floating point rounding problems.
389 * It is added to ev_rt_now when scheduling periodics
390 * to ensure progress, time-wise, even when rounding
391 * errors are against us.
392 * This value is good at least till the year 4000.
393 * Better solutions welcome.
394 */
395#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
396
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 397#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 398#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 399/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 400
128#include "ev.h"
129
130#if __GNUC__ >= 3 401#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 403# define noinline __attribute__ ((noinline))
133#else 404#else
134# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
135# define inline static 406# define noinline
407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
408# define inline
409# endif
136#endif 410#endif
137 411
138#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 413#define expect_true(expr) expect ((expr) != 0, 1)
414#define inline_size static inline
140 415
416#if EV_MINIMAL
417# define inline_speed static noinline
418#else
419# define inline_speed static inline
420#endif
421
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
143 429
430#define EMPTY /* required for microsofts broken pseudo-c compiler */
431#define EMPTY2(a,b) /* used to suppress some warnings */
432
144typedef struct ev_watcher *W; 433typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
147 436
437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif
149 449
150#if WIN32 450#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 451# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 452#endif
155 453
156/*****************************************************************************/ 454/*****************************************************************************/
157 455
456static void (*syserr_cb)(const char *msg);
457
458void
459ev_set_syserr_cb (void (*cb)(const char *msg))
460{
461 syserr_cb = cb;
462}
463
464static void noinline
465ev_syserr (const char *msg)
466{
467 if (!msg)
468 msg = "(libev) system error";
469
470 if (syserr_cb)
471 syserr_cb (msg);
472 else
473 {
474 perror (msg);
475 abort ();
476 }
477}
478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
495
496void
497ev_set_allocator (void *(*cb)(void *ptr, long size))
498{
499 alloc = cb;
500}
501
502inline_speed void *
503ev_realloc (void *ptr, long size)
504{
505 ptr = alloc (ptr, size);
506
507 if (!ptr && size)
508 {
509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
510 abort ();
511 }
512
513 return ptr;
514}
515
516#define ev_malloc(size) ev_realloc (0, (size))
517#define ev_free(ptr) ev_realloc ((ptr), 0)
518
519/*****************************************************************************/
520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
158typedef struct 525typedef struct
159{ 526{
160 struct ev_watcher_list *head; 527 WL head;
161 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
162 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
535#if EV_SELECT_IS_WINSOCKET
536 SOCKET handle;
537#endif
163} ANFD; 538} ANFD;
164 539
540/* stores the pending event set for a given watcher */
165typedef struct 541typedef struct
166{ 542{
167 W w; 543 W w;
168 int events; 544 int events; /* the pending event set for the given watcher */
169} ANPENDING; 545} ANPENDING;
170 546
547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
549typedef struct
550{
551 WL head;
552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
573#endif
574
171#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
172 576
173struct ev_loop 577 struct ev_loop
174{ 578 {
579 ev_tstamp ev_rt_now;
580 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 581 #define VAR(name,decl) decl;
176# include "ev_vars.h" 582 #include "ev_vars.h"
177};
178# undef VAR 583 #undef VAR
584 };
179# include "ev_wrap.h" 585 #include "ev_wrap.h"
586
587 static struct ev_loop default_loop_struct;
588 struct ev_loop *ev_default_loop_ptr;
180 589
181#else 590#else
182 591
592 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 593 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 594 #include "ev_vars.h"
185# undef VAR 595 #undef VAR
186 596
597 static int ev_default_loop_ptr;
598
187#endif 599#endif
600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
188 612
189/*****************************************************************************/ 613/*****************************************************************************/
190 614
191inline ev_tstamp 615#ifndef EV_HAVE_EV_TIME
616ev_tstamp
192ev_time (void) 617ev_time (void)
193{ 618{
194#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
195 struct timespec ts; 622 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
197 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
198#else 625 }
626#endif
627
199 struct timeval tv; 628 struct timeval tv;
200 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif
203} 631}
632#endif
204 633
205inline ev_tstamp 634inline_size ev_tstamp
206get_clock (void) 635get_clock (void)
207{ 636{
208#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
210 { 639 {
215#endif 644#endif
216 645
217 return ev_time (); 646 return ev_time ();
218} 647}
219 648
649#if EV_MULTIPLICITY
220ev_tstamp 650ev_tstamp
221ev_now (EV_P) 651ev_now (EV_P)
222{ 652{
223 return rt_now; 653 return ev_rt_now;
224} 654}
655#endif
225 656
226#define array_roundsize(base,n) ((n) | 4 & ~3) 657void
658ev_sleep (ev_tstamp delay)
659{
660 if (delay > 0.)
661 {
662#if EV_USE_NANOSLEEP
663 struct timespec ts;
227 664
665 ts.tv_sec = (time_t)delay;
666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667
668 nanosleep (&ts, 0);
669#elif defined(_WIN32)
670 Sleep ((unsigned long)(delay * 1e3));
671#else
672 struct timeval tv;
673
674 tv.tv_sec = (time_t)delay;
675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
680 select (0, 0, 0, 0, &tv);
681#endif
682 }
683}
684
685/*****************************************************************************/
686
687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
692array_nextsize (int elem, int cur, int cnt)
693{
694 int ncur = cur + 1;
695
696 do
697 ncur <<= 1;
698 while (cnt > ncur);
699
700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
702 {
703 ncur *= elem;
704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
705 ncur = ncur - sizeof (void *) * 4;
706 ncur /= elem;
707 }
708
709 return ncur;
710}
711
712static noinline void *
713array_realloc (int elem, void *base, int *cur, int cnt)
714{
715 *cur = array_nextsize (elem, *cur, cnt);
716 return ev_realloc (base, elem * *cur);
717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
721
228#define array_needsize(base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 723 if (expect_false ((cnt) > (cur))) \
230 { \ 724 { \
231 int newcnt = cur; \ 725 int ocur_ = (cur); \
232 do \ 726 (base) = (type *)array_realloc \
233 { \ 727 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 728 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 729 }
242 730
731#if 0
243#define array_slim(stem) \ 732#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 733 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 734 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 735 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 736 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 738 }
739#endif
250 740
251#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
253 743
254/*****************************************************************************/ 744/*****************************************************************************/
255 745
256static void 746/* dummy callback for pending events */
257anfds_init (ANFD *base, int count) 747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
258{ 749{
259 while (count--) 750}
260 {
261 base->head = 0;
262 base->events = EV_NONE;
263 base->reify = 0;
264 751
265 ++base; 752void noinline
753ev_feed_event (EV_P_ void *w, int revents)
754{
755 W w_ = (W)w;
756 int pri = ABSPRI (w_);
757
758 if (expect_false (w_->pending))
759 pendings [pri][w_->pending - 1].events |= revents;
760 else
266 } 761 {
267} 762 w_->pending = ++pendingcnt [pri];
268 763 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
269static void 764 pendings [pri][w_->pending - 1].w = w_;
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 765 pendings [pri][w_->pending - 1].events = revents;
275 return;
276 } 766 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282} 767}
283 768
284static void 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
285queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 786{
287 int i; 787 int i;
288 788
289 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
291} 791}
292 792
293static void 793/*****************************************************************************/
794
795inline_speed void
294fd_event (EV_P_ int fd, int events) 796fd_event_nc (EV_P_ int fd, int revents)
295{ 797{
296 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 799 ev_io *w;
298 800
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 802 {
301 int ev = w->events & events; 803 int ev = w->events & revents;
302 804
303 if (ev) 805 if (ev)
304 event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
305 } 807 }
306} 808}
307 809
308/*****************************************************************************/ 810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
309 816
310static void 817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
821void
822ev_feed_fd_event (EV_P_ int fd, int revents)
823{
824 if (fd >= 0 && fd < anfdmax)
825 fd_event_nc (EV_A_ fd, revents);
826}
827
828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
311fd_reify (EV_P) 831fd_reify (EV_P)
312{ 832{
313 int i; 833 int i;
314 834
315 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
316 { 836 {
317 int fd = fdchanges [i]; 837 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 838 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 839 ev_io *w;
320 840
321 int events = 0; 841 unsigned char events = 0;
322 842
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 843 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 844 events |= (unsigned char)w->events;
325 845
846#if EV_SELECT_IS_WINSOCKET
847 if (events)
848 {
849 unsigned long arg;
850 #ifdef EV_FD_TO_WIN32_HANDLE
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852 #else
853 anfd->handle = _get_osfhandle (fd);
854 #endif
855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
856 }
857#endif
858
859 {
860 unsigned char o_events = anfd->events;
861 unsigned char o_reify = anfd->reify;
862
326 anfd->reify = 0; 863 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 864 anfd->events = events;
865
866 if (o_events != events || o_reify & EV__IOFDSET)
867 backend_modify (EV_A_ fd, o_events, events);
868 }
330 } 869 }
331 870
332 fdchangecnt = 0; 871 fdchangecnt = 0;
333} 872}
334 873
335static void 874/* something about the given fd changed */
875inline_size void
336fd_change (EV_P_ int fd) 876fd_change (EV_P_ int fd, int flags)
337{ 877{
338 if (anfds [fd].reify || fdchangecnt < 0) 878 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 879 anfds [fd].reify |= flags;
342 880
881 if (expect_true (!reify))
882 {
343 ++fdchangecnt; 883 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
886 }
346} 887}
347 888
348static void 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
349fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
350{ 892{
351 struct ev_io *w; 893 ev_io *w;
352 894
353 while ((w = (struct ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
354 { 896 {
355 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 899 }
900}
901
902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
904fd_valid (int fd)
905{
906#ifdef _WIN32
907 return _get_osfhandle (fd) != -1;
908#else
909 return fcntl (fd, F_GETFD) != -1;
910#endif
358} 911}
359 912
360/* called on EBADF to verify fds */ 913/* called on EBADF to verify fds */
361static void 914static void noinline
362fd_ebadf (EV_P) 915fd_ebadf (EV_P)
363{ 916{
364 int fd; 917 int fd;
365 918
366 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 920 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
369 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
370} 923}
371 924
372/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 926static void noinline
374fd_enomem (EV_P) 927fd_enomem (EV_P)
375{ 928{
376 int fd; 929 int fd;
377 930
378 for (fd = anfdmax; fd--; ) 931 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 932 if (anfds [fd].events)
380 { 933 {
381 close (fd);
382 fd_kill (EV_A_ fd); 934 fd_kill (EV_A_ fd);
383 return; 935 return;
384 } 936 }
385} 937}
386 938
387/* susually called after fork if method needs to re-arm all fds from scratch */ 939/* usually called after fork if backend needs to re-arm all fds from scratch */
388static void 940static void noinline
389fd_rearm_all (EV_P) 941fd_rearm_all (EV_P)
390{ 942{
391 int fd; 943 int fd;
392 944
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events) 946 if (anfds [fd].events)
396 { 947 {
397 anfds [fd].events = 0; 948 anfds [fd].events = 0;
398 fd_change (EV_A_ fd); 949 anfds [fd].emask = 0;
950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
399 } 951 }
400} 952}
401 953
402/*****************************************************************************/ 954/*****************************************************************************/
403 955
404static void 956/*
405upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
406{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
407 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
408 961
409 while (k && heap [k >> 1]->at > w->at) 962/*
410 { 963 * at the moment we allow libev the luxury of two heaps,
411 heap [k] = heap [k >> 1]; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
412 ((W)heap [k])->active = k + 1; 965 * which is more cache-efficient.
413 k >>= 1; 966 * the difference is about 5% with 50000+ watchers.
414 } 967 */
968#if EV_USE_4HEAP
415 969
416 heap [k] = w; 970#define DHEAP 4
417 ((W)heap [k])->active = k + 1; 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
418 974
419} 975/* away from the root */
420 976inline_speed void
421static void
422downheap (WT *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
423{ 978{
424 WT w = heap [k]; 979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
425 981
426 while (k < (N >> 1)) 982 for (;;)
427 { 983 {
428 int j = k << 1; 984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
429 987
430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
431 ++j; 990 {
432 991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
433 if (w->at <= heap [j]->at) 992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
434 break; 1004 break;
435 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
436 heap [k] = heap [j]; 1044 heap [k] = heap [c];
437 ((W)heap [k])->active = k + 1; 1045 ev_active (ANHE_w (heap [k])) = k;
1046
438 k = j; 1047 k = c;
439 } 1048 }
440 1049
441 heap [k] = w; 1050 heap [k] = he;
442 ((W)heap [k])->active = k + 1; 1051 ev_active (ANHE_w (he)) = k;
1052}
1053#endif
1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
1068 heap [k] = heap [p];
1069 ev_active (ANHE_w (heap [k])) = k;
1070 k = p;
1071 }
1072
1073 heap [k] = he;
1074 ev_active (ANHE_w (he)) = k;
1075}
1076
1077/* move an element suitably so it is in a correct place */
1078inline_size void
1079adjustheap (ANHE *heap, int N, int k)
1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1082 upheap (heap, k);
1083 else
1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
443} 1097}
444 1098
445/*****************************************************************************/ 1099/*****************************************************************************/
446 1100
1101/* associate signal watchers to a signal signal */
447typedef struct 1102typedef struct
448{ 1103{
449 struct ev_watcher_list *head; 1104 WL head;
450 sig_atomic_t volatile gotsig; 1105 EV_ATOMIC_T gotsig;
451} ANSIG; 1106} ANSIG;
452 1107
453static ANSIG *signals; 1108static ANSIG *signals;
454static int signalmax; 1109static int signalmax;
455 1110
456static int sigpipe [2]; 1111static EV_ATOMIC_T gotsig;
457static sig_atomic_t volatile gotsig;
458static struct ev_io sigev;
459 1112
1113/*****************************************************************************/
1114
1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
1118fd_intern (int fd)
1119{
1120#ifdef _WIN32
1121 unsigned long arg = 1;
1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1123#else
1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
1125 fcntl (fd, F_SETFL, O_NONBLOCK);
1126#endif
1127}
1128
1129static void noinline
1130evpipe_init (EV_P)
1131{
1132 if (!ev_is_active (&pipe_w))
1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
1148 while (pipe (evpipe))
1149 ev_syserr ("(libev) error creating signal/async pipe");
1150
1151 fd_intern (evpipe [0]);
1152 fd_intern (evpipe [1]);
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
1155
1156 ev_io_start (EV_A_ &pipe_w);
1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179
1180 errno = old_errno;
1181 }
1182}
1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
460static void 1186static void
461signals_init (ANSIG *base, int count) 1187pipecb (EV_P_ ev_io *iow, int revents)
462{ 1188{
463 while (count--) 1189#if EV_USE_EVENTFD
1190 if (evfd >= 0)
1191 {
1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
464 { 1194 }
465 base->head = 0; 1195 else
1196#endif
1197 {
1198 char dummy;
1199 read (evpipe [0], &dummy, 1);
1200 }
1201
1202 if (gotsig && ev_is_default_loop (EV_A))
1203 {
1204 int signum;
466 base->gotsig = 0; 1205 gotsig = 0;
467 1206
468 ++base; 1207 for (signum = signalmax; signum--; )
1208 if (signals [signum].gotsig)
1209 ev_feed_signal_event (EV_A_ signum + 1);
1210 }
1211
1212#if EV_ASYNC_ENABLE
1213 if (gotasync)
469 } 1214 {
1215 int i;
1216 gotasync = 0;
1217
1218 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent)
1220 {
1221 asyncs [i]->sent = 0;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 }
1224 }
1225#endif
470} 1226}
1227
1228/*****************************************************************************/
471 1229
472static void 1230static void
473sighandler (int signum) 1231ev_sighandler (int signum)
474{ 1232{
1233#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct;
1235#endif
1236
475#if WIN32 1237#if _WIN32
476 signal (signum, sighandler); 1238 signal (signum, ev_sighandler);
477#endif 1239#endif
478 1240
479 signals [signum - 1].gotsig = 1; 1241 signals [signum - 1].gotsig = 1;
480 1242 evpipe_write (EV_A_ &gotsig);
481 if (!gotsig)
482 {
483 int old_errno = errno;
484 gotsig = 1;
485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
487 }
488} 1243}
489 1244
1245void noinline
1246ev_feed_signal_event (EV_P_ int signum)
1247{
1248 WL w;
1249
1250#if EV_MULTIPLICITY
1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252#endif
1253
1254 --signum;
1255
1256 if (signum < 0 || signum >= signalmax)
1257 return;
1258
1259 signals [signum].gotsig = 0;
1260
1261 for (w = signals [signum].head; w; w = w->next)
1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263}
1264
1265#if EV_USE_SIGNALFD
490static void 1266static void
491sigcb (EV_P_ struct ev_io *iow, int revents) 1267sigfdcb (EV_P_ ev_io *iow, int revents)
492{ 1268{
493 struct ev_watcher_list *w; 1269 struct signalfd_siginfo si[4], *sip;
494 int signum;
495 1270
496 read (sigpipe [0], &revents, 1); 1271 for (;;)
497 gotsig = 0;
498
499 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig)
501 { 1272 {
502 signals [signum].gotsig = 0; 1273 ssize_t res = read (sigfd, si, sizeof (si));
503 1274
504 for (w = signals [signum].head; w; w = w->next) 1275 /* not ISO-C, as res might be -1, but works with SuS */
505 event (EV_A_ (W)w, EV_SIGNAL); 1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
506 } 1281 }
507} 1282}
508
509static void
510siginit (EV_P)
511{
512#ifndef WIN32
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif 1283#endif
520
521 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
524}
525 1284
526/*****************************************************************************/ 1285/*****************************************************************************/
527 1286
1287static WL childs [EV_PID_HASHSIZE];
1288
528#ifndef WIN32 1289#ifndef _WIN32
529 1290
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev; 1291static ev_signal childev;
1292
1293#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0
1295#endif
1296
1297/* handle a single child status event */
1298inline_speed void
1299child_reap (EV_P_ int chain, int pid, int status)
1300{
1301 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1303
1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 {
1306 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1)))
1308 {
1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1310 w->rpid = pid;
1311 w->rstatus = status;
1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1313 }
1314 }
1315}
532 1316
533#ifndef WCONTINUED 1317#ifndef WCONTINUED
534# define WCONTINUED 0 1318# define WCONTINUED 0
535#endif 1319#endif
536 1320
1321/* called on sigchld etc., calls waitpid */
537static void 1322static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
554{ 1324{
555 int pid, status; 1325 int pid, status;
556 1326
1327 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1328 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 1329 if (!WCONTINUED
1330 || errno != EINVAL
1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1332 return;
1333
559 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
1335 /* we need to do it this way so that the callback gets called before we continue */
560 event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 1337
562 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
1339 if (EV_PID_HASHSIZE > 1)
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
564 }
565} 1341}
566 1342
567#endif 1343#endif
568 1344
569/*****************************************************************************/ 1345/*****************************************************************************/
570 1346
1347#if EV_USE_PORT
1348# include "ev_port.c"
1349#endif
571#if EV_USE_KQUEUE 1350#if EV_USE_KQUEUE
572# include "ev_kqueue.c" 1351# include "ev_kqueue.c"
573#endif 1352#endif
574#if EV_USE_EPOLL 1353#if EV_USE_EPOLL
575# include "ev_epoll.c" 1354# include "ev_epoll.c"
592{ 1371{
593 return EV_VERSION_MINOR; 1372 return EV_VERSION_MINOR;
594} 1373}
595 1374
596/* return true if we are running with elevated privileges and should ignore env variables */ 1375/* return true if we are running with elevated privileges and should ignore env variables */
597static int 1376int inline_size
598enable_secure (void) 1377enable_secure (void)
599{ 1378{
600#ifdef WIN32 1379#ifdef _WIN32
601 return 0; 1380 return 0;
602#else 1381#else
603 return getuid () != geteuid () 1382 return getuid () != geteuid ()
604 || getgid () != getegid (); 1383 || getgid () != getegid ();
605#endif 1384#endif
606} 1385}
607 1386
608int 1387unsigned int
609ev_method (EV_P) 1388ev_supported_backends (void)
610{ 1389{
611 return method; 1390 unsigned int flags = 0;
612}
613 1391
614static void 1392 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
615loop_init (EV_P_ int methods) 1393 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1394 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1395 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1396 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1397
1398 return flags;
1399}
1400
1401unsigned int
1402ev_recommended_backends (void)
616{ 1403{
617 if (!method) 1404 unsigned int flags = ev_supported_backends ();
1405
1406#ifndef __NetBSD__
1407 /* kqueue is borked on everything but netbsd apparently */
1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1409 flags &= ~EVBACKEND_KQUEUE;
1410#endif
1411#ifdef __APPLE__
1412 /* only select works correctly on that "unix-certified" platform */
1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1415#endif
1416
1417 return flags;
1418}
1419
1420unsigned int
1421ev_embeddable_backends (void)
1422{
1423 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1424
1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 /* please fix it and tell me how to detect the fix */
1427 flags &= ~EVBACKEND_EPOLL;
1428
1429 return flags;
1430}
1431
1432unsigned int
1433ev_backend (EV_P)
1434{
1435 return backend;
1436}
1437
1438#if EV_MINIMAL < 2
1439unsigned int
1440ev_loop_count (EV_P)
1441{
1442 return loop_count;
1443}
1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1451void
1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1453{
1454 io_blocktime = interval;
1455}
1456
1457void
1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1459{
1460 timeout_blocktime = interval;
1461}
1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1488static void noinline
1489loop_init (EV_P_ unsigned int flags)
1490{
1491 if (!backend)
618 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
619#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1505 {
1506 struct timespec ts;
1507
1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1509 have_monotonic = 1;
1510 }
1511#endif
1512
1513 ev_rt_now = ev_time ();
1514 mn_now = get_clock ();
1515 now_floor = mn_now;
1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1520
1521 io_blocktime = 0.;
1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1532
1533 /* pid check not overridable via env */
1534#ifndef _WIN32
1535 if (flags & EVFLAG_FORKCHECK)
1536 curpid = getpid ();
1537#endif
1538
1539 if (!(flags & EVFLAG_NOENV)
1540 && !enable_secure ()
1541 && getenv ("LIBEV_FLAGS"))
1542 flags = atoi (getenv ("LIBEV_FLAGS"));
1543
1544 if (!(flags & 0x0000ffffU))
1545 flags |= ev_recommended_backends ();
1546
1547#if EV_USE_PORT
1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1549#endif
1550#if EV_USE_KQUEUE
1551 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1552#endif
1553#if EV_USE_EPOLL
1554 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1555#endif
1556#if EV_USE_POLL
1557 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1558#endif
1559#if EV_USE_SELECT
1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1561#endif
1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1565 ev_init (&pipe_w, pipecb);
1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1567 }
1568}
1569
1570/* free up a loop structure */
1571static void noinline
1572loop_destroy (EV_P)
1573{
1574 int i;
1575
1576 if (ev_is_active (&pipe_w))
1577 {
1578 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1580
1581#if EV_USE_EVENTFD
1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1603#if EV_USE_INOTIFY
1604 if (fs_fd >= 0)
1605 close (fs_fd);
1606#endif
1607
1608 if (backend_fd >= 0)
1609 close (backend_fd);
1610
1611#if EV_USE_PORT
1612 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1613#endif
1614#if EV_USE_KQUEUE
1615 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1616#endif
1617#if EV_USE_EPOLL
1618 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1619#endif
1620#if EV_USE_POLL
1621 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1622#endif
1623#if EV_USE_SELECT
1624 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1625#endif
1626
1627 for (i = NUMPRI; i--; )
1628 {
1629 array_free (pending, [i]);
1630#if EV_IDLE_ENABLE
1631 array_free (idle, [i]);
1632#endif
1633 }
1634
1635 ev_free (anfds); anfdmax = 0;
1636
1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1639 array_free (fdchange, EMPTY);
1640 array_free (timer, EMPTY);
1641#if EV_PERIODIC_ENABLE
1642 array_free (periodic, EMPTY);
1643#endif
1644#if EV_FORK_ENABLE
1645 array_free (fork, EMPTY);
1646#endif
1647 array_free (prepare, EMPTY);
1648 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY);
1651#endif
1652
1653 backend = 0;
1654}
1655
1656#if EV_USE_INOTIFY
1657inline_size void infy_fork (EV_P);
1658#endif
1659
1660inline_size void
1661loop_fork (EV_P)
1662{
1663#if EV_USE_PORT
1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1665#endif
1666#if EV_USE_KQUEUE
1667 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1668#endif
1669#if EV_USE_EPOLL
1670 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1671#endif
1672#if EV_USE_INOTIFY
1673 infy_fork (EV_A);
1674#endif
1675
1676 if (ev_is_active (&pipe_w))
1677 {
1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
1684
1685 ev_ref (EV_A);
1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
1695 close (evpipe [0]);
1696 close (evpipe [1]);
1697 }
1698
1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
1702 }
1703
1704 postfork = 0;
1705}
1706
1707#if EV_MULTIPLICITY
1708
1709struct ev_loop *
1710ev_loop_new (unsigned int flags)
1711{
1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1713
1714 memset (loop, 0, sizeof (struct ev_loop));
1715 loop_init (EV_A_ flags);
1716
1717 if (ev_backend (EV_A))
1718 return loop;
1719
1720 return 0;
1721}
1722
1723void
1724ev_loop_destroy (EV_P)
1725{
1726 loop_destroy (EV_A);
1727 ev_free (loop);
1728}
1729
1730void
1731ev_loop_fork (EV_P)
1732{
1733 postfork = 1; /* must be in line with ev_default_fork */
1734}
1735#endif /* multiplicity */
1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
620 { 1790 {
621 struct timespec ts; 1791 verify_watcher (EV_A_ (W)w);
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
623 have_monotonic = 1; 1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
624 } 1794 }
625#endif
626 1795
627 rt_now = ev_time (); 1796 assert (timermax >= timercnt);
628 mn_now = get_clock (); 1797 verify_heap (EV_A_ timers, timercnt);
629 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now;
631 1798
632 if (methods == EVMETHOD_AUTO) 1799#if EV_PERIODIC_ENABLE
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1800 assert (periodicmax >= periodiccnt);
634 methods = atoi (getenv ("LIBEV_METHODS")); 1801 verify_heap (EV_A_ periodics, periodiccnt);
635 else
636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
645#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif
651#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif
654 }
655}
656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif 1802#endif
677 1803
678 for (i = NUMPRI; i--; ) 1804 for (i = NUMPRI; i--; )
679 array_free (pending, [i]); 1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
680 1813
681 array_free (fdchange, ); 1814#if EV_FORK_ENABLE
682 array_free (timer, ); 1815 assert (forkmax >= forkcnt);
683 array_free (periodic, ); 1816 array_verify (EV_A_ (W *)forks, forkcnt);
684 array_free (idle, ); 1817#endif
685 array_free (prepare, );
686 array_free (check, );
687 1818
688 method = 0; 1819#if EV_ASYNC_ENABLE
689 /*TODO*/ 1820 assert (asyncmax >= asynccnt);
690} 1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
691 1823
692void 1824 assert (preparemax >= preparecnt);
693loop_fork (EV_P) 1825 array_verify (EV_A_ (W *)prepares, preparecnt);
694{ 1826
695 /*TODO*/ 1827 assert (checkmax >= checkcnt);
696#if EV_USE_EPOLL 1828 array_verify (EV_A_ (W *)checks, checkcnt);
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
698#endif 1833# endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif 1834#endif
702} 1835}
1836#endif
703 1837
704#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
705struct ev_loop * 1839struct ev_loop *
706ev_loop_new (int methods) 1840ev_default_loop_init (unsigned int flags)
707{ 1841#else
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1842int
709 1843ev_default_loop (unsigned int flags)
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif 1844#endif
732 1845{
1846 if (!ev_default_loop_ptr)
1847 {
733#if EV_MULTIPLICITY 1848#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct; 1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else 1850#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1; 1851 ev_default_loop_ptr = 1;
755#endif 1852#endif
756 1853
757 loop_init (EV_A_ methods); 1854 loop_init (EV_A_ flags);
758 1855
759 if (ev_method (EV_A)) 1856 if (ev_backend (EV_A))
760 { 1857 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A);
764
765#ifndef WIN32 1858#ifndef _WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 1859 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 1860 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev); 1861 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1862 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif 1863#endif
771 } 1864 }
772 else 1865 else
773 default_loop = 0; 1866 ev_default_loop_ptr = 0;
774 } 1867 }
775 1868
776 return default_loop; 1869 return ev_default_loop_ptr;
777} 1870}
778 1871
779void 1872void
780ev_default_destroy (void) 1873ev_default_destroy (void)
781{ 1874{
782#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 1876 struct ev_loop *loop = ev_default_loop_ptr;
784#endif 1877#endif
785 1878
1879 ev_default_loop_ptr = 0;
1880
1881#ifndef _WIN32
786 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
788 1884#endif
789 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794 1885
795 loop_destroy (EV_A); 1886 loop_destroy (EV_A);
796} 1887}
797 1888
798void 1889void
799ev_default_fork (void) 1890ev_default_fork (void)
800{ 1891{
801#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 1893 struct ev_loop *loop = ev_default_loop_ptr;
803#endif 1894#endif
804 1895
805 loop_fork (EV_A); 1896 postfork = 1; /* must be in line with ev_loop_fork */
806
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 1897}
815 1898
816/*****************************************************************************/ 1899/*****************************************************************************/
817 1900
818static void 1901void
819call_pending (EV_P) 1902ev_invoke (EV_P_ void *w, int revents)
1903{
1904 EV_CB_INVOKE ((W)w, revents);
1905}
1906
1907unsigned int
1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
820{ 1921{
821 int pri; 1922 int pri;
822 1923
823 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
825 { 1926 {
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 1928
828 if (p->w) 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
829 { 1930 /* ^ this is no longer true, as pending_w could be here */
1931
830 p->w->pending = 0; 1932 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
832 } 1934 EV_FREQUENT_CHECK;
833 } 1935 }
834} 1936}
835 1937
836static void 1938#if EV_IDLE_ENABLE
1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
837timers_reify (EV_P) 1942idle_reify (EV_P)
838{ 1943{
839 while (timercnt && ((WT)timers [0])->at <= mn_now) 1944 if (expect_false (idleall))
840 { 1945 {
841 struct ev_timer *w = timers [0]; 1946 int pri;
842 1947
843 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1948 for (pri = NUMPRI; pri--; )
844
845 /* first reschedule or stop timer */
846 if (w->repeat)
847 { 1949 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1950 if (pendingcnt [pri])
849 ((WT)w)->at = mn_now + w->repeat; 1951 break;
850 downheap ((WT *)timers, timercnt, 0);
851 }
852 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 1952
855 event (EV_A_ (W)w, EV_TIMEOUT); 1953 if (idlecnt [pri])
856 }
857}
858
859static void
860periodics_reify (EV_P)
861{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
863 {
864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867
868 /* first reschedule or stop timer */
869 if (w->interval)
870 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0);
874 }
875 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877
878 event (EV_A_ (W)w, EV_PERIODIC);
879 }
880}
881
882static void
883periodics_reschedule (EV_P)
884{
885 int i;
886
887 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i)
889 {
890 struct ev_periodic *w = periodics [i];
891
892 if (w->interval)
893 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
895
896 if (fabs (diff) >= 1e-4)
897 { 1954 {
898 ev_periodic_stop (EV_A_ w); 1955 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
899 ev_periodic_start (EV_A_ w); 1956 break;
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 } 1957 }
903 } 1958 }
904 } 1959 }
905} 1960}
1961#endif
906 1962
907inline int 1963/* make timers pending */
908time_update_monotonic (EV_P) 1964inline_size void
1965timers_reify (EV_P)
909{ 1966{
910 mn_now = get_clock (); 1967 EV_FREQUENT_CHECK;
911 1968
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 } 1970 {
917 else 1971 do
1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985
1986 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1994 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996
1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
918 { 1998 }
919 now_floor = mn_now; 1999}
920 rt_now = ev_time (); 2000
921 return 1; 2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
2004periodics_reify (EV_P)
2005{
2006 EV_FREQUENT_CHECK;
2007
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
922 } 2009 {
923} 2010 int feed_count = 0;
924 2011
925static void 2012 do
926time_update (EV_P) 2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
927{ 2063{
928 int i; 2064 int i;
929 2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
2100time_update (EV_P_ ev_tstamp max_block)
2101{
930#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
932 { 2104 {
933 if (time_update_monotonic (EV_A)) 2105 int i;
2106 ev_tstamp odiff = rtmn_diff;
2107
2108 mn_now = get_clock ();
2109
2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111 /* interpolate in the meantime */
2112 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
934 { 2113 {
935 ev_tstamp odiff = rtmn_diff; 2114 ev_rt_now = rtmn_diff + mn_now;
2115 return;
2116 }
936 2117
2118 now_floor = mn_now;
2119 ev_rt_now = ev_time ();
2120
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2121 /* loop a few times, before making important decisions.
2122 * on the choice of "4": one iteration isn't enough,
2123 * in case we get preempted during the calls to
2124 * ev_time and get_clock. a second call is almost guaranteed
2125 * to succeed in that case, though. and looping a few more times
2126 * doesn't hurt either as we only do this on time-jumps or
2127 * in the unlikely event of having been preempted here.
2128 */
2129 for (i = 4; --i; )
938 { 2130 {
939 rtmn_diff = rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
940 2132
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
942 return; /* all is well */ 2134 return; /* all is well */
943 2135
944 rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 2137 mn_now = get_clock ();
946 now_floor = mn_now; 2138 now_floor = mn_now;
947 } 2139 }
948 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2143# if EV_PERIODIC_ENABLE
2144 periodics_reschedule (EV_A);
2145# endif
2146 }
2147 else
2148#endif
2149 {
2150 ev_rt_now = ev_time ();
2151
2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2156#if EV_PERIODIC_ENABLE
949 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */ 2158#endif
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
952 } 2159 }
953 }
954 else
955#endif
956 {
957 rt_now = ev_time ();
958 2160
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 {
961 periodics_reschedule (EV_A);
962
963 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now;
966 }
967
968 mn_now = rt_now; 2161 mn_now = ev_rt_now;
969 } 2162 }
970} 2163}
971
972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985 2164
986void 2165void
987ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
988{ 2167{
989 double block; 2168#if EV_MINIMAL < 2
990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
991 2177
992 do 2178 do
993 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
2184#ifndef _WIN32
2185 if (expect_false (curpid)) /* penalise the forking check even more */
2186 if (expect_false (getpid () != curpid))
2187 {
2188 curpid = getpid ();
2189 postfork = 1;
2190 }
2191#endif
2192
2193#if EV_FORK_ENABLE
2194 /* we might have forked, so queue fork handlers */
2195 if (expect_false (postfork))
2196 if (forkcnt)
2197 {
2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2199 EV_INVOKE_PENDING;
2200 }
2201#endif
2202
994 /* queue check watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
995 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
996 { 2205 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
999 } 2208 }
2209
2210 if (expect_false (loop_done))
2211 break;
2212
2213 /* we might have forked, so reify kernel state if necessary */
2214 if (expect_false (postfork))
2215 loop_fork (EV_A);
1000 2216
1001 /* update fd-related kernel structures */ 2217 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 2218 fd_reify (EV_A);
1003 2219
1004 /* calculate blocking time */ 2220 /* calculate blocking time */
2221 {
2222 ev_tstamp waittime = 0.;
2223 ev_tstamp sleeptime = 0.;
1005 2224
1006 /* we only need this for !monotonic clockor timers, but as we basically 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 { 2226 {
1014 rt_now = ev_time (); 2227 /* remember old timestamp for io_blocktime calculation */
1015 mn_now = rt_now; 2228 ev_tstamp prev_mn_now = mn_now;
1016 }
1017 2229
1018 if (flags & EVLOOP_NONBLOCK || idlecnt) 2230 /* update time to cancel out callback processing overhead */
1019 block = 0.; 2231 time_update (EV_A_ 1e100);
1020 else 2232
1021 {
1022 block = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1023 2234
1024 if (timercnt) 2235 if (timercnt)
1025 { 2236 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1027 if (block > to) block = to; 2238 if (waittime > to) waittime = to;
1028 } 2239 }
1029 2240
2241#if EV_PERIODIC_ENABLE
1030 if (periodiccnt) 2242 if (periodiccnt)
1031 { 2243 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1033 if (block > to) block = to; 2245 if (waittime > to) waittime = to;
1034 } 2246 }
2247#endif
1035 2248
1036 if (block < 0.) block = 0.; 2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 if (expect_false (waittime < timeout_blocktime))
2251 waittime = timeout_blocktime;
2252
2253 /* extra check because io_blocktime is commonly 0 */
2254 if (expect_false (io_blocktime))
2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2263 ev_sleep (sleeptime);
2264 waittime -= sleeptime;
2265 }
2266 }
1037 } 2267 }
1038 2268
1039 method_poll (EV_A_ block); 2269#if EV_MINIMAL < 2
2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1040 2275
1041 /* update rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 2277 time_update (EV_A_ waittime + sleeptime);
2278 }
1043 2279
1044 /* queue pending timers and reschedule them */ 2280 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 2281 timers_reify (EV_A); /* relative timers called last */
2282#if EV_PERIODIC_ENABLE
1046 periodics_reify (EV_A); /* absolute timers called first */ 2283 periodics_reify (EV_A); /* absolute timers called first */
2284#endif
1047 2285
2286#if EV_IDLE_ENABLE
1048 /* queue idle watchers unless io or timers are pending */ 2287 /* queue idle watchers unless other events are pending */
1049 if (!pendingcnt) 2288 idle_reify (EV_A);
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2289#endif
1051 2290
1052 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1053 if (checkcnt) 2292 if (expect_false (checkcnt))
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 2294
1056 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1057 } 2296 }
1058 while (activecnt && !loop_done); 2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1059 2302
1060 if (loop_done != 2) 2303 if (loop_done == EVUNLOOP_ONE)
1061 loop_done = 0; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1062} 2309}
1063 2310
1064void 2311void
1065ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1066{ 2313{
1067 loop_done = how; 2314 loop_done = how;
1068} 2315}
1069 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1070/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1071 2356
1072inline void 2357inline_size void
1073wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1074{ 2359{
1075 elem->next = *head; 2360 elem->next = *head;
1076 *head = elem; 2361 *head = elem;
1077} 2362}
1078 2363
1079inline void 2364inline_size void
1080wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1081{ 2366{
1082 while (*head) 2367 while (*head)
1083 { 2368 {
1084 if (*head == elem) 2369 if (*head == elem)
1089 2374
1090 head = &(*head)->next; 2375 head = &(*head)->next;
1091 } 2376 }
1092} 2377}
1093 2378
2379/* internal, faster, version of ev_clear_pending */
1094inline void 2380inline_speed void
1095ev_clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1096{ 2382{
1097 if (w->pending) 2383 if (w->pending)
1098 { 2384 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1100 w->pending = 0; 2386 w->pending = 0;
1101 } 2387 }
1102} 2388}
1103 2389
2390int
2391ev_clear_pending (EV_P_ void *w)
2392{
2393 W w_ = (W)w;
2394 int pending = w_->pending;
2395
2396 if (expect_true (pending))
2397 {
2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2400 w_->pending = 0;
2401 return p->events;
2402 }
2403 else
2404 return 0;
2405}
2406
1104inline void 2407inline_size void
2408pri_adjust (EV_P_ W w)
2409{
2410 int pri = ev_priority (w);
2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2413 ev_set_priority (w, pri);
2414}
2415
2416inline_speed void
1105ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1106{ 2418{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2419 pri_adjust (EV_A_ w);
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
1110 w->active = active; 2420 w->active = active;
1111 ev_ref (EV_A); 2421 ev_ref (EV_A);
1112} 2422}
1113 2423
1114inline void 2424inline_size void
1115ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1116{ 2426{
1117 ev_unref (EV_A); 2427 ev_unref (EV_A);
1118 w->active = 0; 2428 w->active = 0;
1119} 2429}
1120 2430
1121/*****************************************************************************/ 2431/*****************************************************************************/
1122 2432
1123void 2433void noinline
1124ev_io_start (EV_P_ struct ev_io *w) 2434ev_io_start (EV_P_ ev_io *w)
1125{ 2435{
1126 int fd = w->fd; 2436 int fd = w->fd;
1127 2437
1128 if (ev_is_active (w)) 2438 if (expect_false (ev_is_active (w)))
1129 return; 2439 return;
1130 2440
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1132 2445
1133 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1136 2449
1137 fd_change (EV_A_ fd); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1138} 2451 w->events &= ~EV__IOFDSET;
1139 2452
1140void 2453 EV_FREQUENT_CHECK;
2454}
2455
2456void noinline
1141ev_io_stop (EV_P_ struct ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1142{ 2458{
1143 ev_clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w)) 2460 if (expect_false (!ev_is_active (w)))
1145 return; 2461 return;
1146 2462
2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
2466
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1149 2469
1150 fd_change (EV_A_ w->fd); 2470 fd_change (EV_A_ w->fd, 1);
1151}
1152 2471
1153void 2472 EV_FREQUENT_CHECK;
2473}
2474
2475void noinline
1154ev_timer_start (EV_P_ struct ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1155{ 2477{
1156 if (ev_is_active (w)) 2478 if (expect_false (ev_is_active (w)))
1157 return; 2479 return;
1158 2480
1159 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1160 2482
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1163 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1164 array_needsize (timers, timermax, timercnt, ); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1165 timers [timercnt - 1] = w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1166 upheap ((WT *)timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1167 2493
2494 EV_FREQUENT_CHECK;
2495
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1169} 2497}
1170 2498
1171void 2499void noinline
1172ev_timer_stop (EV_P_ struct ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1173{ 2501{
1174 ev_clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w)) 2503 if (expect_false (!ev_is_active (w)))
1176 return; 2504 return;
1177 2505
2506 EV_FREQUENT_CHECK;
2507
2508 {
2509 int active = ev_active (w);
2510
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1179 2512
1180 if (((W)w)->active < timercnt--) 2513 --timercnt;
2514
2515 if (expect_true (active < timercnt + HEAP0))
1181 { 2516 {
1182 timers [((W)w)->active - 1] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2518 adjustheap (timers, timercnt, active);
1184 } 2519 }
2520 }
1185 2521
1186 ((WT)w)->at = w->repeat; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1187 2525
1188 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1189} 2527}
1190 2528
1191void 2529void noinline
1192ev_timer_again (EV_P_ struct ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1193{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1194 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1195 { 2535 {
1196 if (w->repeat) 2536 if (w->repeat)
1197 { 2537 {
1198 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2539 ANHE_at_cache (timers [ev_active (w)]);
2540 adjustheap (timers, timercnt, ev_active (w));
1200 } 2541 }
1201 else 2542 else
1202 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1203 } 2544 }
1204 else if (w->repeat) 2545 else if (w->repeat)
2546 {
2547 ev_at (w) = w->repeat;
1205 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1206} 2549 }
1207 2550
1208void 2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2558}
2559
2560#if EV_PERIODIC_ENABLE
2561void noinline
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1210{ 2563{
1211 if (ev_is_active (w)) 2564 if (expect_false (ev_is_active (w)))
1212 return; 2565 return;
1213 2566
2567 if (w->reschedule_cb)
2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2569 else if (w->interval)
2570 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2574 }
2575 else
2576 ev_at (w) = w->offset;
1219 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1222 periodics [periodiccnt - 1] = w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1224 2586
2587 EV_FREQUENT_CHECK;
2588
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1226} 2590}
1227 2591
1228void 2592void noinline
1229ev_periodic_stop (EV_P_ struct ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1230{ 2594{
1231 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 2596 if (expect_false (!ev_is_active (w)))
1233 return; 2597 return;
1234 2598
2599 EV_FREQUENT_CHECK;
2600
2601 {
2602 int active = ev_active (w);
2603
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1236 2605
1237 if (((W)w)->active < periodiccnt--) 2606 --periodiccnt;
2607
2608 if (expect_true (active < periodiccnt + HEAP0))
1238 { 2609 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2611 adjustheap (periodics, periodiccnt, active);
1241 } 2612 }
2613 }
2614
2615 EV_FREQUENT_CHECK;
1242 2616
1243 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1244} 2618}
1245 2619
1246void 2620void noinline
1247ev_idle_start (EV_P_ struct ev_idle *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1248{ 2622{
1249 if (ev_is_active (w)) 2623 /* TODO: use adjustheap and recalculation */
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w); 2624 ev_periodic_stop (EV_A_ w);
2625 ev_periodic_start (EV_A_ w);
1266} 2626}
1267 2627#endif
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311 2628
1312#ifndef SA_RESTART 2629#ifndef SA_RESTART
1313# define SA_RESTART 0 2630# define SA_RESTART 0
1314#endif 2631#endif
1315 2632
1316void 2633void noinline
1317ev_signal_start (EV_P_ struct ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1318{ 2635{
1319#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1321#endif 2638#endif
1322 if (ev_is_active (w)) 2639 if (expect_false (ev_is_active (w)))
1323 return; 2640 return;
1324 2641
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
2677
2678 {
2679#ifndef _WIN32
2680 sigset_t full, prev;
2681 sigfillset (&full);
2682 sigprocmask (SIG_SETMASK, &full, &prev);
2683#endif
2684
2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686
2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
2692 sigprocmask (SIG_SETMASK, &prev, 0);
2693#endif
2694 }
1326 2695
1327 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2697 wlist_add (&signals [w->signum - 1].head, (WL)w);
1330 2698
1331 if (!((WL)w)->next) 2699 if (!((WL)w)->next)
1332 { 2700 {
1333#if WIN32 2701#if _WIN32
1334 signal (w->signum, sighandler); 2702 signal (w->signum, ev_sighandler);
1335#else 2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
1336 struct sigaction sa; 2708 struct sigaction sa = { };
1337 sa.sa_handler = sighandler; 2709 sa.sa_handler = ev_sighandler;
1338 sigfillset (&sa.sa_mask); 2710 sigfillset (&sa.sa_mask);
1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1340 sigaction (w->signum, &sa, 0); 2712 sigaction (w->signum, &sa, 0);
2713 }
1341#endif 2714#endif
1342 } 2715 }
1343}
1344 2716
1345void 2717 EV_FREQUENT_CHECK;
2718}
2719
2720void noinline
1346ev_signal_stop (EV_P_ struct ev_signal *w) 2721ev_signal_stop (EV_P_ ev_signal *w)
1347{ 2722{
1348 ev_clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w)) 2724 if (expect_false (!ev_is_active (w)))
1350 return; 2725 return;
1351 2726
2727 EV_FREQUENT_CHECK;
2728
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
1354 2731
1355 if (!signals [w->signum - 1].head) 2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
1356 signal (w->signum, SIG_DFL); 2744 signal (w->signum, SIG_DFL);
1357}
1358 2745
2746 EV_FREQUENT_CHECK;
2747}
2748
1359void 2749void
1360ev_child_start (EV_P_ struct ev_child *w) 2750ev_child_start (EV_P_ ev_child *w)
1361{ 2751{
1362#if EV_MULTIPLICITY 2752#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1364#endif 2754#endif
1365 if (ev_is_active (w)) 2755 if (expect_false (ev_is_active (w)))
1366 return; 2756 return;
1367 2757
2758 EV_FREQUENT_CHECK;
2759
1368 ev_start (EV_A_ (W)w, 1); 2760 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1370}
1371 2762
2763 EV_FREQUENT_CHECK;
2764}
2765
1372void 2766void
1373ev_child_stop (EV_P_ struct ev_child *w) 2767ev_child_stop (EV_P_ ev_child *w)
1374{ 2768{
1375 ev_clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w)) 2770 if (expect_false (!ev_is_active (w)))
1377 return; 2771 return;
1378 2772
2773 EV_FREQUENT_CHECK;
2774
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
1381} 2779}
2780
2781#if EV_STAT_ENABLE
2782
2783# ifdef _WIN32
2784# undef lstat
2785# define lstat(a,b) _stati64 (a,b)
2786# endif
2787
2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2790#define MIN_STAT_INTERVAL 0.1074891
2791
2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2793
2794#if EV_USE_INOTIFY
2795# define EV_INOTIFY_BUFSIZE 8192
2796
2797static void noinline
2798infy_add (EV_P_ ev_stat *w)
2799{
2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2801
2802 if (w->wd < 0)
2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2806
2807 /* monitor some parent directory for speedup hints */
2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2809 /* but an efficiency issue only */
2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2811 {
2812 char path [4096];
2813 strcpy (path, w->path);
2814
2815 do
2816 {
2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2819
2820 char *pend = strrchr (path, '/');
2821
2822 if (!pend || pend == path)
2823 break;
2824
2825 *pend = 0;
2826 w->wd = inotify_add_watch (fs_fd, path, mask);
2827 }
2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2829 }
2830 }
2831
2832 if (w->wd >= 0)
2833 {
2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
2853}
2854
2855static void noinline
2856infy_del (EV_P_ ev_stat *w)
2857{
2858 int slot;
2859 int wd = w->wd;
2860
2861 if (wd < 0)
2862 return;
2863
2864 w->wd = -2;
2865 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2866 wlist_del (&fs_hash [slot].head, (WL)w);
2867
2868 /* remove this watcher, if others are watching it, they will rearm */
2869 inotify_rm_watch (fs_fd, wd);
2870}
2871
2872static void noinline
2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2874{
2875 if (slot < 0)
2876 /* overflow, need to check for all hash slots */
2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2878 infy_wd (EV_A_ slot, wd, ev);
2879 else
2880 {
2881 WL w_;
2882
2883 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2884 {
2885 ev_stat *w = (ev_stat *)w_;
2886 w_ = w_->next; /* lets us remove this watcher and all before it */
2887
2888 if (w->wd == wd || wd == -1)
2889 {
2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2893 w->wd = -1;
2894 infy_add (EV_A_ w); /* re-add, no matter what */
2895 }
2896
2897 stat_timer_cb (EV_A_ &w->timer, 0);
2898 }
2899 }
2900 }
2901}
2902
2903static void
2904infy_cb (EV_P_ ev_io *w, int revents)
2905{
2906 char buf [EV_INOTIFY_BUFSIZE];
2907 struct inotify_event *ev = (struct inotify_event *)buf;
2908 int ofs;
2909 int len = read (fs_fd, buf, sizeof (buf));
2910
2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2913}
2914
2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
2939infy_init (EV_P)
2940{
2941 if (fs_fd != -2)
2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
2947
2948 fs_fd = inotify_init ();
2949
2950 if (fs_fd >= 0)
2951 {
2952 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2953 ev_set_priority (&fs_w, EV_MAXPRI);
2954 ev_io_start (EV_A_ &fs_w);
2955 }
2956}
2957
2958inline_size void
2959infy_fork (EV_P)
2960{
2961 int slot;
2962
2963 if (fs_fd < 0)
2964 return;
2965
2966 close (fs_fd);
2967 fs_fd = inotify_init ();
2968
2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2970 {
2971 WL w_ = fs_hash [slot].head;
2972 fs_hash [slot].head = 0;
2973
2974 while (w_)
2975 {
2976 ev_stat *w = (ev_stat *)w_;
2977 w_ = w_->next; /* lets us add this watcher */
2978
2979 w->wd = -1;
2980
2981 if (fs_fd >= 0)
2982 infy_add (EV_A_ w); /* re-add, no matter what */
2983 else
2984 ev_timer_again (EV_A_ &w->timer);
2985 }
2986 }
2987}
2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
2995#endif
2996
2997void
2998ev_stat_stat (EV_P_ ev_stat *w)
2999{
3000 if (lstat (w->path, &w->attr) < 0)
3001 w->attr.st_nlink = 0;
3002 else if (!w->attr.st_nlink)
3003 w->attr.st_nlink = 1;
3004}
3005
3006static void noinline
3007stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3008{
3009 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3010
3011 /* we copy this here each the time so that */
3012 /* prev has the old value when the callback gets invoked */
3013 w->prev = w->attr;
3014 ev_stat_stat (EV_A_ w);
3015
3016 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3017 if (
3018 w->prev.st_dev != w->attr.st_dev
3019 || w->prev.st_ino != w->attr.st_ino
3020 || w->prev.st_mode != w->attr.st_mode
3021 || w->prev.st_nlink != w->attr.st_nlink
3022 || w->prev.st_uid != w->attr.st_uid
3023 || w->prev.st_gid != w->attr.st_gid
3024 || w->prev.st_rdev != w->attr.st_rdev
3025 || w->prev.st_size != w->attr.st_size
3026 || w->prev.st_atime != w->attr.st_atime
3027 || w->prev.st_mtime != w->attr.st_mtime
3028 || w->prev.st_ctime != w->attr.st_ctime
3029 ) {
3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
3033 infy_del (EV_A_ w);
3034 infy_add (EV_A_ w);
3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
3037 #endif
3038
3039 ev_feed_event (EV_A_ w, EV_STAT);
3040 }
3041}
3042
3043void
3044ev_stat_start (EV_P_ ev_stat *w)
3045{
3046 if (expect_false (ev_is_active (w)))
3047 return;
3048
3049 ev_stat_stat (EV_A_ w);
3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3052 w->interval = MIN_STAT_INTERVAL;
3053
3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3055 ev_set_priority (&w->timer, ev_priority (w));
3056
3057#if EV_USE_INOTIFY
3058 infy_init (EV_A);
3059
3060 if (fs_fd >= 0)
3061 infy_add (EV_A_ w);
3062 else
3063#endif
3064 ev_timer_again (EV_A_ &w->timer);
3065
3066 ev_start (EV_A_ (W)w, 1);
3067
3068 EV_FREQUENT_CHECK;
3069}
3070
3071void
3072ev_stat_stop (EV_P_ ev_stat *w)
3073{
3074 clear_pending (EV_A_ (W)w);
3075 if (expect_false (!ev_is_active (w)))
3076 return;
3077
3078 EV_FREQUENT_CHECK;
3079
3080#if EV_USE_INOTIFY
3081 infy_del (EV_A_ w);
3082#endif
3083 ev_timer_stop (EV_A_ &w->timer);
3084
3085 ev_stop (EV_A_ (W)w);
3086
3087 EV_FREQUENT_CHECK;
3088}
3089#endif
3090
3091#if EV_IDLE_ENABLE
3092void
3093ev_idle_start (EV_P_ ev_idle *w)
3094{
3095 if (expect_false (ev_is_active (w)))
3096 return;
3097
3098 pri_adjust (EV_A_ (W)w);
3099
3100 EV_FREQUENT_CHECK;
3101
3102 {
3103 int active = ++idlecnt [ABSPRI (w)];
3104
3105 ++idleall;
3106 ev_start (EV_A_ (W)w, active);
3107
3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3109 idles [ABSPRI (w)][active - 1] = w;
3110 }
3111
3112 EV_FREQUENT_CHECK;
3113}
3114
3115void
3116ev_idle_stop (EV_P_ ev_idle *w)
3117{
3118 clear_pending (EV_A_ (W)w);
3119 if (expect_false (!ev_is_active (w)))
3120 return;
3121
3122 EV_FREQUENT_CHECK;
3123
3124 {
3125 int active = ev_active (w);
3126
3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3129
3130 ev_stop (EV_A_ (W)w);
3131 --idleall;
3132 }
3133
3134 EV_FREQUENT_CHECK;
3135}
3136#endif
3137
3138void
3139ev_prepare_start (EV_P_ ev_prepare *w)
3140{
3141 if (expect_false (ev_is_active (w)))
3142 return;
3143
3144 EV_FREQUENT_CHECK;
3145
3146 ev_start (EV_A_ (W)w, ++preparecnt);
3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3148 prepares [preparecnt - 1] = w;
3149
3150 EV_FREQUENT_CHECK;
3151}
3152
3153void
3154ev_prepare_stop (EV_P_ ev_prepare *w)
3155{
3156 clear_pending (EV_A_ (W)w);
3157 if (expect_false (!ev_is_active (w)))
3158 return;
3159
3160 EV_FREQUENT_CHECK;
3161
3162 {
3163 int active = ev_active (w);
3164
3165 prepares [active - 1] = prepares [--preparecnt];
3166 ev_active (prepares [active - 1]) = active;
3167 }
3168
3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
3172}
3173
3174void
3175ev_check_start (EV_P_ ev_check *w)
3176{
3177 if (expect_false (ev_is_active (w)))
3178 return;
3179
3180 EV_FREQUENT_CHECK;
3181
3182 ev_start (EV_A_ (W)w, ++checkcnt);
3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
3187}
3188
3189void
3190ev_check_stop (EV_P_ ev_check *w)
3191{
3192 clear_pending (EV_A_ (W)w);
3193 if (expect_false (!ev_is_active (w)))
3194 return;
3195
3196 EV_FREQUENT_CHECK;
3197
3198 {
3199 int active = ev_active (w);
3200
3201 checks [active - 1] = checks [--checkcnt];
3202 ev_active (checks [active - 1]) = active;
3203 }
3204
3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
3208}
3209
3210#if EV_EMBED_ENABLE
3211void noinline
3212ev_embed_sweep (EV_P_ ev_embed *w)
3213{
3214 ev_loop (w->other, EVLOOP_NONBLOCK);
3215}
3216
3217static void
3218embed_io_cb (EV_P_ ev_io *io, int revents)
3219{
3220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3221
3222 if (ev_cb (w))
3223 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3224 else
3225 ev_loop (w->other, EVLOOP_NONBLOCK);
3226}
3227
3228static void
3229embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3230{
3231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3232
3233 {
3234 struct ev_loop *loop = w->other;
3235
3236 while (fdchangecnt)
3237 {
3238 fd_reify (EV_A);
3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3240 }
3241 }
3242}
3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
3261#if 0
3262static void
3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3264{
3265 ev_idle_stop (EV_A_ idle);
3266}
3267#endif
3268
3269void
3270ev_embed_start (EV_P_ ev_embed *w)
3271{
3272 if (expect_false (ev_is_active (w)))
3273 return;
3274
3275 {
3276 struct ev_loop *loop = w->other;
3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3279 }
3280
3281 EV_FREQUENT_CHECK;
3282
3283 ev_set_priority (&w->io, ev_priority (w));
3284 ev_io_start (EV_A_ &w->io);
3285
3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
3287 ev_set_priority (&w->prepare, EV_MINPRI);
3288 ev_prepare_start (EV_A_ &w->prepare);
3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3294
3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
3298}
3299
3300void
3301ev_embed_stop (EV_P_ ev_embed *w)
3302{
3303 clear_pending (EV_A_ (W)w);
3304 if (expect_false (!ev_is_active (w)))
3305 return;
3306
3307 EV_FREQUENT_CHECK;
3308
3309 ev_io_stop (EV_A_ &w->io);
3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
3312
3313 EV_FREQUENT_CHECK;
3314}
3315#endif
3316
3317#if EV_FORK_ENABLE
3318void
3319ev_fork_start (EV_P_ ev_fork *w)
3320{
3321 if (expect_false (ev_is_active (w)))
3322 return;
3323
3324 EV_FREQUENT_CHECK;
3325
3326 ev_start (EV_A_ (W)w, ++forkcnt);
3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
3331}
3332
3333void
3334ev_fork_stop (EV_P_ ev_fork *w)
3335{
3336 clear_pending (EV_A_ (W)w);
3337 if (expect_false (!ev_is_active (w)))
3338 return;
3339
3340 EV_FREQUENT_CHECK;
3341
3342 {
3343 int active = ev_active (w);
3344
3345 forks [active - 1] = forks [--forkcnt];
3346 ev_active (forks [active - 1]) = active;
3347 }
3348
3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
3352}
3353#endif
3354
3355#if EV_ASYNC_ENABLE
3356void
3357ev_async_start (EV_P_ ev_async *w)
3358{
3359 if (expect_false (ev_is_active (w)))
3360 return;
3361
3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
3365
3366 ev_start (EV_A_ (W)w, ++asynccnt);
3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
3371}
3372
3373void
3374ev_async_stop (EV_P_ ev_async *w)
3375{
3376 clear_pending (EV_A_ (W)w);
3377 if (expect_false (!ev_is_active (w)))
3378 return;
3379
3380 EV_FREQUENT_CHECK;
3381
3382 {
3383 int active = ev_active (w);
3384
3385 asyncs [active - 1] = asyncs [--asynccnt];
3386 ev_active (asyncs [active - 1]) = active;
3387 }
3388
3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
3392}
3393
3394void
3395ev_async_send (EV_P_ ev_async *w)
3396{
3397 w->sent = 1;
3398 evpipe_write (EV_A_ &gotasync);
3399}
3400#endif
1382 3401
1383/*****************************************************************************/ 3402/*****************************************************************************/
1384 3403
1385struct ev_once 3404struct ev_once
1386{ 3405{
1387 struct ev_io io; 3406 ev_io io;
1388 struct ev_timer to; 3407 ev_timer to;
1389 void (*cb)(int revents, void *arg); 3408 void (*cb)(int revents, void *arg);
1390 void *arg; 3409 void *arg;
1391}; 3410};
1392 3411
1393static void 3412static void
1394once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
1395{ 3414{
1396 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 3416 void *arg = once->arg;
1398 3417
1399 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 3420 ev_free (once);
1402 3421
1403 cb (revents, arg); 3422 cb (revents, arg);
1404} 3423}
1405 3424
1406static void 3425static void
1407once_cb_io (EV_P_ struct ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
1408{ 3427{
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1410} 3431}
1411 3432
1412static void 3433static void
1413once_cb_to (EV_P_ struct ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
1414{ 3435{
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1416} 3439}
1417 3440
1418void 3441void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 3443{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 3444 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 3445
1423 if (!once) 3446 if (expect_false (!once))
3447 {
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3448 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 3449 return;
1426 { 3450 }
3451
1427 once->cb = cb; 3452 once->cb = cb;
1428 once->arg = arg; 3453 once->arg = arg;
1429 3454
1430 ev_watcher_init (&once->io, once_cb_io); 3455 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 3456 if (fd >= 0)
3457 {
3458 ev_io_set (&once->io, fd, events);
3459 ev_io_start (EV_A_ &once->io);
3460 }
3461
3462 ev_init (&once->to, once_cb_to);
3463 if (timeout >= 0.)
3464 {
3465 ev_timer_set (&once->to, timeout, 0.);
3466 ev_timer_start (EV_A_ &once->to);
3467 }
3468}
3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
1432 { 3482 {
1433 ev_io_set (&once->io, fd, events); 3483 wn = wl->next;
1434 ev_io_start (EV_A_ &once->io); 3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
1435 } 3503 }
1436 3504
1437 ev_watcher_init (&once->to, once_cb_to); 3505 if (types & (EV_TIMER | EV_STAT))
1438 if (timeout >= 0.) 3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1439 { 3510 {
1440 ev_timer_set (&once->to, timeout, 0.); 3511 if (types & EV_STAT)
1441 ev_timer_start (EV_A_ &once->to); 3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1442 } 3513 }
1443 } 3514 else
1444} 3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1445 3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575}
3576#endif
3577
3578#if EV_MULTIPLICITY
3579 #include "ev_wrap.h"
3580#endif
3581
3582#ifdef __cplusplus
3583}
3584#endif
3585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines