ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
54# endif
55#endif 79#endif
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
63#endif 91#endif
64 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
65#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
67#endif 119#endif
68#ifndef EV_USE_REALTIME 120
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
70#endif
71 122
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 127
77#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 143
79typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
82 147
83static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86 149
87static int have_monotonic; /* runtime */ 150#if WIN32
88 151/* note: the comment below could not be substantiated, but what would I care */
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
90static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
91static void (*method_poll)(ev_tstamp timeout); 154#endif
92 155
93/*****************************************************************************/ 156/*****************************************************************************/
94 157
95ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
96ev_time (void) 192ev_time (void)
97{ 193{
98#if EV_USE_REALTIME 194#if EV_USE_REALTIME
99 struct timespec ts; 195 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 202#endif
107} 203}
108 204
109static ev_tstamp 205inline ev_tstamp
110get_clock (void) 206get_clock (void)
111{ 207{
112#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
113 if (have_monotonic) 209 if (expect_true (have_monotonic))
114 { 210 {
115 struct timespec ts; 211 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 214 }
119#endif 215#endif
120 216
121 return ev_time (); 217 return ev_time ();
122} 218}
123 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
124#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
125 227
126#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
128 { \ 230 { \
129 int newcnt = cur; \ 231 int newcnt = cur; \
130 do \ 232 do \
131 { \ 233 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 234 newcnt = array_roundsize (base, newcnt << 1); \
136 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
138 cur = newcnt; \ 240 cur = newcnt; \
139 } 241 }
140 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
141/*****************************************************************************/ 254/*****************************************************************************/
142
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152 255
153static void 256static void
154anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
155{ 258{
156 while (count--) 259 while (count--)
161 264
162 ++base; 265 ++base;
163 } 266 }
164} 267}
165 268
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 269static void
176event (W w, int events) 270event (EV_P_ W w, int events)
177{ 271{
178 if (w->pending) 272 if (w->pending)
179 { 273 {
180 pendings [w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 275 return;
182 } 276 }
183 277
184 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 282}
189 283
190static void 284static void
191queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 286{
193 int i; 287 int i;
194 288
195 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 290 event (EV_A_ events [i], type);
197} 291}
198 292
199static void 293static void
200fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
201{ 295{
202 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 297 struct ev_io *w;
204 298
205 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 300 {
207 int ev = w->events & events; 301 int ev = w->events & events;
208 302
209 if (ev) 303 if (ev)
210 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
211 } 305 }
212} 306}
213 307
214/*****************************************************************************/ 308/*****************************************************************************/
215 309
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 310static void
220fd_reify (void) 311fd_reify (EV_P)
221{ 312{
222 int i; 313 int i;
223 314
224 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
225 { 316 {
227 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 319 struct ev_io *w;
229 320
230 int events = 0; 321 int events = 0;
231 322
232 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 324 events |= w->events;
234 325
235 anfd->reify = 0; 326 anfd->reify = 0;
236 327
237 if (anfd->events != events)
238 {
239 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 329 anfd->events = events;
241 }
242 } 330 }
243 331
244 fdchangecnt = 0; 332 fdchangecnt = 0;
245} 333}
246 334
247static void 335static void
248fd_change (int fd) 336fd_change (EV_P_ int fd)
249{ 337{
250 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
251 return; 339 return;
252 340
253 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
255 ++fdchangecnt; 343 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
258} 346}
259 347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
260/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
261static void 361static void
262fd_recheck (void) 362fd_ebadf (EV_P)
263{ 363{
264 int fd; 364 int fd;
265 365
266 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 367 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
270 { 380 {
271 ev_io_stop (anfds [fd].head); 381 close (fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 382 fd_kill (EV_A_ fd);
383 return;
273 } 384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
274} 400}
275 401
276/*****************************************************************************/ 402/*****************************************************************************/
277 403
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 404static void
285upheap (WT *timers, int k) 405upheap (WT *heap, int k)
286{ 406{
287 WT w = timers [k]; 407 WT w = heap [k];
288 408
289 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
290 { 410 {
291 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
293 k >>= 1; 413 k >>= 1;
294 } 414 }
295 415
296 timers [k] = w; 416 heap [k] = w;
297 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
298 418
299} 419}
300 420
301static void 421static void
302downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
303{ 423{
304 WT w = timers [k]; 424 WT w = heap [k];
305 425
306 while (k < (N >> 1)) 426 while (k < (N >> 1))
307 { 427 {
308 int j = k << 1; 428 int j = k << 1;
309 429
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 431 ++j;
312 432
313 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
314 break; 434 break;
315 435
316 timers [k] = timers [j]; 436 heap [k] = heap [j];
317 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
318 k = j; 438 k = j;
319 } 439 }
320 440
321 timers [k] = w; 441 heap [k] = w;
322 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
323} 443}
324 444
325/*****************************************************************************/ 445/*****************************************************************************/
326 446
327typedef struct 447typedef struct
328{ 448{
329 struct ev_signal *head; 449 struct ev_watcher_list *head;
330 sig_atomic_t volatile gotsig; 450 sig_atomic_t volatile gotsig;
331} ANSIG; 451} ANSIG;
332 452
333static ANSIG *signals; 453static ANSIG *signals;
334static int signalmax; 454static int signalmax;
350} 470}
351 471
352static void 472static void
353sighandler (int signum) 473sighandler (int signum)
354{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
355 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
356 480
357 if (!gotsig) 481 if (!gotsig)
358 { 482 {
483 int old_errno = errno;
359 gotsig = 1; 484 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
361 } 487 }
362} 488}
363 489
364static void 490static void
365sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 492{
367 struct ev_signal *w; 493 struct ev_watcher_list *w;
368 int sig; 494 int signum;
369 495
370 read (sigpipe [0], &revents, 1); 496 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 497 gotsig = 0;
372 498
373 for (sig = signalmax; sig--; ) 499 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 500 if (signals [signum].gotsig)
375 { 501 {
376 signals [sig].gotsig = 0; 502 signals [signum].gotsig = 0;
377 503
378 for (w = signals [sig].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
380 } 506 }
381} 507}
382 508
383static void 509static void
384siginit (void) 510siginit (EV_P)
385{ 511{
512#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 515
389 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
392 520
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 524}
396 525
397/*****************************************************************************/ 526/*****************************************************************************/
398 527
399static struct ev_idle **idles; 528#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409 529
410static struct ev_child *childs [PID_HASHSIZE]; 530static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 531static struct ev_signal childev;
412 532
413#ifndef WCONTINUED 533#ifndef WCONTINUED
414# define WCONTINUED 0 534# define WCONTINUED 0
415#endif 535#endif
416 536
417static void 537static void
418childcb (struct ev_signal *sw, int revents) 538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 539{
420 struct ev_child *w; 540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
421 int pid, status; 555 int pid, status;
422 556
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 558 {
425 if (w->pid == pid || w->pid == -1) 559 /* make sure we are called again until all childs have been reaped */
426 { 560 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 561
428 event ((W)w, EV_CHILD); 562 child_reap (EV_A_ sw, pid, pid, status);
429 } 563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
430} 565}
566
567#endif
431 568
432/*****************************************************************************/ 569/*****************************************************************************/
433 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
434#if EV_USE_EPOLL 574#if EV_USE_EPOLL
435# include "ev_epoll.c" 575# include "ev_epoll.c"
436#endif 576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
437#if EV_USE_SELECT 580#if EV_USE_SELECT
438# include "ev_select.c" 581# include "ev_select.c"
439#endif 582#endif
440 583
441int 584int
448ev_version_minor (void) 591ev_version_minor (void)
449{ 592{
450 return EV_VERSION_MINOR; 593 return EV_VERSION_MINOR;
451} 594}
452 595
453int ev_init (int flags) 596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
454{ 599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
455 if (!ev_method) 617 if (!method)
456 { 618 {
457#if EV_USE_MONOTONIC 619#if EV_USE_MONOTONIC
458 { 620 {
459 struct timespec ts; 621 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 623 have_monotonic = 1;
462 } 624 }
463#endif 625#endif
464 626
465 ev_now = ev_time (); 627 rt_now = ev_time ();
466 now = get_clock (); 628 mn_now = get_clock ();
629 now_floor = mn_now;
467 diff = ev_now - now; 630 rtmn_diff = rt_now - mn_now;
468 631
469 if (pipe (sigpipe)) 632 if (methods == EVMETHOD_AUTO)
470 return 0; 633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
472 ev_method = EVMETHOD_NONE; 636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
473#if EV_USE_EPOLL 645#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 650#endif
476#if EV_USE_SELECT 651#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 653#endif
654 }
655}
479 656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
480 if (ev_method) 759 if (ev_method (EV_A))
481 { 760 {
482 ev_watcher_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
483 siginit (); 763 siginit (EV_A);
484 764
765#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 766 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif
487 } 771 }
772 else
773 default_loop = 0;
488 } 774 }
489 775
490 return ev_method; 776 return default_loop;
491} 777}
492 778
493/*****************************************************************************/
494
495void 779void
496ev_fork_prepare (void) 780ev_default_destroy (void)
497{ 781{
498 /* nop */ 782#if EV_MULTIPLICITY
499} 783 struct ev_loop *loop = default_loop;
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif 784#endif
514 785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
515 ev_io_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
516 close (sigpipe [0]); 808 close (sigpipe [0]);
517 close (sigpipe [1]); 809 close (sigpipe [1]);
518 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
519 siginit (); 813 siginit (EV_A);
520} 814}
521 815
522/*****************************************************************************/ 816/*****************************************************************************/
523 817
524static void 818static void
525call_pending (void) 819call_pending (EV_P)
526{ 820{
821 int pri;
822
823 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 824 while (pendingcnt [pri])
528 { 825 {
529 ANPENDING *p = pendings + --pendingcnt; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 827
531 if (p->w) 828 if (p->w)
532 { 829 {
533 p->w->pending = 0; 830 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
535 } 832 }
536 } 833 }
537} 834}
538 835
539static void 836static void
540timers_reify (void) 837timers_reify (EV_P)
541{ 838{
542 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
543 { 840 {
544 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
545 844
546 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
547 if (w->repeat) 846 if (w->repeat)
548 { 847 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
552 } 851 }
553 else 852 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 854
556 event ((W)w, EV_TIMEOUT); 855 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 856 }
558} 857}
559 858
560static void 859static void
561periodics_reify (void) 860periodics_reify (EV_P)
562{ 861{
563 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
564 { 863 {
565 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
566 867
567 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
568 if (w->interval) 869 if (w->interval)
569 { 870 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
573 } 874 }
574 else 875 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 877
577 event ((W)w, EV_PERIODIC); 878 event (EV_A_ (W)w, EV_PERIODIC);
578 } 879 }
579} 880}
580 881
581static void 882static void
582periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
583{ 884{
584 int i; 885 int i;
585 886
586 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
588 { 889 {
589 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
590 891
591 if (w->interval) 892 if (w->interval)
592 { 893 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
594 895
595 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
596 { 897 {
597 ev_periodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 899 ev_periodic_start (EV_A_ w);
599 900
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 902 }
602 } 903 }
603 } 904 }
604} 905}
605 906
907inline int
908time_update_monotonic (EV_P)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
606static void 925static void
607time_update (void) 926time_update (EV_P)
608{ 927{
609 int i; 928 int i;
610 929
611 ev_now = ev_time (); 930#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 931 if (expect_true (have_monotonic))
614 { 932 {
615 ev_tstamp odiff = diff; 933 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 934 {
619 now = get_clock (); 935 ev_tstamp odiff = rtmn_diff;
936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
620 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
621 940
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 942 return; /* all is well */
624 943
625 ev_now = ev_time (); 944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 952 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 953 }
631 else 954 else
955#endif
632 { 956 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 957 rt_now = ev_time ();
958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 960 {
635 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
636 962
637 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
640 } 966 }
641 967
642 now = ev_now; 968 mn_now = rt_now;
643 } 969 }
644} 970}
645 971
646int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
647 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
648void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
649{ 988{
650 double block; 989 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 991
653 do 992 do
654 { 993 {
655 /* queue check watchers (and execute them) */ 994 /* queue check watchers (and execute them) */
656 if (preparecnt) 995 if (expect_false (preparecnt))
657 { 996 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 998 call_pending (EV_A);
660 } 999 }
661 1000
662 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
663 fd_reify (); 1002 fd_reify (EV_A);
664 1003
665 /* calculate blocking time */ 1004 /* calculate blocking time */
666 1005
667 /* we only need this for !monotonic clockor timers, but as we basically 1006 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 {
669 ev_now = ev_time (); 1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
670 1017
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 1019 block = 0.;
673 else 1020 else
674 { 1021 {
675 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
676 1023
677 if (timercnt) 1024 if (timercnt)
678 { 1025 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
680 if (block > to) block = to; 1027 if (block > to) block = to;
681 } 1028 }
682 1029
683 if (periodiccnt) 1030 if (periodiccnt)
684 { 1031 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
686 if (block > to) block = to; 1033 if (block > to) block = to;
687 } 1034 }
688 1035
689 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
690 } 1037 }
691 1038
692 method_poll (block); 1039 method_poll (EV_A_ block);
693 1040
694 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
695 time_update (); 1042 time_update (EV_A);
696 1043
697 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 1045 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
700 1047
701 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 1049 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 1051
705 /* queue check watchers, to be executed first */ 1052 /* queue check watchers, to be executed first */
706 if (checkcnt) 1053 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1055
709 call_pending (); 1056 call_pending (EV_A);
710 } 1057 }
711 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
712 1059
713 if (ev_loop_done != 2) 1060 if (loop_done != 2)
714 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
715} 1068}
716 1069
717/*****************************************************************************/ 1070/*****************************************************************************/
718 1071
719static void 1072inline void
720wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
721{ 1074{
722 elem->next = *head; 1075 elem->next = *head;
723 *head = elem; 1076 *head = elem;
724} 1077}
725 1078
726static void 1079inline void
727wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
728{ 1081{
729 while (*head) 1082 while (*head)
730 { 1083 {
731 if (*head == elem) 1084 if (*head == elem)
736 1089
737 head = &(*head)->next; 1090 head = &(*head)->next;
738 } 1091 }
739} 1092}
740 1093
741static void 1094inline void
742ev_clear_pending (W w) 1095ev_clear_pending (EV_P_ W w)
743{ 1096{
744 if (w->pending) 1097 if (w->pending)
745 { 1098 {
746 pendings [w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1100 w->pending = 0;
748 } 1101 }
749} 1102}
750 1103
751static void 1104inline void
752ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
753{ 1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
754 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
755} 1112}
756 1113
757static void 1114inline void
758ev_stop (W w) 1115ev_stop (EV_P_ W w)
759{ 1116{
1117 ev_unref (EV_A);
760 w->active = 0; 1118 w->active = 0;
761} 1119}
762 1120
763/*****************************************************************************/ 1121/*****************************************************************************/
764 1122
765void 1123void
766ev_io_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
767{ 1125{
1126 int fd = w->fd;
1127
768 if (ev_is_active (w)) 1128 if (ev_is_active (w))
769 return; 1129 return;
770 1130
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1131 assert (("ev_io_start called with negative fd", fd >= 0));
774 1132
775 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1136
779 fd_change (fd); 1137 fd_change (EV_A_ fd);
780} 1138}
781 1139
782void 1140void
783ev_io_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
784{ 1142{
785 ev_clear_pending ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
787 return; 1145 return;
788 1146
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
791 1149
792 fd_change (w->fd); 1150 fd_change (EV_A_ w->fd);
793} 1151}
794 1152
795void 1153void
796ev_timer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1155{
798 if (ev_is_active (w)) 1156 if (ev_is_active (w))
799 return; 1157 return;
800 1158
801 w->at += now; 1159 ((WT)w)->at += mn_now;
802 1160
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1162
805 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
809}
810 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
811void 1171void
812ev_timer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1173{
814 ev_clear_pending ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
816 return; 1176 return;
817 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
818 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
819 { 1181 {
820 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
821 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
822 } 1184 }
823 1185
824 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
825 1187
826 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
827} 1189}
828 1190
829void 1191void
830ev_timer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1193{
832 if (ev_is_active (w)) 1194 if (ev_is_active (w))
833 { 1195 {
834 if (w->repeat) 1196 if (w->repeat)
835 { 1197 {
836 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
838 } 1200 }
839 else 1201 else
840 ev_timer_stop (w); 1202 ev_timer_stop (EV_A_ w);
841 } 1203 }
842 else if (w->repeat) 1204 else if (w->repeat)
843 ev_timer_start (w); 1205 ev_timer_start (EV_A_ w);
844} 1206}
845 1207
846void 1208void
847ev_periodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1210{
849 if (ev_is_active (w)) 1211 if (ev_is_active (w))
850 return; 1212 return;
851 1213
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1215
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1217 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
857 1219
858 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
862}
863 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
864void 1228void
865ev_periodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1230{
867 ev_clear_pending ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
869 return; 1233 return;
870 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
871 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
872 { 1238 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
875 } 1241 }
876 1242
877 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
878} 1244}
879 1245
880void 1246void
881ev_signal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1248{
883 if (ev_is_active (w)) 1249 if (ev_is_active (w))
884 return; 1250 return;
885 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1326
888 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1330
892 if (!w->next) 1331 if (!((WL)w)->next)
893 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
894 struct sigaction sa; 1336 struct sigaction sa;
895 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
899 } 1342 }
900} 1343}
901 1344
902void 1345void
903ev_signal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1347{
905 ev_clear_pending ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
907 return; 1350 return;
908 1351
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
911 1354
912 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
914} 1357}
915 1358
916void 1359void
917ev_idle_start (struct ev_idle *w) 1360ev_child_start (EV_P_ struct ev_child *w)
918{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
919 if (ev_is_active (w)) 1365 if (ev_is_active (w))
920 return; 1366 return;
921 1367
922 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1370}
926 1371
927void 1372void
928ev_idle_stop (struct ev_idle *w) 1373ev_child_stop (EV_P_ struct ev_child *w)
929{ 1374{
930 ev_clear_pending ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1376 if (ev_is_active (w))
932 return; 1377 return;
933 1378
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
1001} 1381}
1002 1382
1003/*****************************************************************************/ 1383/*****************************************************************************/
1004 1384
1005struct ev_once 1385struct ev_once
1009 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
1010 void *arg; 1390 void *arg;
1011}; 1391};
1012 1392
1013static void 1393static void
1014once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1395{
1016 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1397 void *arg = once->arg;
1018 1398
1019 ev_io_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1401 free (once);
1022 1402
1023 cb (revents, arg); 1403 cb (revents, arg);
1024} 1404}
1025 1405
1026static void 1406static void
1027once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1408{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1410}
1031 1411
1032static void 1412static void
1033once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1414{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1416}
1037 1417
1038void 1418void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1420{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
1042 1422
1043 if (!once) 1423 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1049 1429
1050 ev_watcher_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1431 if (fd >= 0)
1052 { 1432 {
1053 ev_io_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
1055 } 1435 }
1056 1436
1057 ev_watcher_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1438 if (timeout >= 0.)
1059 { 1439 {
1060 ev_timer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
1062 } 1442 }
1063 } 1443 }
1064} 1444}
1065 1445
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines