ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
58 80
59#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
61#endif 83#endif
62 84
63#ifndef EV_USEV_POLL 85#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 87#endif
66 88
67#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
69#endif 91#endif
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
73#endif 103#endif
74 104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 127
98#ifndef EV_EMBED
99# include "ev.h" 128#include "ev.h"
100#endif
101 129
102#if __GNUC__ >= 3 130#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 131# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline 132# define inline inline
105#else 133#else
116typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
117typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
119 147
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
121 155
122/*****************************************************************************/ 156/*****************************************************************************/
123 157
124typedef struct 158typedef struct
125{ 159{
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
205 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 240 cur = newcnt; \
207 } 241 }
208 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
209/*****************************************************************************/ 254/*****************************************************************************/
210 255
211static void 256static void
212anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
213{ 258{
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 324 events |= w->events;
280 325
281 anfd->reify = 0; 326 anfd->reify = 0;
282 327
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 329 anfd->events = events;
287 }
288 } 330 }
289 331
290 fdchangecnt = 0; 332 fdchangecnt = 0;
291} 333}
292 334
329 371
330/* called on ENOMEM in select/poll to kill some fds and retry */ 372/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 373static void
332fd_enomem (EV_P) 374fd_enomem (EV_P)
333{ 375{
334 int fd = anfdmax; 376 int fd;
335 377
336 while (fd--) 378 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 379 if (anfds [fd].events)
338 { 380 {
339 close (fd); 381 close (fd);
340 fd_kill (EV_A_ fd); 382 fd_kill (EV_A_ fd);
341 return; 383 return;
351 /* this should be highly optimised to not do anything but set a flag */ 393 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 394 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 395 if (anfds [fd].events)
354 { 396 {
355 anfds [fd].events = 0; 397 anfds [fd].events = 0;
356 fd_change (fd); 398 fd_change (EV_A_ fd);
357 } 399 }
358} 400}
359 401
360/*****************************************************************************/ 402/*****************************************************************************/
361 403
365 WT w = heap [k]; 407 WT w = heap [k];
366 408
367 while (k && heap [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
368 { 410 {
369 heap [k] = heap [k >> 1]; 411 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
371 k >>= 1; 413 k >>= 1;
372 } 414 }
373 415
374 heap [k] = w; 416 heap [k] = w;
375 heap [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
376 418
377} 419}
378 420
379static void 421static void
380downheap (WT *heap, int N, int k) 422downheap (WT *heap, int N, int k)
390 432
391 if (w->at <= heap [j]->at) 433 if (w->at <= heap [j]->at)
392 break; 434 break;
393 435
394 heap [k] = heap [j]; 436 heap [k] = heap [j];
395 heap [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
396 k = j; 438 k = j;
397 } 439 }
398 440
399 heap [k] = w; 441 heap [k] = w;
400 heap [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
401} 443}
402 444
403/*****************************************************************************/ 445/*****************************************************************************/
404 446
405typedef struct 447typedef struct
411static ANSIG *signals; 453static ANSIG *signals;
412static int signalmax; 454static int signalmax;
413 455
414static int sigpipe [2]; 456static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 457static sig_atomic_t volatile gotsig;
458static struct ev_io sigev;
416 459
417static void 460static void
418signals_init (ANSIG *base, int count) 461signals_init (ANSIG *base, int count)
419{ 462{
420 while (count--) 463 while (count--)
427} 470}
428 471
429static void 472static void
430sighandler (int signum) 473sighandler (int signum)
431{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
432 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
433 480
434 if (!gotsig) 481 if (!gotsig)
435 { 482 {
436 int old_errno = errno; 483 int old_errno = errno;
478 525
479/*****************************************************************************/ 526/*****************************************************************************/
480 527
481#ifndef WIN32 528#ifndef WIN32
482 529
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev;
532
483#ifndef WCONTINUED 533#ifndef WCONTINUED
484# define WCONTINUED 0 534# define WCONTINUED 0
485#endif 535#endif
486 536
487static void 537static void
490 struct ev_child *w; 540 struct ev_child *w;
491 541
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 543 if (w->pid == pid || !w->pid)
494 { 544 {
495 w->priority = sw->priority; /* need to do it *now* */ 545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 546 w->rpid = pid;
497 w->rstatus = status; 547 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 548 event (EV_A_ (W)w, EV_CHILD);
499 } 549 }
500} 550}
501 551
502static void 552static void
522# include "ev_kqueue.c" 572# include "ev_kqueue.c"
523#endif 573#endif
524#if EV_USE_EPOLL 574#if EV_USE_EPOLL
525# include "ev_epoll.c" 575# include "ev_epoll.c"
526#endif 576#endif
527#if EV_USEV_POLL 577#if EV_USE_POLL
528# include "ev_poll.c" 578# include "ev_poll.c"
529#endif 579#endif
530#if EV_USE_SELECT 580#if EV_USE_SELECT
531# include "ev_select.c" 581# include "ev_select.c"
532#endif 582#endif
584 methods = atoi (getenv ("LIBEV_METHODS")); 634 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 635 else
586 methods = EVMETHOD_ANY; 636 methods = EVMETHOD_ANY;
587 637
588 method = 0; 638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
589#if EV_USE_KQUEUE 642#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 644#endif
592#if EV_USE_EPOLL 645#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 647#endif
595#if EV_USEV_POLL 648#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 650#endif
598#if EV_USE_SELECT 651#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 653#endif
602} 655}
603 656
604void 657void
605loop_destroy (EV_P) 658loop_destroy (EV_P)
606{ 659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
607#if EV_USE_KQUEUE 665#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 667#endif
610#if EV_USE_EPOLL 668#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 670#endif
613#if EV_USEV_POLL 671#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 673#endif
616#if EV_USE_SELECT 674#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
619 687
620 method = 0; 688 method = 0;
621 /*TODO*/ 689 /*TODO*/
622} 690}
623 691
639{ 707{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641 709
642 loop_init (EV_A_ methods); 710 loop_init (EV_A_ methods);
643 711
644 if (ev_methods (EV_A)) 712 if (ev_method (EV_A))
645 return loop; 713 return loop;
646 714
647 return 0; 715 return 0;
648} 716}
649 717
726 794
727 loop_destroy (EV_A); 795 loop_destroy (EV_A);
728} 796}
729 797
730void 798void
731ev_default_fork (EV_P) 799ev_default_fork (void)
732{ 800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
733 loop_fork (EV_A); 805 loop_fork (EV_A);
734 806
735 ev_io_stop (EV_A_ &sigev); 807 ev_io_stop (EV_A_ &sigev);
736 close (sigpipe [0]); 808 close (sigpipe [0]);
737 close (sigpipe [1]); 809 close (sigpipe [1]);
762} 834}
763 835
764static void 836static void
765timers_reify (EV_P) 837timers_reify (EV_P)
766{ 838{
767 while (timercnt && timers [0]->at <= mn_now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 840 {
769 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 844
771 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
772 if (w->repeat) 846 if (w->repeat)
773 { 847 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
777 } 851 }
778 else 852 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 854
783} 857}
784 858
785static void 859static void
786periodics_reify (EV_P) 860periodics_reify (EV_P)
787{ 861{
788 while (periodiccnt && periodics [0]->at <= rt_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
789 { 863 {
790 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
791 867
792 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
793 if (w->interval) 869 if (w->interval)
794 { 870 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
798 } 874 }
799 else 875 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 877
813 { 889 {
814 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
815 891
816 if (w->interval) 892 if (w->interval)
817 { 893 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
819 895
820 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
821 { 897 {
822 ev_periodic_stop (EV_A_ w); 898 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w); 899 ev_periodic_start (EV_A_ w);
884 { 960 {
885 periodics_reschedule (EV_A); 961 periodics_reschedule (EV_A);
886 962
887 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 965 ((WT)timers [i])->at += rt_now - mn_now;
890 } 966 }
891 967
892 mn_now = rt_now; 968 mn_now = rt_now;
893 } 969 }
894} 970}
945 { 1021 {
946 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
947 1023
948 if (timercnt) 1024 if (timercnt)
949 { 1025 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1027 if (block > to) block = to;
952 } 1028 }
953 1029
954 if (periodiccnt) 1030 if (periodiccnt)
955 { 1031 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
957 if (block > to) block = to; 1033 if (block > to) block = to;
958 } 1034 }
959 1035
960 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
961 } 1037 }
1078ev_timer_start (EV_P_ struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1155{
1080 if (ev_is_active (w)) 1156 if (ev_is_active (w))
1081 return; 1157 return;
1082 1158
1083 w->at += mn_now; 1159 ((WT)w)->at += mn_now;
1084 1160
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1162
1087 ev_start (EV_A_ (W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
1089 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1169}
1092 1170
1093void 1171void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1173{
1096 ev_clear_pending (EV_A_ (W)w); 1174 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
1098 return; 1176 return;
1099 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
1100 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
1101 { 1181 {
1102 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1184 }
1105 1185
1106 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
1107 1187
1108 ev_stop (EV_A_ (W)w); 1188 ev_stop (EV_A_ (W)w);
1109} 1189}
1110 1190
1111void 1191void
1113{ 1193{
1114 if (ev_is_active (w)) 1194 if (ev_is_active (w))
1115 { 1195 {
1116 if (w->repeat) 1196 if (w->repeat)
1117 { 1197 {
1118 w->at = mn_now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1120 } 1200 }
1121 else 1201 else
1122 ev_timer_stop (EV_A_ w); 1202 ev_timer_stop (EV_A_ w);
1123 } 1203 }
1124 else if (w->repeat) 1204 else if (w->repeat)
1133 1213
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135 1215
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval) 1217 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1139 1219
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
1142 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1226}
1145 1227
1146void 1228void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1230{
1149 ev_clear_pending (EV_A_ (W)w); 1231 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
1151 return; 1233 return;
1152 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
1153 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
1154 { 1238 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1241 }
1158 1242
1159 ev_stop (EV_A_ (W)w); 1243 ev_stop (EV_A_ (W)w);
1160} 1244}
1161 1245
1175{ 1259{
1176 ev_clear_pending (EV_A_ (W)w); 1260 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1261 if (ev_is_active (w))
1178 return; 1262 return;
1179 1263
1180 idles [w->active - 1] = idles [--idlecnt]; 1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1265 ev_stop (EV_A_ (W)w);
1182} 1266}
1183 1267
1184void 1268void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1197{ 1281{
1198 ev_clear_pending (EV_A_ (W)w); 1282 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1283 if (ev_is_active (w))
1200 return; 1284 return;
1201 1285
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1287 ev_stop (EV_A_ (W)w);
1204} 1288}
1205 1289
1206void 1290void
1207ev_check_start (EV_P_ struct ev_check *w) 1291ev_check_start (EV_P_ struct ev_check *w)
1219{ 1303{
1220 ev_clear_pending (EV_A_ (W)w); 1304 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1305 if (ev_is_active (w))
1222 return; 1306 return;
1223 1307
1224 checks [w->active - 1] = checks [--checkcnt]; 1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1309 ev_stop (EV_A_ (W)w);
1226} 1310}
1227 1311
1228#ifndef SA_RESTART 1312#ifndef SA_RESTART
1229# define SA_RESTART 0 1313# define SA_RESTART 0
1242 1326
1243 ev_start (EV_A_ (W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1330
1247 if (!w->next) 1331 if (!((WL)w)->next)
1248 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
1249 struct sigaction sa; 1336 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
1254 } 1342 }
1255} 1343}
1256 1344
1257void 1345void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines