ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.6 by root, Tue Oct 30 23:55:29 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h>
3 63
4#include <stdio.h> 64#include <stdio.h>
5 65
6#include <assert.h> 66#include <assert.h>
7#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
8#include <sys/time.h> 72#include <sys/time.h>
9#include <time.h> 73#include <time.h>
10 74
75/**/
76
77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
11#ifdef CLOCK_MONOTONIC 111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
12# define HAVE_MONOTONIC 1 113# define EV_USE_MONOTONIC 0
13#endif 114#endif
14 115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
15#define HAVE_REALTIME 1 118# define EV_USE_REALTIME 0
16#define HAVE_EPOLL 1 119#endif
17#define HAVE_SELECT 1 120
121/**/
18 122
19#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
20#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
21 127
22#include "ev.h" 128#include "ev.h"
23 129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
24struct ev_watcher { 144typedef struct ev_watcher *W;
25 EV_WATCHER (ev_watcher); 145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
147
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155
156/*****************************************************************************/
157
158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
26}; 177};
178# undef VAR
179# include "ev_wrap.h"
27 180
28struct ev_watcher_list { 181#else
29 EV_WATCHER_LIST (ev_watcher_list);
30};
31 182
32static ev_tstamp now, diff; /* monotonic clock */ 183# define VAR(name,decl) static decl;
33ev_tstamp ev_now; 184# include "ev_vars.h"
34int ev_method; 185# undef VAR
35 186
36static int have_monotonic; /* runtime */ 187#endif
37 188
38static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 189/*****************************************************************************/
39static void (*method_modify)(int fd, int oev, int nev);
40static void (*method_poll)(ev_tstamp timeout);
41 190
42ev_tstamp 191inline ev_tstamp
43ev_time (void) 192ev_time (void)
44{ 193{
45#if HAVE_REALTIME 194#if EV_USE_REALTIME
46 struct timespec ts; 195 struct timespec ts;
47 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
48 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
49#else 198#else
50 struct timeval tv; 199 struct timeval tv;
51 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
52 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
53#endif 202#endif
54} 203}
55 204
56static ev_tstamp 205inline ev_tstamp
57get_clock (void) 206get_clock (void)
58{ 207{
59#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
60 if (have_monotonic) 209 if (expect_true (have_monotonic))
61 { 210 {
62 struct timespec ts; 211 struct timespec ts;
63 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
64 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
65 } 214 }
66#endif 215#endif
67 216
68 return ev_time (); 217 return ev_time ();
69} 218}
70 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
71#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
72 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
73 { \ 230 { \
74 int newcnt = cur ? cur << 1 : 16; \ 231 int newcnt = cur; \
75 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 232 do \
233 { \
234 newcnt = array_roundsize (base, newcnt << 1); \
235 } \
236 while ((cnt) > newcnt); \
237 \
76 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
77 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
78 cur = newcnt; \ 240 cur = newcnt; \
79 } 241 }
80 242
81typedef struct 243#define array_slim(stem) \
82{ 244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
83 struct ev_io *head; 245 { \
84 unsigned char wev, rev; /* want, received event set */ 246 stem ## max = array_roundsize (stem ## cnt >> 1); \
85} ANFD; 247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
86 250
87static ANFD *anfds; 251#define array_free(stem, idx) \
88static int anfdmax; 252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
89 253
90static int *fdchanges; 254/*****************************************************************************/
91static int fdchangemax, fdchangecnt;
92 255
93static void 256static void
94anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
95{ 258{
96 while (count--) 259 while (count--)
97 { 260 {
98 base->head = 0; 261 base->head = 0;
99 base->wev = base->rev = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
100 ++base; 265 ++base;
101 } 266 }
102} 267}
103 268
104typedef struct
105{
106 struct ev_watcher *w;
107 int events;
108} ANPENDING;
109
110static ANPENDING *pendings;
111static int pendingmax, pendingcnt;
112
113static void 269static void
114event (struct ev_watcher *w, int events) 270event (EV_P_ W w, int events)
115{ 271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
116 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
117 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
118 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
119 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
120} 282}
121 283
122static void 284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
123fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
124{ 295{
125 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
126 struct ev_io *w; 297 struct ev_io *w;
127 298
128 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
129 { 300 {
130 int ev = w->events & events; 301 int ev = w->events & events;
131 302
132 if (ev) 303 if (ev)
133 event ((struct ev_watcher *)w, ev); 304 event (EV_A_ (W)w, ev);
134 }
135}
136
137static struct ev_timer **atimers;
138static int atimermax, atimercnt;
139
140static struct ev_timer **rtimers;
141static int rtimermax, rtimercnt;
142
143static void
144upheap (struct ev_timer **timers, int k)
145{
146 struct ev_timer *w = timers [k];
147
148 while (k && timers [k >> 1]->at > w->at)
149 { 305 }
150 timers [k] = timers [k >> 1];
151 timers [k]->active = k + 1;
152 k >>= 1;
153 }
154
155 timers [k] = w;
156 timers [k]->active = k + 1;
157
158} 306}
159 307
160static void 308/*****************************************************************************/
161downheap (struct ev_timer **timers, int N, int k)
162{
163 struct ev_timer *w = timers [k];
164 309
165 while (k < (N >> 1))
166 {
167 int j = k << 1;
168
169 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
170 ++j;
171
172 if (w->at <= timers [j]->at)
173 break;
174
175 timers [k] = timers [j];
176 timers [k]->active = k + 1;
177 k = j;
178 }
179
180 timers [k] = w;
181 timers [k]->active = k + 1;
182}
183
184static struct ev_signal **signals;
185static int signalmax;
186
187static void 310static void
188signals_init (struct ev_signal **base, int count) 311fd_reify (EV_P)
189{
190 while (count--)
191 *base++ = 0;
192}
193
194#if HAVE_EPOLL
195# include "ev_epoll.c"
196#endif
197#if HAVE_SELECT
198# include "ev_select.c"
199#endif
200
201int ev_init (int flags)
202{
203#if HAVE_MONOTONIC
204 {
205 struct timespec ts;
206 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
207 have_monotonic = 1;
208 }
209#endif
210
211 ev_now = ev_time ();
212 now = get_clock ();
213 diff = ev_now - now;
214
215#if HAVE_EPOLL
216 if (epoll_init (flags))
217 return ev_method;
218#endif
219#if HAVE_SELECT
220 if (select_init (flags))
221 return ev_method;
222#endif
223
224 ev_method = EVMETHOD_NONE;
225 return ev_method;
226}
227
228void ev_prefork (void)
229{
230}
231
232void ev_postfork_parent (void)
233{
234}
235
236void ev_postfork_child (void)
237{
238#if HAVE_EPOLL
239 if (ev_method == EVMETHOD_EPOLL)
240 epoll_postfork_child ();
241#endif
242}
243
244static void
245fd_reify (void)
246{ 312{
247 int i; 313 int i;
248 314
249 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
250 { 316 {
251 int fd = fdchanges [i]; 317 int fd = fdchanges [i];
252 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
253 struct ev_io *w; 319 struct ev_io *w;
254 320
255 int wev = 0; 321 int events = 0;
256 322
257 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
258 wev |= w->events; 324 events |= w->events;
259 325
260 if (anfd->wev != wev) 326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333}
334
335static void
336fd_change (EV_P_ int fd)
337{
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346}
347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
360/* called on EBADF to verify fds */
361static void
362fd_ebadf (EV_P)
363{
364 int fd;
365
366 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 close (fd);
382 fd_kill (EV_A_ fd);
383 return;
384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
400}
401
402/*****************************************************************************/
403
404static void
405upheap (WT *heap, int k)
406{
407 WT w = heap [k];
408
409 while (k && heap [k >> 1]->at > w->at)
410 {
411 heap [k] = heap [k >> 1];
412 ((W)heap [k])->active = k + 1;
413 k >>= 1;
414 }
415
416 heap [k] = w;
417 ((W)heap [k])->active = k + 1;
418
419}
420
421static void
422downheap (WT *heap, int N, int k)
423{
424 WT w = heap [k];
425
426 while (k < (N >> 1))
427 {
428 int j = k << 1;
429
430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
431 ++j;
432
433 if (w->at <= heap [j]->at)
434 break;
435
436 heap [k] = heap [j];
437 ((W)heap [k])->active = k + 1;
438 k = j;
439 }
440
441 heap [k] = w;
442 ((W)heap [k])->active = k + 1;
443}
444
445/*****************************************************************************/
446
447typedef struct
448{
449 struct ev_watcher_list *head;
450 sig_atomic_t volatile gotsig;
451} ANSIG;
452
453static ANSIG *signals;
454static int signalmax;
455
456static int sigpipe [2];
457static sig_atomic_t volatile gotsig;
458static struct ev_io sigev;
459
460static void
461signals_init (ANSIG *base, int count)
462{
463 while (count--)
464 {
465 base->head = 0;
466 base->gotsig = 0;
467
468 ++base;
469 }
470}
471
472static void
473sighandler (int signum)
474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
479 signals [signum - 1].gotsig = 1;
480
481 if (!gotsig)
482 {
483 int old_errno = errno;
484 gotsig = 1;
485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
487 }
488}
489
490static void
491sigcb (EV_P_ struct ev_io *iow, int revents)
492{
493 struct ev_watcher_list *w;
494 int signum;
495
496 read (sigpipe [0], &revents, 1);
497 gotsig = 0;
498
499 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig)
501 {
502 signals [signum].gotsig = 0;
503
504 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL);
506 }
507}
508
509static void
510siginit (EV_P)
511{
512#ifndef WIN32
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
520
521 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
524}
525
526/*****************************************************************************/
527
528#ifndef WIN32
529
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev;
532
533#ifndef WCONTINUED
534# define WCONTINUED 0
535#endif
536
537static void
538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
539{
540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
555 int pid, status;
556
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 {
559 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL);
561
562 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
565}
566
567#endif
568
569/*****************************************************************************/
570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
574#if EV_USE_EPOLL
575# include "ev_epoll.c"
576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
580#if EV_USE_SELECT
581# include "ev_select.c"
582#endif
583
584int
585ev_version_major (void)
586{
587 return EV_VERSION_MAJOR;
588}
589
590int
591ev_version_minor (void)
592{
593 return EV_VERSION_MINOR;
594}
595
596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
617 if (!method)
618 {
619#if EV_USE_MONOTONIC
620 {
621 struct timespec ts;
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1;
624 }
625#endif
626
627 rt_now = ev_time ();
628 mn_now = get_clock ();
629 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now;
631
632 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
645#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif
651#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif
654 }
655}
656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe))
747 return 0;
748
749 if (!default_loop)
750 {
751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
755#endif
756
757 loop_init (EV_A_ methods);
758
759 if (ev_method (EV_A))
261 { 760 {
262 method_modify (fd, anfd->wev, wev); 761 ev_watcher_init (&sigev, sigcb);
263 anfd->wev = wev; 762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A);
764
765#ifndef WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif
264 } 771 }
772 else
773 default_loop = 0;
265 } 774 }
266 775
267 fdchangecnt = 0; 776 return default_loop;
268} 777}
269 778
779void
780ev_default_destroy (void)
781{
782#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop;
784#endif
785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814}
815
816/*****************************************************************************/
817
270static void 818static void
271call_pending () 819call_pending (EV_P)
272{ 820{
273 int i; 821 int pri;
274 822
275 for (i = 0; i < pendingcnt; ++i) 823 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri])
276 { 825 {
277 ANPENDING *p = pendings + i; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
278 827
279 if (p->w) 828 if (p->w)
280 { 829 {
281 p->w->pending = 0; 830 p->w->pending = 0;
282 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
283 } 832 }
284 } 833 }
285
286 pendingcnt = 0;
287} 834}
288 835
289static void 836static void
290timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 837timers_reify (EV_P)
291{ 838{
292 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
293 { 840 {
294 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
842
843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
295 844
296 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
297 if (w->repeat) 846 if (w->repeat)
298 { 847 {
299 if (w->is_abs) 848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
300 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
301 else
302 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
303
304 assert (w->at > now);
305
306 downheap (timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
307 } 851 }
308 else 852 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854
855 event (EV_A_ (W)w, EV_TIMEOUT);
856 }
857}
858
859static void
860periodics_reify (EV_P)
861{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
863 {
864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867
868 /* first reschedule or stop timer */
869 if (w->interval)
309 { 870 {
310 evtimer_stop (w); /* nonrepeating: stop timer */ 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
311 --timercnt; /* maybe pass by reference instead? */ 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0);
312 } 874 }
875 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
313 877
314 event ((struct ev_watcher *)w, EV_TIMEOUT); 878 event (EV_A_ (W)w, EV_PERIODIC);
315 } 879 }
316} 880}
317 881
318static void 882static void
319time_update () 883periodics_reschedule (EV_P)
320{ 884{
321 int i; 885 int i;
322 ev_now = ev_time ();
323 886
324 if (have_monotonic) 887 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i)
325 { 889 {
326 ev_tstamp odiff = diff; 890 struct ev_periodic *w = periodics [i];
327 891
328 /* detecting time jumps is much more difficult */ 892 if (w->interval)
329 for (i = 2; --i; ) /* loop a few times, before making important decisions */
330 { 893 {
331 now = get_clock (); 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
332 diff = ev_now - now;
333 895
334 if (fabs (odiff - diff) < MIN_TIMEJUMP) 896 if (fabs (diff) >= 1e-4)
335 return; /* all is well */ 897 {
898 ev_periodic_stop (EV_A_ w);
899 ev_periodic_start (EV_A_ w);
336 900
337 ev_now = ev_time (); 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 }
338 } 903 }
904 }
905}
339 906
340 /* time jump detected, reschedule atimers */ 907inline int
341 for (i = 0; i < atimercnt; ++i) 908time_update_monotonic (EV_P)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
925static void
926time_update (EV_P)
927{
928 int i;
929
930#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 {
933 if (time_update_monotonic (EV_A))
342 { 934 {
343 struct ev_timer *w = atimers [i]; 935 ev_tstamp odiff = rtmn_diff;
344 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
939 rtmn_diff = rt_now - mn_now;
940
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */
943
944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
345 } 952 }
346 } 953 }
347 else 954 else
955#endif
348 { 956 {
349 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 957 rt_now = ev_time ();
350 /* time jump detected, adjust rtimers */ 958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 {
961 periodics_reschedule (EV_A);
962
963 /* adjust timers. this is easy, as the offset is the same for all */
351 for (i = 0; i < rtimercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
352 rtimers [i]->at += ev_now - now; 965 ((WT)timers [i])->at += rt_now - mn_now;
966 }
353 967
354 now = ev_now; 968 mn_now = rt_now;
355 } 969 }
356} 970}
357 971
358int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
359 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
360void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
361{ 988{
362 double block; 989 double block;
363 ev_loop_done = flags & EVLOOP_ONESHOT; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
364 991
365 do 992 do
366 { 993 {
994 /* queue check watchers (and execute them) */
995 if (expect_false (preparecnt))
996 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A);
999 }
1000
367 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
368 fd_reify (); 1002 fd_reify (EV_A);
369 1003
370 /* calculate blocking time */ 1004 /* calculate blocking time */
1005
1006 /* we only need this for !monotonic clockor timers, but as we basically
1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 {
1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
1017
371 if (flags & EVLOOP_NONBLOCK) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
372 block = 0.; 1019 block = 0.;
373 else 1020 else
374 { 1021 {
375 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
376 1023
377 if (rtimercnt) 1024 if (timercnt)
378 { 1025 {
379 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
380 if (block > to) block = to; 1027 if (block > to) block = to;
381 } 1028 }
382 1029
383 if (atimercnt) 1030 if (periodiccnt)
384 { 1031 {
385 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
386 if (block > to) block = to; 1033 if (block > to) block = to;
387 } 1034 }
388 1035
389 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
390 } 1037 }
391 1038
392 method_poll (block); 1039 method_poll (EV_A_ block);
393 1040
394 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
395 time_update (); 1042 time_update (EV_A);
396 1043
397 /* put pending timers into pendign queue and reschedule them */ 1044 /* queue pending timers and reschedule them */
398 /* absolute timers first */ 1045 timers_reify (EV_A); /* relative timers called last */
399 timers_reify (atimers, atimercnt, ev_now); 1046 periodics_reify (EV_A); /* absolute timers called first */
400 /* relative timers second */
401 timers_reify (rtimers, rtimercnt, now);
402 1047
1048 /* queue idle watchers unless io or timers are pending */
1049 if (!pendingcnt)
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1051
1052 /* queue check watchers, to be executed first */
1053 if (checkcnt)
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055
403 call_pending (); 1056 call_pending (EV_A);
404 } 1057 }
405 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
406}
407 1059
408static void 1060 if (loop_done != 2)
409wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
1068}
1069
1070/*****************************************************************************/
1071
1072inline void
1073wlist_add (WL *head, WL elem)
410{ 1074{
411 elem->next = *head; 1075 elem->next = *head;
412 *head = elem; 1076 *head = elem;
413} 1077}
414 1078
415static void 1079inline void
416wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1080wlist_del (WL *head, WL elem)
417{ 1081{
418 while (*head) 1082 while (*head)
419 { 1083 {
420 if (*head == elem) 1084 if (*head == elem)
421 { 1085 {
425 1089
426 head = &(*head)->next; 1090 head = &(*head)->next;
427 } 1091 }
428} 1092}
429 1093
430static void 1094inline void
431ev_start (struct ev_watcher *w, int active) 1095ev_clear_pending (EV_P_ W w)
432{ 1096{
1097 if (w->pending)
1098 {
1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
433 w->pending = 0; 1100 w->pending = 0;
1101 }
1102}
1103
1104inline void
1105ev_start (EV_P_ W w, int active)
1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
434 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
435} 1112}
436 1113
437static void 1114inline void
438ev_stop (struct ev_watcher *w) 1115ev_stop (EV_P_ W w)
439{ 1116{
440 if (w->pending) 1117 ev_unref (EV_A);
441 pendings [w->pending - 1].w = 0;
442
443 w->active = 0; 1118 w->active = 0;
444 /* nop */
445} 1119}
446 1120
1121/*****************************************************************************/
1122
447void 1123void
448evio_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
449{ 1125{
1126 int fd = w->fd;
1127
450 if (ev_is_active (w)) 1128 if (ev_is_active (w))
451 return; 1129 return;
452 1130
453 int fd = w->fd; 1131 assert (("ev_io_start called with negative fd", fd >= 0));
454 1132
455 ev_start ((struct ev_watcher *)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
456 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
457 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
458 1136
459 ++fdchangecnt; 1137 fd_change (EV_A_ fd);
460 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
461 fdchanges [fdchangecnt - 1] = fd;
462} 1138}
463 1139
464void 1140void
465evio_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
466{ 1142{
1143 ev_clear_pending (EV_A_ (W)w);
467 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
468 return; 1145 return;
469 1146
470 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
471 ev_stop ((struct ev_watcher *)w); 1148 ev_stop (EV_A_ (W)w);
472 1149
473 ++fdchangecnt; 1150 fd_change (EV_A_ w->fd);
474 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
475 fdchanges [fdchangecnt - 1] = w->fd;
476} 1151}
477 1152
478void 1153void
479evtimer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
480{ 1155{
481 if (ev_is_active (w)) 1156 if (ev_is_active (w))
482 return; 1157 return;
483 1158
484 if (w->is_abs) 1159 ((WT)w)->at += mn_now;
1160
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162
1163 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, );
1165 timers [timercnt - 1] = w;
1166 upheap ((WT *)timers, timercnt - 1);
1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
1171void
1172ev_timer_stop (EV_P_ struct ev_timer *w)
1173{
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w))
1176 return;
1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
1180 if (((W)w)->active < timercnt--)
1181 {
1182 timers [((W)w)->active - 1] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
485 { 1184 }
486 /* this formula differs from the one in timer_reify becuse we do not round up */ 1185
1186 ((WT)w)->at = w->repeat;
1187
1188 ev_stop (EV_A_ (W)w);
1189}
1190
1191void
1192ev_timer_again (EV_P_ struct ev_timer *w)
1193{
1194 if (ev_is_active (w))
1195 {
487 if (w->repeat) 1196 if (w->repeat)
488 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1197 {
1198 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1200 }
1201 else
1202 ev_timer_stop (EV_A_ w);
1203 }
1204 else if (w->repeat)
1205 ev_timer_start (EV_A_ w);
1206}
489 1207
490 ev_start ((struct ev_watcher *)w, ++atimercnt); 1208void
491 array_needsize (atimers, atimermax, atimercnt, ); 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
492 atimers [atimercnt - 1] = w; 1210{
493 upheap (atimers, atimercnt - 1); 1211 if (ev_is_active (w))
1212 return;
1213
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1219
1220 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, );
1222 periodics [periodiccnt - 1] = w;
1223 upheap ((WT *)periodics, periodiccnt - 1);
1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
1228void
1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w))
1233 return;
1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
1237 if (((W)w)->active < periodiccnt--)
494 } 1238 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1241 }
1242
1243 ev_stop (EV_A_ (W)w);
1244}
1245
1246void
1247ev_idle_start (EV_P_ struct ev_idle *w)
1248{
1249 if (ev_is_active (w))
1250 return;
1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326
1327 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1330
1331 if (!((WL)w)->next)
1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
1336 struct sigaction sa;
1337 sa.sa_handler = sighandler;
1338 sigfillset (&sa.sa_mask);
1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1340 sigaction (w->signum, &sa, 0);
1341#endif
1342 }
1343}
1344
1345void
1346ev_signal_stop (EV_P_ struct ev_signal *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w))
1350 return;
1351
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w);
1354
1355 if (!signals [w->signum - 1].head)
1356 signal (w->signum, SIG_DFL);
1357}
1358
1359void
1360ev_child_start (EV_P_ struct ev_child *w)
1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
1365 if (ev_is_active (w))
1366 return;
1367
1368 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1370}
1371
1372void
1373ev_child_stop (EV_P_ struct ev_child *w)
1374{
1375 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w))
1377 return;
1378
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w);
1381}
1382
1383/*****************************************************************************/
1384
1385struct ev_once
1386{
1387 struct ev_io io;
1388 struct ev_timer to;
1389 void (*cb)(int revents, void *arg);
1390 void *arg;
1391};
1392
1393static void
1394once_cb (EV_P_ struct ev_once *once, int revents)
1395{
1396 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg;
1398
1399 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to);
1401 free (once);
1402
1403 cb (revents, arg);
1404}
1405
1406static void
1407once_cb_io (EV_P_ struct ev_io *w, int revents)
1408{
1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1410}
1411
1412static void
1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
1414{
1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1416}
1417
1418void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{
1421 struct ev_once *once = malloc (sizeof (struct ev_once));
1422
1423 if (!once)
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
495 else 1425 else
496 { 1426 {
497 w->at += now; 1427 once->cb = cb;
1428 once->arg = arg;
498 1429
499 ev_start ((struct ev_watcher *)w, ++rtimercnt); 1430 ev_watcher_init (&once->io, once_cb_io);
500 array_needsize (rtimers, rtimermax, rtimercnt, ); 1431 if (fd >= 0)
501 rtimers [rtimercnt - 1] = w;
502 upheap (rtimers, rtimercnt - 1);
503 }
504
505}
506
507void
508evtimer_stop (struct ev_timer *w)
509{
510 if (!ev_is_active (w))
511 return;
512
513 if (w->is_abs)
514 {
515 if (w->active < atimercnt--)
516 { 1432 {
517 atimers [w->active - 1] = atimers [atimercnt]; 1433 ev_io_set (&once->io, fd, events);
518 downheap (atimers, atimercnt, w->active - 1); 1434 ev_io_start (EV_A_ &once->io);
519 } 1435 }
520 } 1436
521 else 1437 ev_watcher_init (&once->to, once_cb_to);
522 { 1438 if (timeout >= 0.)
523 if (w->active < rtimercnt--)
524 { 1439 {
525 rtimers [w->active - 1] = rtimers [rtimercnt]; 1440 ev_timer_set (&once->to, timeout, 0.);
526 downheap (rtimers, rtimercnt, w->active - 1); 1441 ev_timer_start (EV_A_ &once->to);
527 } 1442 }
528 } 1443 }
529
530 ev_stop ((struct ev_watcher *)w);
531} 1444}
532 1445
533void
534evsignal_start (struct ev_signal *w)
535{
536 if (ev_is_active (w))
537 return;
538
539 ev_start ((struct ev_watcher *)w, 1);
540 array_needsize (signals, signalmax, w->signum, signals_init);
541 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
542}
543
544void
545evsignal_stop (struct ev_signal *w)
546{
547 if (!ev_is_active (w))
548 return;
549
550 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1], (struct ev_watcher_list *)w);
551 ev_stop ((struct ev_watcher *)w);
552}
553
554/*****************************************************************************/
555#if 1
556
557static void
558sin_cb (struct ev_io *w, int revents)
559{
560 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
561}
562
563static void
564ocb (struct ev_timer *w, int revents)
565{
566 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
567 evtimer_stop (w);
568 evtimer_start (w);
569}
570
571int main (void)
572{
573 struct ev_io sin;
574
575 ev_init (0);
576
577 evw_init (&sin, sin_cb, 55);
578 evio_set (&sin, 0, EV_READ);
579 evio_start (&sin);
580
581 struct ev_timer t[10000];
582
583#if 1
584 int i;
585 for (i = 0; i < 10000; ++i)
586 {
587 struct ev_timer *w = t + i;
588 evw_init (w, ocb, i);
589 evtimer_set_abs (w, drand48 (), 0.99775533);
590 evtimer_start (w);
591 if (drand48 () < 0.5)
592 evtimer_stop (w);
593 }
594#endif
595
596 struct ev_timer t1;
597 evw_init (&t1, ocb, 0);
598 evtimer_set_abs (&t1, 5, 10);
599 evtimer_start (&t1);
600
601 ev_loop (0);
602
603 return 0;
604}
605
606#endif
607
608
609
610

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines