ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
150#if WIN32 157#include "ev_win32.c"
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155 158
156/*****************************************************************************/ 159/*****************************************************************************/
157 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
158typedef struct 209typedef struct
159{ 210{
160 struct ev_watcher_list *head; 211 WL head;
161 unsigned char events; 212 unsigned char events;
162 unsigned char reify; 213 unsigned char reify;
163} ANFD; 214} ANFD;
164 215
165typedef struct 216typedef struct
168 int events; 219 int events;
169} ANPENDING; 220} ANPENDING;
170 221
171#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
172 223
173struct ev_loop 224 struct ev_loop
174{ 225 {
226 ev_tstamp ev_rt_now;
175# define VAR(name,decl) decl; 227 #define VAR(name,decl) decl;
176# include "ev_vars.h" 228 #include "ev_vars.h"
177};
178# undef VAR 229 #undef VAR
230 };
179# include "ev_wrap.h" 231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
180 235
181#else 236#else
182 237
238 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 239 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 240 #include "ev_vars.h"
185# undef VAR 241 #undef VAR
242
243 static int default_loop;
186 244
187#endif 245#endif
188 246
189/*****************************************************************************/ 247/*****************************************************************************/
190 248
215#endif 273#endif
216 274
217 return ev_time (); 275 return ev_time ();
218} 276}
219 277
278#if EV_MULTIPLICITY
220ev_tstamp 279ev_tstamp
221ev_now (EV_P) 280ev_now (EV_P)
222{ 281{
223 return rt_now; 282 return ev_rt_now;
224} 283}
284#endif
225 285
226#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
227 287
228#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
230 { \ 290 { \
231 int newcnt = cur; \ 291 int newcnt = cur; \
232 do \ 292 do \
233 { \ 293 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 295 } \
236 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
237 \ 297 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 300 cur = newcnt; \
241 } 301 }
242 302
243#define array_slim(stem) \ 303#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 305 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 306 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 309 }
250 310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315
251#define array_free(stem, idx) \ 316#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 318
254/*****************************************************************************/ 319/*****************************************************************************/
255 320
256static void 321static void
257anfds_init (ANFD *base, int count) 322anfds_init (ANFD *base, int count)
264 329
265 ++base; 330 ++base;
266 } 331 }
267} 332}
268 333
269static void 334void
270event (EV_P_ W w, int events) 335ev_feed_event (EV_P_ void *w, int revents)
271{ 336{
337 W w_ = (W)w;
338
272 if (w->pending) 339 if (w_->pending)
273 { 340 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 342 return;
276 } 343 }
277 344
278 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 349}
283 350
284static void 351static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 353{
287 int i; 354 int i;
288 355
289 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
291} 358}
292 359
293static void 360inline void
294fd_event (EV_P_ int fd, int events) 361fd_event (EV_P_ int fd, int revents)
295{ 362{
296 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 364 struct ev_io *w;
298 365
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 367 {
301 int ev = w->events & events; 368 int ev = w->events & revents;
302 369
303 if (ev) 370 if (ev)
304 event (EV_A_ (W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
305 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
306} 379}
307 380
308/*****************************************************************************/ 381/*****************************************************************************/
309 382
310static void 383static void
333} 406}
334 407
335static void 408static void
336fd_change (EV_P_ int fd) 409fd_change (EV_P_ int fd)
337{ 410{
338 if (anfds [fd].reify || fdchangecnt < 0) 411 if (anfds [fd].reify)
339 return; 412 return;
340 413
341 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
342 415
343 ++fdchangecnt; 416 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
345 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
346} 419}
347 420
348static void 421static void
349fd_kill (EV_P_ int fd) 422fd_kill (EV_P_ int fd)
351 struct ev_io *w; 424 struct ev_io *w;
352 425
353 while ((w = (struct ev_io *)anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
354 { 427 {
355 ev_io_stop (EV_A_ w); 428 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
358} 441}
359 442
360/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
361static void 444static void
362fd_ebadf (EV_P) 445fd_ebadf (EV_P)
363{ 446{
364 int fd; 447 int fd;
365 448
366 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 450 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 452 fd_kill (EV_A_ fd);
370} 453}
371 454
372/* called on ENOMEM in select/poll to kill some fds and retry */ 455/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 456static void
376 int fd; 459 int fd;
377 460
378 for (fd = anfdmax; fd--; ) 461 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 462 if (anfds [fd].events)
380 { 463 {
381 close (fd);
382 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
383 return; 465 return;
384 } 466 }
385} 467}
386 468
387/* susually called after fork if method needs to re-arm all fds from scratch */ 469/* usually called after fork if method needs to re-arm all fds from scratch */
388static void 470static void
389fd_rearm_all (EV_P) 471fd_rearm_all (EV_P)
390{ 472{
391 int fd; 473 int fd;
392 474
440 522
441 heap [k] = w; 523 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 524 ((W)heap [k])->active = k + 1;
443} 525}
444 526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
537}
538
445/*****************************************************************************/ 539/*****************************************************************************/
446 540
447typedef struct 541typedef struct
448{ 542{
449 struct ev_watcher_list *head; 543 WL head;
450 sig_atomic_t volatile gotsig; 544 sig_atomic_t volatile gotsig;
451} ANSIG; 545} ANSIG;
452 546
453static ANSIG *signals; 547static ANSIG *signals;
454static int signalmax; 548static int signalmax;
480 574
481 if (!gotsig) 575 if (!gotsig)
482 { 576 {
483 int old_errno = errno; 577 int old_errno = errno;
484 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
485 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
486 errno = old_errno; 584 errno = old_errno;
487 } 585 }
488} 586}
489 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
490static void 608static void
491sigcb (EV_P_ struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
492{ 610{
493 struct ev_watcher_list *w;
494 int signum; 611 int signum;
495 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
496 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
497 gotsig = 0; 618 gotsig = 0;
498 619
499 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
501 { 622 ev_feed_signal_event (EV_A_ signum + 1);
502 signals [signum].gotsig = 0;
503
504 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL);
506 }
507} 623}
508 624
509static void 625static void
510siginit (EV_P) 626siginit (EV_P)
511{ 627{
523 ev_unref (EV_A); /* child watcher should not keep loop alive */ 639 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 640}
525 641
526/*****************************************************************************/ 642/*****************************************************************************/
527 643
644static struct ev_child *childs [PID_HASHSIZE];
645
528#ifndef WIN32 646#ifndef WIN32
529 647
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev; 648static struct ev_signal childev;
532 649
533#ifndef WCONTINUED 650#ifndef WCONTINUED
534# define WCONTINUED 0 651# define WCONTINUED 0
535#endif 652#endif
543 if (w->pid == pid || !w->pid) 660 if (w->pid == pid || !w->pid)
544 { 661 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid; 663 w->rpid = pid;
547 w->rstatus = status; 664 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD); 665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
549 } 666 }
550} 667}
551 668
552static void 669static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 670childcb (EV_P_ struct ev_signal *sw, int revents)
555 int pid, status; 672 int pid, status;
556 673
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 675 {
559 /* make sure we are called again until all childs have been reaped */ 676 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL); 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 678
562 child_reap (EV_A_ sw, pid, pid, status); 679 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 } 681 }
565} 682}
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 740 have_monotonic = 1;
624 } 741 }
625#endif 742#endif
626 743
627 rt_now = ev_time (); 744 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 745 mn_now = get_clock ();
629 now_floor = mn_now; 746 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 747 rtmn_diff = ev_rt_now - mn_now;
631 748
632 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
635 else 752 else
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif 767#endif
651#if EV_USE_SELECT 768#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif 770#endif
771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
654 } 774 }
655} 775}
656 776
657void 777void
658loop_destroy (EV_P) 778loop_destroy (EV_P)
676#endif 796#endif
677 797
678 for (i = NUMPRI; i--; ) 798 for (i = NUMPRI; i--; )
679 array_free (pending, [i]); 799 array_free (pending, [i]);
680 800
801 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 802 array_free_microshit (fdchange);
682 array_free (timer, ); 803 array_free_microshit (timer);
683 array_free (periodic, ); 804 array_free_microshit (periodic);
684 array_free (idle, ); 805 array_free_microshit (idle);
685 array_free (prepare, ); 806 array_free_microshit (prepare);
686 array_free (check, ); 807 array_free_microshit (check);
687 808
688 method = 0; 809 method = 0;
689 /*TODO*/
690} 810}
691 811
692void 812static void
693loop_fork (EV_P) 813loop_fork (EV_P)
694{ 814{
695 /*TODO*/
696#if EV_USE_EPOLL 815#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif 817#endif
699#if EV_USE_KQUEUE 818#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif 820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
702} 838}
703 839
704#if EV_MULTIPLICITY 840#if EV_MULTIPLICITY
705struct ev_loop * 841struct ev_loop *
706ev_loop_new (int methods) 842ev_loop_new (int methods)
707{ 843{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845
846 memset (loop, 0, sizeof (struct ev_loop));
709 847
710 loop_init (EV_A_ methods); 848 loop_init (EV_A_ methods);
711 849
712 if (ev_method (EV_A)) 850 if (ev_method (EV_A))
713 return loop; 851 return loop;
717 855
718void 856void
719ev_loop_destroy (EV_P) 857ev_loop_destroy (EV_P)
720{ 858{
721 loop_destroy (EV_A); 859 loop_destroy (EV_A);
722 free (loop); 860 ev_free (loop);
723} 861}
724 862
725void 863void
726ev_loop_fork (EV_P) 864ev_loop_fork (EV_P)
727{ 865{
728 loop_fork (EV_A); 866 postfork = 1;
729} 867}
730 868
731#endif 869#endif
732 870
733#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 872struct ev_loop *
738#else 873#else
739static int default_loop;
740
741int 874int
742#endif 875#endif
743ev_default_loop (int methods) 876ev_default_loop (int methods)
744{ 877{
745 if (sigpipe [0] == sigpipe [1]) 878 if (sigpipe [0] == sigpipe [1])
756 889
757 loop_init (EV_A_ methods); 890 loop_init (EV_A_ methods);
758 891
759 if (ev_method (EV_A)) 892 if (ev_method (EV_A))
760 { 893 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A); 894 siginit (EV_A);
764 895
765#ifndef WIN32 896#ifndef WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 898 ev_set_priority (&childev, EV_MAXPRI);
781{ 912{
782#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 914 struct ev_loop *loop = default_loop;
784#endif 915#endif
785 916
917#ifndef WIN32
786 ev_ref (EV_A); /* child watcher */ 918 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 919 ev_signal_stop (EV_A_ &childev);
920#endif
788 921
789 ev_ref (EV_A); /* signal watcher */ 922 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev); 923 ev_io_stop (EV_A_ &sigev);
791 924
792 close (sigpipe [0]); sigpipe [0] = 0; 925 close (sigpipe [0]); sigpipe [0] = 0;
800{ 933{
801#if EV_MULTIPLICITY 934#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 935 struct ev_loop *loop = default_loop;
803#endif 936#endif
804 937
805 loop_fork (EV_A); 938 if (method)
806 939 postfork = 1;
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 940}
815 941
816/*****************************************************************************/ 942/*****************************************************************************/
943
944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
817 955
818static void 956static void
819call_pending (EV_P) 957call_pending (EV_P)
820{ 958{
821 int pri; 959 int pri;
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 965
828 if (p->w) 966 if (p->w)
829 { 967 {
830 p->w->pending = 0; 968 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
832 } 970 }
833 } 971 }
834} 972}
835 973
836static void 974static void
850 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
851 } 989 }
852 else 990 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 992
855 event (EV_A_ (W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 994 }
857} 995}
858 996
859static void 997static void
860periodics_reify (EV_P) 998periodics_reify (EV_P)
861{ 999{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
863 { 1001 {
864 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
865 1003
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867 1005
868 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
869 if (w->interval) 1007 if (w->reschedule_cb)
870 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
874 } 1019 }
875 else 1020 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1022
878 event (EV_A_ (W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1024 }
880} 1025}
881 1026
882static void 1027static void
883periodics_reschedule (EV_P) 1028periodics_reschedule (EV_P)
887 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
889 { 1034 {
890 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
891 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1039 else if (w->interval)
893 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
895
896 if (fabs (diff) >= 1e-4)
897 {
898 ev_periodic_stop (EV_A_ w);
899 ev_periodic_start (EV_A_ w);
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 }
903 }
904 } 1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
905} 1046}
906 1047
907inline int 1048inline int
908time_update_monotonic (EV_P) 1049time_update_monotonic (EV_P)
909{ 1050{
910 mn_now = get_clock (); 1051 mn_now = get_clock ();
911 1052
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 { 1054 {
914 rt_now = rtmn_diff + mn_now; 1055 ev_rt_now = rtmn_diff + mn_now;
915 return 0; 1056 return 0;
916 } 1057 }
917 else 1058 else
918 { 1059 {
919 now_floor = mn_now; 1060 now_floor = mn_now;
920 rt_now = ev_time (); 1061 ev_rt_now = ev_time ();
921 return 1; 1062 return 1;
922 } 1063 }
923} 1064}
924 1065
925static void 1066static void
934 { 1075 {
935 ev_tstamp odiff = rtmn_diff; 1076 ev_tstamp odiff = rtmn_diff;
936 1077
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 { 1079 {
939 rtmn_diff = rt_now - mn_now; 1080 rtmn_diff = ev_rt_now - mn_now;
940 1081
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1083 return; /* all is well */
943 1084
944 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1086 mn_now = get_clock ();
946 now_floor = mn_now; 1087 now_floor = mn_now;
947 } 1088 }
948 1089
949 periodics_reschedule (EV_A); 1090 periodics_reschedule (EV_A);
952 } 1093 }
953 } 1094 }
954 else 1095 else
955#endif 1096#endif
956 { 1097 {
957 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
958 1099
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 { 1101 {
961 periodics_reschedule (EV_A); 1102 periodics_reschedule (EV_A);
962 1103
963 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
966 } 1107 }
967 1108
968 mn_now = rt_now; 1109 mn_now = ev_rt_now;
969 } 1110 }
970} 1111}
971 1112
972void 1113void
973ev_ref (EV_P) 1114ev_ref (EV_P)
996 { 1137 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1139 call_pending (EV_A);
999 } 1140 }
1000 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
1001 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1147 fd_reify (EV_A);
1003 1148
1004 /* calculate blocking time */ 1149 /* calculate blocking time */
1005 1150
1006 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
1007 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A); 1155 time_update_monotonic (EV_A);
1011 else 1156 else
1012#endif 1157#endif
1013 { 1158 {
1014 rt_now = ev_time (); 1159 ev_rt_now = ev_time ();
1015 mn_now = rt_now; 1160 mn_now = ev_rt_now;
1016 } 1161 }
1017 1162
1018 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.; 1164 block = 0.;
1020 else 1165 else
1027 if (block > to) block = to; 1172 if (block > to) block = to;
1028 } 1173 }
1029 1174
1030 if (periodiccnt) 1175 if (periodiccnt)
1031 { 1176 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1033 if (block > to) block = to; 1178 if (block > to) block = to;
1034 } 1179 }
1035 1180
1036 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
1037 } 1182 }
1038 1183
1039 method_poll (EV_A_ block); 1184 method_poll (EV_A_ block);
1040 1185
1041 /* update rt_now, do magic */ 1186 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1187 time_update (EV_A);
1043 1188
1044 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
1046 periodics_reify (EV_A); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
1047 1192
1048 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
1049 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1051 1196
1052 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1198 if (checkcnt)
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1129 return; 1274 return;
1130 1275
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1277
1133 ev_start (EV_A_ (W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1136 1281
1137 fd_change (EV_A_ fd); 1282 fd_change (EV_A_ fd);
1138} 1283}
1139 1284
1159 ((WT)w)->at += mn_now; 1304 ((WT)w)->at += mn_now;
1160 1305
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1307
1163 ev_start (EV_A_ (W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1165 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
1166 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
1167 1312
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169} 1314}
1192ev_timer_again (EV_P_ struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
1193{ 1338{
1194 if (ev_is_active (w)) 1339 if (ev_is_active (w))
1195 { 1340 {
1196 if (w->repeat) 1341 if (w->repeat)
1197 {
1198 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1200 }
1201 else 1343 else
1202 ev_timer_stop (EV_A_ w); 1344 ev_timer_stop (EV_A_ w);
1203 } 1345 }
1204 else if (w->repeat) 1346 else if (w->repeat)
1205 ev_timer_start (EV_A_ w); 1347 ev_timer_start (EV_A_ w);
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
1210{ 1352{
1211 if (ev_is_active (w)) 1353 if (ev_is_active (w))
1212 return; 1354 return;
1213 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
1219 1364
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1222 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
1224 1369
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226} 1371}
1242 1387
1243 ev_stop (EV_A_ (W)w); 1388 ev_stop (EV_A_ (W)w);
1244} 1389}
1245 1390
1246void 1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1247ev_idle_start (EV_P_ struct ev_idle *w) 1400ev_idle_start (EV_P_ struct ev_idle *w)
1248{ 1401{
1249 if (ev_is_active (w)) 1402 if (ev_is_active (w))
1250 return; 1403 return;
1251 1404
1252 ev_start (EV_A_ (W)w, ++idlecnt); 1405 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, ); 1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1254 idles [idlecnt - 1] = w; 1407 idles [idlecnt - 1] = w;
1255} 1408}
1256 1409
1257void 1410void
1258ev_idle_stop (EV_P_ struct ev_idle *w) 1411ev_idle_stop (EV_P_ struct ev_idle *w)
1270{ 1423{
1271 if (ev_is_active (w)) 1424 if (ev_is_active (w))
1272 return; 1425 return;
1273 1426
1274 ev_start (EV_A_ (W)w, ++preparecnt); 1427 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, ); 1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1276 prepares [preparecnt - 1] = w; 1429 prepares [preparecnt - 1] = w;
1277} 1430}
1278 1431
1279void 1432void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w) 1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1292{ 1445{
1293 if (ev_is_active (w)) 1446 if (ev_is_active (w))
1294 return; 1447 return;
1295 1448
1296 ev_start (EV_A_ (W)w, ++checkcnt); 1449 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, ); 1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1298 checks [checkcnt - 1] = w; 1451 checks [checkcnt - 1] = w;
1299} 1452}
1300 1453
1301void 1454void
1302ev_check_stop (EV_P_ struct ev_check *w) 1455ev_check_stop (EV_P_ struct ev_check *w)
1323 return; 1476 return;
1324 1477
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 1479
1327 ev_start (EV_A_ (W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1330 1483
1331 if (!((WL)w)->next) 1484 if (!((WL)w)->next)
1332 { 1485 {
1333#if WIN32 1486#if WIN32
1396 void (*cb)(int revents, void *arg) = once->cb; 1549 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 1550 void *arg = once->arg;
1398 1551
1399 ev_io_stop (EV_A_ &once->io); 1552 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 1553 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 1554 ev_free (once);
1402 1555
1403 cb (revents, arg); 1556 cb (revents, arg);
1404} 1557}
1405 1558
1406static void 1559static void
1416} 1569}
1417 1570
1418void 1571void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 1573{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 1575
1423 if (!once) 1576 if (!once)
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 1578 else
1426 { 1579 {
1427 once->cb = cb; 1580 once->cb = cb;
1428 once->arg = arg; 1581 once->arg = arg;
1429 1582
1430 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 1584 if (fd >= 0)
1432 { 1585 {
1433 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 1587 ev_io_start (EV_A_ &once->io);
1435 } 1588 }
1436 1589
1437 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 1591 if (timeout >= 0.)
1439 { 1592 {
1440 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 1594 ev_timer_start (EV_A_ &once->to);
1442 } 1595 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines