ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.145 by root, Tue Nov 27 08:54:38 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <sys/time.h>
70# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
132# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
133#else 200#else
134# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
202# define inline_speed static
135# define inline static 203# define inline_size static
204# define noinline
136#endif 205#endif
137 206
138#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
140 209
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
144typedef struct ev_watcher *W; 216typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
147 219
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 221
150#if WIN32 222#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 223# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 224#endif
225
226/*****************************************************************************/
227
228static void (*syserr_cb)(const char *msg);
229
230void
231ev_set_syserr_cb (void (*cb)(const char *msg))
232{
233 syserr_cb = cb;
234}
235
236static void noinline
237syserr (const char *msg)
238{
239 if (!msg)
240 msg = "(libev) system error";
241
242 if (syserr_cb)
243 syserr_cb (msg);
244 else
245 {
246 perror (msg);
247 abort ();
248 }
249}
250
251static void *(*alloc)(void *ptr, long size);
252
253void
254ev_set_allocator (void *(*cb)(void *ptr, long size))
255{
256 alloc = cb;
257}
258
259static void *
260ev_realloc (void *ptr, long size)
261{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263
264 if (!ptr && size)
265 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort ();
268 }
269
270 return ptr;
271}
272
273#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0)
155 275
156/*****************************************************************************/ 276/*****************************************************************************/
157 277
158typedef struct 278typedef struct
159{ 279{
160 WL head; 280 WL head;
161 unsigned char events; 281 unsigned char events;
162 unsigned char reify; 282 unsigned char reify;
283#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle;
285#endif
163} ANFD; 286} ANFD;
164 287
165typedef struct 288typedef struct
166{ 289{
167 W w; 290 W w;
168 int events; 291 int events;
169} ANPENDING; 292} ANPENDING;
170 293
171#if EV_MULTIPLICITY 294#if EV_MULTIPLICITY
172 295
173struct ev_loop 296 struct ev_loop
174{ 297 {
298 ev_tstamp ev_rt_now;
299 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 300 #define VAR(name,decl) decl;
176# include "ev_vars.h" 301 #include "ev_vars.h"
177};
178# undef VAR 302 #undef VAR
303 };
179# include "ev_wrap.h" 304 #include "ev_wrap.h"
305
306 static struct ev_loop default_loop_struct;
307 struct ev_loop *ev_default_loop_ptr;
180 308
181#else 309#else
182 310
311 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 312 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 313 #include "ev_vars.h"
185# undef VAR 314 #undef VAR
315
316 static int ev_default_loop_ptr;
186 317
187#endif 318#endif
188 319
189/*****************************************************************************/ 320/*****************************************************************************/
190 321
191inline ev_tstamp 322ev_tstamp
192ev_time (void) 323ev_time (void)
193{ 324{
194#if EV_USE_REALTIME 325#if EV_USE_REALTIME
195 struct timespec ts; 326 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 327 clock_gettime (CLOCK_REALTIME, &ts);
200 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif 333#endif
203} 334}
204 335
205inline ev_tstamp 336ev_tstamp inline_size
206get_clock (void) 337get_clock (void)
207{ 338{
208#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
210 { 341 {
215#endif 346#endif
216 347
217 return ev_time (); 348 return ev_time ();
218} 349}
219 350
351#if EV_MULTIPLICITY
220ev_tstamp 352ev_tstamp
221ev_now (EV_P) 353ev_now (EV_P)
222{ 354{
223 return rt_now; 355 return ev_rt_now;
224} 356}
357#endif
225 358
226#define array_roundsize(base,n) ((n) | 4 & ~3) 359#define array_roundsize(type,n) (((n) | 4) & ~3)
227 360
228#define array_needsize(base,cur,cnt,init) \ 361#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 362 if (expect_false ((cnt) > cur)) \
230 { \ 363 { \
231 int newcnt = cur; \ 364 int newcnt = cur; \
232 do \ 365 do \
233 { \ 366 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 367 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 368 } \
236 while ((cnt) > newcnt); \ 369 while ((cnt) > newcnt); \
237 \ 370 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 372 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 373 cur = newcnt; \
241 } 374 }
242 375
243#define array_slim(stem) \ 376#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 378 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 379 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 382 }
250 383
251#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 386
254/*****************************************************************************/ 387/*****************************************************************************/
255 388
256static void 389void noinline
390ev_feed_event (EV_P_ void *w, int revents)
391{
392 W w_ = (W)w;
393
394 if (expect_false (w_->pending))
395 {
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
397 return;
398 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404}
405
406void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type)
408{
409 int i;
410
411 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type);
413}
414
415/*****************************************************************************/
416
417void inline_size
257anfds_init (ANFD *base, int count) 418anfds_init (ANFD *base, int count)
258{ 419{
259 while (count--) 420 while (count--)
260 { 421 {
261 base->head = 0; 422 base->head = 0;
264 425
265 ++base; 426 ++base;
266 } 427 }
267} 428}
268 429
269static void 430void inline_speed
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
276 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
294fd_event (EV_P_ int fd, int events) 431fd_event (EV_P_ int fd, int revents)
295{ 432{
296 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 434 ev_io *w;
298 435
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 437 {
301 int ev = w->events & events; 438 int ev = w->events & revents;
302 439
303 if (ev) 440 if (ev)
304 event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
305 } 442 }
306} 443}
307 444
308/*****************************************************************************/ 445void
446ev_feed_fd_event (EV_P_ int fd, int revents)
447{
448 fd_event (EV_A_ fd, revents);
449}
309 450
310static void 451void inline_size
311fd_reify (EV_P) 452fd_reify (EV_P)
312{ 453{
313 int i; 454 int i;
314 455
315 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
316 { 457 {
317 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 460 ev_io *w;
320 461
321 int events = 0; 462 int events = 0;
322 463
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 465 events |= w->events;
325 466
467#if EV_SELECT_IS_WINSOCKET
468 if (events)
469 {
470 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 }
474#endif
475
326 anfd->reify = 0; 476 anfd->reify = 0;
327 477
328 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 479 anfd->events = events;
330 } 480 }
331 481
332 fdchangecnt = 0; 482 fdchangecnt = 0;
333} 483}
334 484
335static void 485void inline_size
336fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
337{ 487{
338 if (anfds [fd].reify || fdchangecnt < 0) 488 if (expect_false (anfds [fd].reify))
339 return; 489 return;
340 490
341 anfds [fd].reify = 1; 491 anfds [fd].reify = 1;
342 492
343 ++fdchangecnt; 493 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
346} 496}
347 497
348static void 498void inline_speed
349fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
350{ 500{
351 struct ev_io *w; 501 ev_io *w;
352 502
353 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
354 { 504 {
355 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 507 }
508}
509
510int inline_size
511fd_valid (int fd)
512{
513#ifdef _WIN32
514 return _get_osfhandle (fd) != -1;
515#else
516 return fcntl (fd, F_GETFD) != -1;
517#endif
358} 518}
359 519
360/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
361static void 521static void noinline
362fd_ebadf (EV_P) 522fd_ebadf (EV_P)
363{ 523{
364 int fd; 524 int fd;
365 525
366 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 527 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
370} 530}
371 531
372/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 533static void noinline
374fd_enomem (EV_P) 534fd_enomem (EV_P)
375{ 535{
376 int fd; 536 int fd;
377 537
378 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
381 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
382 return; 542 return;
383 } 543 }
384} 544}
385 545
386/* susually called after fork if method needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
387static void 547static void noinline
388fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
389{ 549{
390 int fd; 550 int fd;
391 551
392 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
398 } 558 }
399} 559}
400 560
401/*****************************************************************************/ 561/*****************************************************************************/
402 562
403static void 563void inline_speed
404upheap (WT *heap, int k) 564upheap (WT *heap, int k)
405{ 565{
406 WT w = heap [k]; 566 WT w = heap [k];
407 567
408 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
415 heap [k] = w; 575 heap [k] = w;
416 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
417 577
418} 578}
419 579
420static void 580void inline_speed
421downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
422{ 582{
423 WT w = heap [k]; 583 WT w = heap [k];
424 584
425 while (k < (N >> 1)) 585 while (k < (N >> 1))
439 599
440 heap [k] = w; 600 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
442} 602}
443 603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
609}
610
444/*****************************************************************************/ 611/*****************************************************************************/
445 612
446typedef struct 613typedef struct
447{ 614{
448 WL head; 615 WL head;
452static ANSIG *signals; 619static ANSIG *signals;
453static int signalmax; 620static int signalmax;
454 621
455static int sigpipe [2]; 622static int sigpipe [2];
456static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
457static struct ev_io sigev; 624static ev_io sigev;
458 625
459static void 626void inline_size
460signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
461{ 628{
462 while (count--) 629 while (count--)
463 { 630 {
464 base->head = 0; 631 base->head = 0;
469} 636}
470 637
471static void 638static void
472sighandler (int signum) 639sighandler (int signum)
473{ 640{
474#if WIN32 641#if _WIN32
475 signal (signum, sighandler); 642 signal (signum, sighandler);
476#endif 643#endif
477 644
478 signals [signum - 1].gotsig = 1; 645 signals [signum - 1].gotsig = 1;
479 646
484 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
485 errno = old_errno; 652 errno = old_errno;
486 } 653 }
487} 654}
488 655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
489static void 676static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
491{ 678{
492 WL w;
493 int signum; 679 int signum;
494 680
495 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
496 gotsig = 0; 682 gotsig = 0;
497 683
498 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
500 { 686 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506} 687}
507 688
508static void 689void inline_size
690fd_intern (int fd)
691{
692#ifdef _WIN32
693 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif
699}
700
701static void noinline
509siginit (EV_P) 702siginit (EV_P)
510{ 703{
511#ifndef WIN32 704 fd_intern (sigpipe [0]);
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 705 fd_intern (sigpipe [1]);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519 706
520 ev_io_set (&sigev, sigpipe [0], EV_READ); 707 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev); 708 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 710}
524 711
525/*****************************************************************************/ 712/*****************************************************************************/
526 713
714static ev_child *childs [PID_HASHSIZE];
715
527#ifndef WIN32 716#ifndef _WIN32
528 717
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 718static ev_signal childev;
531 719
532#ifndef WCONTINUED 720void inline_speed
533# define WCONTINUED 0
534#endif
535
536static void
537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
538{ 722{
539 struct ev_child *w; 723 ev_child *w;
540 724
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid) 726 if (w->pid == pid || !w->pid)
543 { 727 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid; 729 w->rpid = pid;
546 w->rstatus = status; 730 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD); 731 ev_feed_event (EV_A_ (W)w, EV_CHILD);
548 } 732 }
549} 733}
550 734
735#ifndef WCONTINUED
736# define WCONTINUED 0
737#endif
738
551static void 739static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
553{ 741{
554 int pid, status; 742 int pid, status;
555 743
744 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 745 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 746 if (!WCONTINUED
747 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return;
750
558 /* make sure we are called again until all childs have been reaped */ 751 /* make sure we are called again until all childs have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */
559 event (EV_A_ (W)sw, EV_SIGNAL); 753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 754
561 child_reap (EV_A_ sw, pid, pid, status); 755 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
563 }
564} 757}
565 758
566#endif 759#endif
567 760
568/*****************************************************************************/ 761/*****************************************************************************/
569 762
763#if EV_USE_PORT
764# include "ev_port.c"
765#endif
570#if EV_USE_KQUEUE 766#if EV_USE_KQUEUE
571# include "ev_kqueue.c" 767# include "ev_kqueue.c"
572#endif 768#endif
573#if EV_USE_EPOLL 769#if EV_USE_EPOLL
574# include "ev_epoll.c" 770# include "ev_epoll.c"
591{ 787{
592 return EV_VERSION_MINOR; 788 return EV_VERSION_MINOR;
593} 789}
594 790
595/* return true if we are running with elevated privileges and should ignore env variables */ 791/* return true if we are running with elevated privileges and should ignore env variables */
596static int 792int inline_size
597enable_secure (void) 793enable_secure (void)
598{ 794{
599#ifdef WIN32 795#ifdef _WIN32
600 return 0; 796 return 0;
601#else 797#else
602 return getuid () != geteuid () 798 return getuid () != geteuid ()
603 || getgid () != getegid (); 799 || getgid () != getegid ();
604#endif 800#endif
605} 801}
606 802
607int 803unsigned int
608ev_method (EV_P) 804ev_supported_backends (void)
609{ 805{
610 return method; 806 unsigned int flags = 0;
807
808 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
809 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
810 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
811 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
812 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
813
814 return flags;
815}
816
817unsigned int
818ev_recommended_backends (void)
819{
820 unsigned int flags = ev_supported_backends ();
821
822#ifndef __NetBSD__
823 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE;
826#endif
827#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation
829 flags &= ~EVBACKEND_POLL;
830#endif
831
832 return flags;
833}
834
835unsigned int
836ev_embeddable_backends (void)
837{
838 return EVBACKEND_EPOLL
839 | EVBACKEND_KQUEUE
840 | EVBACKEND_PORT;
841}
842
843unsigned int
844ev_backend (EV_P)
845{
846 return backend;
611} 847}
612 848
613static void 849static void
614loop_init (EV_P_ int methods) 850loop_init (EV_P_ unsigned int flags)
615{ 851{
616 if (!method) 852 if (!backend)
617 { 853 {
618#if EV_USE_MONOTONIC 854#if EV_USE_MONOTONIC
619 { 855 {
620 struct timespec ts; 856 struct timespec ts;
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 857 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 858 have_monotonic = 1;
623 } 859 }
624#endif 860#endif
625 861
626 rt_now = ev_time (); 862 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 863 mn_now = get_clock ();
628 now_floor = mn_now; 864 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 865 rtmn_diff = ev_rt_now - mn_now;
630 866
631 if (methods == EVMETHOD_AUTO) 867 if (!(flags & EVFLAG_NOENV)
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 868 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 870 flags = atoi (getenv ("LIBEV_FLAGS"));
634 else
635 methods = EVMETHOD_ANY;
636 871
637 method = 0; 872 if (!(flags & 0x0000ffffUL))
638#if EV_USE_WIN32 873 flags |= ev_recommended_backends ();
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 874
875 backend = 0;
876#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
640#endif 878#endif
641#if EV_USE_KQUEUE 879#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
643#endif 881#endif
644#if EV_USE_EPOLL 882#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 883 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
646#endif 884#endif
647#if EV_USE_POLL 885#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 886 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
649#endif 887#endif
650#if EV_USE_SELECT 888#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
652#endif 890#endif
653 }
654}
655 891
656void 892 ev_init (&sigev, sigcb);
893 ev_set_priority (&sigev, EV_MAXPRI);
894 }
895}
896
897static void
657loop_destroy (EV_P) 898loop_destroy (EV_P)
658{ 899{
659 int i; 900 int i;
660 901
661#if EV_USE_WIN32 902#if EV_USE_PORT
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
663#endif 904#endif
664#if EV_USE_KQUEUE 905#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 906 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
666#endif 907#endif
667#if EV_USE_EPOLL 908#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 909 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
669#endif 910#endif
670#if EV_USE_POLL 911#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 912 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
672#endif 913#endif
673#if EV_USE_SELECT 914#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
675#endif 916#endif
676 917
677 for (i = NUMPRI; i--; ) 918 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 919 array_free (pending, [i]);
679 920
921 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 922 array_free (fdchange, EMPTY0);
681 array_free (timer, ); 923 array_free (timer, EMPTY0);
924#if EV_PERIODIC_ENABLE
682 array_free (periodic, ); 925 array_free (periodic, EMPTY0);
926#endif
683 array_free (idle, ); 927 array_free (idle, EMPTY0);
684 array_free (prepare, ); 928 array_free (prepare, EMPTY0);
685 array_free (check, ); 929 array_free (check, EMPTY0);
686 930
687 method = 0; 931 backend = 0;
688 /*TODO*/
689} 932}
690 933
691void 934static void
692loop_fork (EV_P) 935loop_fork (EV_P)
693{ 936{
694 /*TODO*/ 937#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif
940#if EV_USE_KQUEUE
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif
695#if EV_USE_EPOLL 943#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
697#endif 945#endif
698#if EV_USE_KQUEUE 946
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 947 if (ev_is_active (&sigev))
700#endif 948 {
949 /* default loop */
950
951 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev);
953 close (sigpipe [0]);
954 close (sigpipe [1]);
955
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A);
960 }
961
962 postfork = 0;
701} 963}
702 964
703#if EV_MULTIPLICITY 965#if EV_MULTIPLICITY
704struct ev_loop * 966struct ev_loop *
705ev_loop_new (int methods) 967ev_loop_new (unsigned int flags)
706{ 968{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
708 970
971 memset (loop, 0, sizeof (struct ev_loop));
972
709 loop_init (EV_A_ methods); 973 loop_init (EV_A_ flags);
710 974
711 if (ev_method (EV_A)) 975 if (ev_backend (EV_A))
712 return loop; 976 return loop;
713 977
714 return 0; 978 return 0;
715} 979}
716 980
717void 981void
718ev_loop_destroy (EV_P) 982ev_loop_destroy (EV_P)
719{ 983{
720 loop_destroy (EV_A); 984 loop_destroy (EV_A);
721 free (loop); 985 ev_free (loop);
722} 986}
723 987
724void 988void
725ev_loop_fork (EV_P) 989ev_loop_fork (EV_P)
726{ 990{
727 loop_fork (EV_A); 991 postfork = 1;
728} 992}
729 993
730#endif 994#endif
731 995
732#if EV_MULTIPLICITY 996#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 997struct ev_loop *
998ev_default_loop_init (unsigned int flags)
737#else 999#else
738static int default_loop;
739
740int 1000int
1001ev_default_loop (unsigned int flags)
741#endif 1002#endif
742ev_default_loop (int methods)
743{ 1003{
744 if (sigpipe [0] == sigpipe [1]) 1004 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe)) 1005 if (pipe (sigpipe))
746 return 0; 1006 return 0;
747 1007
748 if (!default_loop) 1008 if (!ev_default_loop_ptr)
749 { 1009 {
750#if EV_MULTIPLICITY 1010#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct; 1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
752#else 1012#else
753 default_loop = 1; 1013 ev_default_loop_ptr = 1;
754#endif 1014#endif
755 1015
756 loop_init (EV_A_ methods); 1016 loop_init (EV_A_ flags);
757 1017
758 if (ev_method (EV_A)) 1018 if (ev_backend (EV_A))
759 { 1019 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 1020 siginit (EV_A);
763 1021
764#ifndef WIN32 1022#ifndef _WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 1023 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 1024 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 1025 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 1027#endif
770 } 1028 }
771 else 1029 else
772 default_loop = 0; 1030 ev_default_loop_ptr = 0;
773 } 1031 }
774 1032
775 return default_loop; 1033 return ev_default_loop_ptr;
776} 1034}
777 1035
778void 1036void
779ev_default_destroy (void) 1037ev_default_destroy (void)
780{ 1038{
781#if EV_MULTIPLICITY 1039#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 1040 struct ev_loop *loop = ev_default_loop_ptr;
783#endif 1041#endif
784 1042
1043#ifndef _WIN32
785 ev_ref (EV_A); /* child watcher */ 1044 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 1045 ev_signal_stop (EV_A_ &childev);
1046#endif
787 1047
788 ev_ref (EV_A); /* signal watcher */ 1048 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 1049 ev_io_stop (EV_A_ &sigev);
790 1050
791 close (sigpipe [0]); sigpipe [0] = 0; 1051 close (sigpipe [0]); sigpipe [0] = 0;
796 1056
797void 1057void
798ev_default_fork (void) 1058ev_default_fork (void)
799{ 1059{
800#if EV_MULTIPLICITY 1060#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 1061 struct ev_loop *loop = ev_default_loop_ptr;
802#endif 1062#endif
803 1063
804 loop_fork (EV_A); 1064 if (backend)
805 1065 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 1066}
814 1067
815/*****************************************************************************/ 1068/*****************************************************************************/
816 1069
817static void 1070int inline_size
1071any_pending (EV_P)
1072{
1073 int pri;
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080}
1081
1082void inline_speed
818call_pending (EV_P) 1083call_pending (EV_P)
819{ 1084{
820 int pri; 1085 int pri;
821 1086
822 for (pri = NUMPRI; pri--; ) 1087 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri]) 1088 while (pendingcnt [pri])
824 { 1089 {
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 1091
827 if (p->w) 1092 if (expect_true (p->w))
828 { 1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending));
1095
829 p->w->pending = 0; 1096 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 1097 EV_CB_INVOKE (p->w, p->events);
831 } 1098 }
832 } 1099 }
833} 1100}
834 1101
835static void 1102void inline_size
836timers_reify (EV_P) 1103timers_reify (EV_P)
837{ 1104{
838 while (timercnt && ((WT)timers [0])->at <= mn_now) 1105 while (timercnt && ((WT)timers [0])->at <= mn_now)
839 { 1106 {
840 struct ev_timer *w = timers [0]; 1107 ev_timer *w = timers [0];
841 1108
842 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
843 1110
844 /* first reschedule or stop timer */ 1111 /* first reschedule or stop timer */
845 if (w->repeat) 1112 if (w->repeat)
846 { 1113 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115
848 ((WT)w)->at = mn_now + w->repeat; 1116 ((WT)w)->at += w->repeat;
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
849 downheap ((WT *)timers, timercnt, 0); 1120 downheap ((WT *)timers, timercnt, 0);
850 } 1121 }
851 else 1122 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1124
854 event (EV_A_ (W)w, EV_TIMEOUT); 1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1126 }
856} 1127}
857 1128
858static void 1129#if EV_PERIODIC_ENABLE
1130void inline_size
859periodics_reify (EV_P) 1131periodics_reify (EV_P)
860{ 1132{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1134 {
863 struct ev_periodic *w = periodics [0]; 1135 ev_periodic *w = periodics [0];
864 1136
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1137 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866 1138
867 /* first reschedule or stop timer */ 1139 /* first reschedule or stop timer */
868 if (w->interval) 1140 if (w->reschedule_cb)
869 { 1141 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0);
1145 }
1146 else if (w->interval)
1147 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1150 downheap ((WT *)periodics, periodiccnt, 0);
873 } 1151 }
874 else 1152 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1154
877 event (EV_A_ (W)w, EV_PERIODIC); 1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1156 }
879} 1157}
880 1158
881static void 1159static void noinline
882periodics_reschedule (EV_P) 1160periodics_reschedule (EV_P)
883{ 1161{
884 int i; 1162 int i;
885 1163
886 /* adjust periodics after time jump */ 1164 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1165 for (i = 0; i < periodiccnt; ++i)
888 { 1166 {
889 struct ev_periodic *w = periodics [i]; 1167 ev_periodic *w = periodics [i];
890 1168
1169 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1171 else if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
902 }
903 } 1173 }
904}
905 1174
906inline int 1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
907time_update_monotonic (EV_P) 1182time_update_monotonic (EV_P)
908{ 1183{
909 mn_now = get_clock (); 1184 mn_now = get_clock ();
910 1185
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 { 1187 {
913 rt_now = rtmn_diff + mn_now; 1188 ev_rt_now = rtmn_diff + mn_now;
914 return 0; 1189 return 0;
915 } 1190 }
916 else 1191 else
917 { 1192 {
918 now_floor = mn_now; 1193 now_floor = mn_now;
919 rt_now = ev_time (); 1194 ev_rt_now = ev_time ();
920 return 1; 1195 return 1;
921 } 1196 }
922} 1197}
923 1198
924static void 1199void inline_size
925time_update (EV_P) 1200time_update (EV_P)
926{ 1201{
927 int i; 1202 int i;
928 1203
929#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
931 { 1206 {
932 if (time_update_monotonic (EV_A)) 1207 if (time_update_monotonic (EV_A))
933 { 1208 {
934 ev_tstamp odiff = rtmn_diff; 1209 ev_tstamp odiff = rtmn_diff;
935 1210
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
937 { 1220 {
938 rtmn_diff = rt_now - mn_now; 1221 rtmn_diff = ev_rt_now - mn_now;
939 1222
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1224 return; /* all is well */
942 1225
943 rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1227 mn_now = get_clock ();
945 now_floor = mn_now; 1228 now_floor = mn_now;
946 } 1229 }
947 1230
1231# if EV_PERIODIC_ENABLE
948 periodics_reschedule (EV_A); 1232 periodics_reschedule (EV_A);
1233# endif
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1234 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 1236 }
952 } 1237 }
953 else 1238 else
954#endif 1239#endif
955 { 1240 {
956 rt_now = ev_time (); 1241 ev_rt_now = ev_time ();
957 1242
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 { 1244 {
1245#if EV_PERIODIC_ENABLE
960 periodics_reschedule (EV_A); 1246 periodics_reschedule (EV_A);
1247#endif
961 1248
962 /* adjust timers. this is easy, as the offset is the same for all */ 1249 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i) 1250 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now; 1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
965 } 1252 }
966 1253
967 mn_now = rt_now; 1254 mn_now = ev_rt_now;
968 } 1255 }
969} 1256}
970 1257
971void 1258void
972ev_ref (EV_P) 1259ev_ref (EV_P)
983static int loop_done; 1270static int loop_done;
984 1271
985void 1272void
986ev_loop (EV_P_ int flags) 1273ev_loop (EV_P_ int flags)
987{ 1274{
988 double block;
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
990 1278
991 do 1279 while (activecnt)
992 { 1280 {
993 /* queue check watchers (and execute them) */ 1281 /* queue check watchers (and execute them) */
994 if (expect_false (preparecnt)) 1282 if (expect_false (preparecnt))
995 { 1283 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1285 call_pending (EV_A);
998 } 1286 }
999 1287
1288 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork))
1290 loop_fork (EV_A);
1291
1000 /* update fd-related kernel structures */ 1292 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1293 fd_reify (EV_A);
1002 1294
1003 /* calculate blocking time */ 1295 /* calculate blocking time */
1296 {
1297 double block;
1004 1298
1005 /* we only need this for !monotonic clockor timers, but as we basically 1299 if (flags & EVLOOP_NONBLOCK || idlecnt)
1006 always have timers, we just calculate it always */ 1300 block = 0.; /* do not block at all */
1301 else
1302 {
1303 /* update time to cancel out callback processing overhead */
1007#if EV_USE_MONOTONIC 1304#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic)) 1305 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A); 1306 time_update_monotonic (EV_A);
1010 else 1307 else
1011#endif 1308#endif
1012 { 1309 {
1013 rt_now = ev_time (); 1310 ev_rt_now = ev_time ();
1014 mn_now = rt_now; 1311 mn_now = ev_rt_now;
1015 } 1312 }
1016 1313
1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.;
1019 else
1020 {
1021 block = MAX_BLOCKTIME; 1314 block = MAX_BLOCKTIME;
1022 1315
1023 if (timercnt) 1316 if (timercnt)
1024 { 1317 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1026 if (block > to) block = to; 1319 if (block > to) block = to;
1027 } 1320 }
1028 1321
1322#if EV_PERIODIC_ENABLE
1029 if (periodiccnt) 1323 if (periodiccnt)
1030 { 1324 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1032 if (block > to) block = to; 1326 if (block > to) block = to;
1033 } 1327 }
1328#endif
1034 1329
1035 if (block < 0.) block = 0.; 1330 if (expect_false (block < 0.)) block = 0.;
1036 } 1331 }
1037 1332
1038 method_poll (EV_A_ block); 1333 backend_poll (EV_A_ block);
1334 }
1039 1335
1040 /* update rt_now, do magic */ 1336 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1337 time_update (EV_A);
1042 1338
1043 /* queue pending timers and reschedule them */ 1339 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1340 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE
1045 periodics_reify (EV_A); /* absolute timers called first */ 1342 periodics_reify (EV_A); /* absolute timers called first */
1343#endif
1046 1344
1047 /* queue idle watchers unless io or timers are pending */ 1345 /* queue idle watchers unless other events are pending */
1048 if (!pendingcnt) 1346 if (idlecnt && !any_pending (EV_A))
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050 1348
1051 /* queue check watchers, to be executed first */ 1349 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1350 if (expect_false (checkcnt))
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054 1352
1055 call_pending (EV_A); 1353 call_pending (EV_A);
1056 }
1057 while (activecnt && !loop_done);
1058 1354
1059 if (loop_done != 2) 1355 if (expect_false (loop_done))
1060 loop_done = 0; 1356 break;
1357 }
1358
1359 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL;
1061} 1361}
1062 1362
1063void 1363void
1064ev_unloop (EV_P_ int how) 1364ev_unloop (EV_P_ int how)
1065{ 1365{
1066 loop_done = how; 1366 loop_done = how;
1067} 1367}
1068 1368
1069/*****************************************************************************/ 1369/*****************************************************************************/
1070 1370
1071inline void 1371void inline_size
1072wlist_add (WL *head, WL elem) 1372wlist_add (WL *head, WL elem)
1073{ 1373{
1074 elem->next = *head; 1374 elem->next = *head;
1075 *head = elem; 1375 *head = elem;
1076} 1376}
1077 1377
1078inline void 1378void inline_size
1079wlist_del (WL *head, WL elem) 1379wlist_del (WL *head, WL elem)
1080{ 1380{
1081 while (*head) 1381 while (*head)
1082 { 1382 {
1083 if (*head == elem) 1383 if (*head == elem)
1088 1388
1089 head = &(*head)->next; 1389 head = &(*head)->next;
1090 } 1390 }
1091} 1391}
1092 1392
1093inline void 1393void inline_speed
1094ev_clear_pending (EV_P_ W w) 1394ev_clear_pending (EV_P_ W w)
1095{ 1395{
1096 if (w->pending) 1396 if (w->pending)
1097 { 1397 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1398 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1099 w->pending = 0; 1399 w->pending = 0;
1100 } 1400 }
1101} 1401}
1102 1402
1103inline void 1403void inline_speed
1104ev_start (EV_P_ W w, int active) 1404ev_start (EV_P_ W w, int active)
1105{ 1405{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108 1408
1109 w->active = active; 1409 w->active = active;
1110 ev_ref (EV_A); 1410 ev_ref (EV_A);
1111} 1411}
1112 1412
1113inline void 1413void inline_size
1114ev_stop (EV_P_ W w) 1414ev_stop (EV_P_ W w)
1115{ 1415{
1116 ev_unref (EV_A); 1416 ev_unref (EV_A);
1117 w->active = 0; 1417 w->active = 0;
1118} 1418}
1119 1419
1120/*****************************************************************************/ 1420/*****************************************************************************/
1121 1421
1122void 1422void
1123ev_io_start (EV_P_ struct ev_io *w) 1423ev_io_start (EV_P_ ev_io *w)
1124{ 1424{
1125 int fd = w->fd; 1425 int fd = w->fd;
1126 1426
1127 if (ev_is_active (w)) 1427 if (expect_false (ev_is_active (w)))
1128 return; 1428 return;
1129 1429
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1430 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1431
1132 ev_start (EV_A_ (W)w, 1); 1432 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1434 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135 1435
1136 fd_change (EV_A_ fd); 1436 fd_change (EV_A_ fd);
1137} 1437}
1138 1438
1139void 1439void
1140ev_io_stop (EV_P_ struct ev_io *w) 1440ev_io_stop (EV_P_ ev_io *w)
1141{ 1441{
1142 ev_clear_pending (EV_A_ (W)w); 1442 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1443 if (expect_false (!ev_is_active (w)))
1144 return; 1444 return;
1445
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1145 1447
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1148 1450
1149 fd_change (EV_A_ w->fd); 1451 fd_change (EV_A_ w->fd);
1150} 1452}
1151 1453
1152void 1454void
1153ev_timer_start (EV_P_ struct ev_timer *w) 1455ev_timer_start (EV_P_ ev_timer *w)
1154{ 1456{
1155 if (ev_is_active (w)) 1457 if (expect_false (ev_is_active (w)))
1156 return; 1458 return;
1157 1459
1158 ((WT)w)->at += mn_now; 1460 ((WT)w)->at += mn_now;
1159 1461
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1463
1162 ev_start (EV_A_ (W)w, ++timercnt); 1464 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1164 timers [timercnt - 1] = w; 1466 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1); 1467 upheap ((WT *)timers, timercnt - 1);
1166 1468
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168} 1470}
1169 1471
1170void 1472void
1171ev_timer_stop (EV_P_ struct ev_timer *w) 1473ev_timer_stop (EV_P_ ev_timer *w)
1172{ 1474{
1173 ev_clear_pending (EV_A_ (W)w); 1475 ev_clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w)) 1476 if (expect_false (!ev_is_active (w)))
1175 return; 1477 return;
1176 1478
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178 1480
1179 if (((W)w)->active < timercnt--) 1481 if (expect_true (((W)w)->active < timercnt--))
1180 { 1482 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1483 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1485 }
1184 1486
1185 ((WT)w)->at = w->repeat; 1487 ((WT)w)->at -= mn_now;
1186 1488
1187 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1188} 1490}
1189 1491
1190void 1492void
1191ev_timer_again (EV_P_ struct ev_timer *w) 1493ev_timer_again (EV_P_ ev_timer *w)
1192{ 1494{
1193 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1194 { 1496 {
1195 if (w->repeat) 1497 if (w->repeat)
1196 { 1498 {
1197 ((WT)w)->at = mn_now + w->repeat; 1499 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1199 } 1501 }
1200 else 1502 else
1201 ev_timer_stop (EV_A_ w); 1503 ev_timer_stop (EV_A_ w);
1202 } 1504 }
1203 else if (w->repeat) 1505 else if (w->repeat)
1506 {
1507 w->at = w->repeat;
1204 ev_timer_start (EV_A_ w); 1508 ev_timer_start (EV_A_ w);
1509 }
1205} 1510}
1206 1511
1512#if EV_PERIODIC_ENABLE
1207void 1513void
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1514ev_periodic_start (EV_P_ ev_periodic *w)
1209{ 1515{
1210 if (ev_is_active (w)) 1516 if (expect_false (ev_is_active (w)))
1211 return; 1517 return;
1212 1518
1519 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval)
1522 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1524 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1526 }
1218 1527
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1528 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1221 periodics [periodiccnt - 1] = w; 1530 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1531 upheap ((WT *)periodics, periodiccnt - 1);
1223 1532
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225} 1534}
1226 1535
1227void 1536void
1228ev_periodic_stop (EV_P_ struct ev_periodic *w) 1537ev_periodic_stop (EV_P_ ev_periodic *w)
1229{ 1538{
1230 ev_clear_pending (EV_A_ (W)w); 1539 ev_clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w)) 1540 if (expect_false (!ev_is_active (w)))
1232 return; 1541 return;
1233 1542
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235 1544
1236 if (((W)w)->active < periodiccnt--) 1545 if (expect_true (((W)w)->active < periodiccnt--))
1237 { 1546 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1547 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1240 } 1549 }
1241 1550
1242 ev_stop (EV_A_ (W)w); 1551 ev_stop (EV_A_ (W)w);
1243} 1552}
1244 1553
1245void 1554void
1246ev_idle_start (EV_P_ struct ev_idle *w) 1555ev_periodic_again (EV_P_ ev_periodic *w)
1247{ 1556{
1248 if (ev_is_active (w)) 1557 /* TODO: use adjustheap and recalculation */
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 1558 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w);
1265} 1560}
1266 1561#endif
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310 1562
1311#ifndef SA_RESTART 1563#ifndef SA_RESTART
1312# define SA_RESTART 0 1564# define SA_RESTART 0
1313#endif 1565#endif
1314 1566
1315void 1567void
1316ev_signal_start (EV_P_ struct ev_signal *w) 1568ev_signal_start (EV_P_ ev_signal *w)
1317{ 1569{
1318#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1320#endif 1572#endif
1321 if (ev_is_active (w)) 1573 if (expect_false (ev_is_active (w)))
1322 return; 1574 return;
1323 1575
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1577
1326 ev_start (EV_A_ (W)w, 1); 1578 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 1581
1330 if (!((WL)w)->next) 1582 if (!((WL)w)->next)
1331 { 1583 {
1332#if WIN32 1584#if _WIN32
1333 signal (w->signum, sighandler); 1585 signal (w->signum, sighandler);
1334#else 1586#else
1335 struct sigaction sa; 1587 struct sigaction sa;
1336 sa.sa_handler = sighandler; 1588 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask); 1589 sigfillset (&sa.sa_mask);
1340#endif 1592#endif
1341 } 1593 }
1342} 1594}
1343 1595
1344void 1596void
1345ev_signal_stop (EV_P_ struct ev_signal *w) 1597ev_signal_stop (EV_P_ ev_signal *w)
1346{ 1598{
1347 ev_clear_pending (EV_A_ (W)w); 1599 ev_clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1600 if (expect_false (!ev_is_active (w)))
1349 return; 1601 return;
1350 1602
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1352 ev_stop (EV_A_ (W)w); 1604 ev_stop (EV_A_ (W)w);
1353 1605
1354 if (!signals [w->signum - 1].head) 1606 if (!signals [w->signum - 1].head)
1355 signal (w->signum, SIG_DFL); 1607 signal (w->signum, SIG_DFL);
1356} 1608}
1357 1609
1358void 1610void
1359ev_child_start (EV_P_ struct ev_child *w) 1611ev_child_start (EV_P_ ev_child *w)
1360{ 1612{
1361#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1363#endif 1615#endif
1364 if (ev_is_active (w)) 1616 if (expect_false (ev_is_active (w)))
1365 return; 1617 return;
1366 1618
1367 ev_start (EV_A_ (W)w, 1); 1619 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1369} 1621}
1370 1622
1371void 1623void
1372ev_child_stop (EV_P_ struct ev_child *w) 1624ev_child_stop (EV_P_ ev_child *w)
1373{ 1625{
1374 ev_clear_pending (EV_A_ (W)w); 1626 ev_clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 1627 if (expect_false (!ev_is_active (w)))
1376 return; 1628 return;
1377 1629
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 1631 ev_stop (EV_A_ (W)w);
1380} 1632}
1381 1633
1634#if EV_STAT_ENABLE
1635
1636# ifdef _WIN32
1637# define lstat(a,b) stat(a,b)
1638# endif
1639
1640#define DEF_STAT_INTERVAL 5.0074891
1641#define MIN_STAT_INTERVAL 0.1074891
1642
1643void
1644ev_stat_stat (EV_P_ ev_stat *w)
1645{
1646 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1;
1650}
1651
1652static void
1653stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1654{
1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1656
1657 /* we copy this here each the time so that */
1658 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w);
1661
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1663 ev_feed_event (EV_A_ w, EV_STAT);
1664}
1665
1666void
1667ev_stat_start (EV_P_ ev_stat *w)
1668{
1669 if (expect_false (ev_is_active (w)))
1670 return;
1671
1672 /* since we use memcmp, we need to clear any padding data etc. */
1673 memset (&w->prev, 0, sizeof (ev_statdata));
1674 memset (&w->attr, 0, sizeof (ev_statdata));
1675
1676 ev_stat_stat (EV_A_ w);
1677
1678 if (w->interval < MIN_STAT_INTERVAL)
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1682 ev_set_priority (&w->timer, ev_priority (w));
1683 ev_timer_start (EV_A_ &w->timer);
1684
1685 ev_start (EV_A_ (W)w, 1);
1686}
1687
1688void
1689ev_stat_stop (EV_P_ ev_stat *w)
1690{
1691 ev_clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w)))
1693 return;
1694
1695 ev_timer_stop (EV_A_ &w->timer);
1696
1697 ev_stop (EV_A_ (W)w);
1698}
1699#endif
1700
1701void
1702ev_idle_start (EV_P_ ev_idle *w)
1703{
1704 if (expect_false (ev_is_active (w)))
1705 return;
1706
1707 ev_start (EV_A_ (W)w, ++idlecnt);
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1709 idles [idlecnt - 1] = w;
1710}
1711
1712void
1713ev_idle_stop (EV_P_ ev_idle *w)
1714{
1715 ev_clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w)))
1717 return;
1718
1719 {
1720 int active = ((W)w)->active;
1721 idles [active - 1] = idles [--idlecnt];
1722 ((W)idles [active - 1])->active = active;
1723 }
1724
1725 ev_stop (EV_A_ (W)w);
1726}
1727
1728void
1729ev_prepare_start (EV_P_ ev_prepare *w)
1730{
1731 if (expect_false (ev_is_active (w)))
1732 return;
1733
1734 ev_start (EV_A_ (W)w, ++preparecnt);
1735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1736 prepares [preparecnt - 1] = w;
1737}
1738
1739void
1740ev_prepare_stop (EV_P_ ev_prepare *w)
1741{
1742 ev_clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w)))
1744 return;
1745
1746 {
1747 int active = ((W)w)->active;
1748 prepares [active - 1] = prepares [--preparecnt];
1749 ((W)prepares [active - 1])->active = active;
1750 }
1751
1752 ev_stop (EV_A_ (W)w);
1753}
1754
1755void
1756ev_check_start (EV_P_ ev_check *w)
1757{
1758 if (expect_false (ev_is_active (w)))
1759 return;
1760
1761 ev_start (EV_A_ (W)w, ++checkcnt);
1762 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1763 checks [checkcnt - 1] = w;
1764}
1765
1766void
1767ev_check_stop (EV_P_ ev_check *w)
1768{
1769 ev_clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w)))
1771 return;
1772
1773 {
1774 int active = ((W)w)->active;
1775 checks [active - 1] = checks [--checkcnt];
1776 ((W)checks [active - 1])->active = active;
1777 }
1778
1779 ev_stop (EV_A_ (W)w);
1780}
1781
1782#if EV_EMBED_ENABLE
1783void noinline
1784ev_embed_sweep (EV_P_ ev_embed *w)
1785{
1786 ev_loop (w->loop, EVLOOP_NONBLOCK);
1787}
1788
1789static void
1790embed_cb (EV_P_ ev_io *io, int revents)
1791{
1792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1793
1794 if (ev_cb (w))
1795 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1796 else
1797 ev_embed_sweep (loop, w);
1798}
1799
1800void
1801ev_embed_start (EV_P_ ev_embed *w)
1802{
1803 if (expect_false (ev_is_active (w)))
1804 return;
1805
1806 {
1807 struct ev_loop *loop = w->loop;
1808 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1809 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1810 }
1811
1812 ev_set_priority (&w->io, ev_priority (w));
1813 ev_io_start (EV_A_ &w->io);
1814
1815 ev_start (EV_A_ (W)w, 1);
1816}
1817
1818void
1819ev_embed_stop (EV_P_ ev_embed *w)
1820{
1821 ev_clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w)))
1823 return;
1824
1825 ev_io_stop (EV_A_ &w->io);
1826
1827 ev_stop (EV_A_ (W)w);
1828}
1829#endif
1830
1382/*****************************************************************************/ 1831/*****************************************************************************/
1383 1832
1384struct ev_once 1833struct ev_once
1385{ 1834{
1386 struct ev_io io; 1835 ev_io io;
1387 struct ev_timer to; 1836 ev_timer to;
1388 void (*cb)(int revents, void *arg); 1837 void (*cb)(int revents, void *arg);
1389 void *arg; 1838 void *arg;
1390}; 1839};
1391 1840
1392static void 1841static void
1395 void (*cb)(int revents, void *arg) = once->cb; 1844 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 1845 void *arg = once->arg;
1397 1846
1398 ev_io_stop (EV_A_ &once->io); 1847 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 1848 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 1849 ev_free (once);
1401 1850
1402 cb (revents, arg); 1851 cb (revents, arg);
1403} 1852}
1404 1853
1405static void 1854static void
1406once_cb_io (EV_P_ struct ev_io *w, int revents) 1855once_cb_io (EV_P_ ev_io *w, int revents)
1407{ 1856{
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1409} 1858}
1410 1859
1411static void 1860static void
1412once_cb_to (EV_P_ struct ev_timer *w, int revents) 1861once_cb_to (EV_P_ ev_timer *w, int revents)
1413{ 1862{
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1863 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1415} 1864}
1416 1865
1417void 1866void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1867ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 1868{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 1869 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 1870
1422 if (!once) 1871 if (expect_false (!once))
1872 {
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1873 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 1874 return;
1425 { 1875 }
1876
1426 once->cb = cb; 1877 once->cb = cb;
1427 once->arg = arg; 1878 once->arg = arg;
1428 1879
1429 ev_watcher_init (&once->io, once_cb_io); 1880 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 1881 if (fd >= 0)
1431 { 1882 {
1432 ev_io_set (&once->io, fd, events); 1883 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 1884 ev_io_start (EV_A_ &once->io);
1434 } 1885 }
1435 1886
1436 ev_watcher_init (&once->to, once_cb_to); 1887 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 1888 if (timeout >= 0.)
1438 { 1889 {
1439 ev_timer_set (&once->to, timeout, 0.); 1890 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 1891 ev_timer_start (EV_A_ &once->to);
1441 }
1442 } 1892 }
1443} 1893}
1444 1894
1895#ifdef __cplusplus
1896}
1897#endif
1898

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines