ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.287 by root, Mon Apr 20 19:45:58 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
33 63
34# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
37# endif 78# endif
38 79
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
41# endif 86# endif
42 87
43# if HAVE_POLL && HAVE_POLL_H 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
45# endif 94# endif
46 95
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
49# endif 102# endif
50 103
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
53# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
54 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
55#endif 144#endif
56 145
57#include <math.h> 146#include <math.h>
58#include <stdlib.h> 147#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 148#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 149#include <stddef.h>
63 150
64#include <stdio.h> 151#include <stdio.h>
65 152
66#include <assert.h> 153#include <assert.h>
67#include <errno.h> 154#include <errno.h>
68#include <sys/types.h> 155#include <sys/types.h>
156#include <time.h>
157
158#include <signal.h>
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
69#ifndef WIN32 166#ifndef _WIN32
167# include <sys/time.h>
70# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
71#endif 176# endif
72#include <sys/time.h> 177#endif
73#include <time.h>
74 178
75/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
76 188
77#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
79#endif 207#endif
80 208
81#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
83#endif 211#endif
84 212
85#ifndef EV_USE_POLL 213#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
87#endif 219#endif
88 220
89#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
90# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
91#endif 227#endif
92 228
93#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
95#endif 231#endif
96 232
233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
97#ifndef EV_USE_WIN32 237#ifndef EV_USE_INOTIFY
98# ifdef WIN32 238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 239# define EV_USE_INOTIFY 1
100# else 240# else
101# define EV_USE_WIN32 0 241# define EV_USE_INOTIFY 0
102# endif 242# endif
103#endif 243#endif
104 244
105#ifndef EV_USE_REALTIME 245#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
107#endif 250# endif
251#endif
108 252
109/**/ 253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 288
111#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
114#endif 292#endif
116#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
119#endif 297#endif
120 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
121/**/ 346/**/
122 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 367
128#include "ev.h"
129
130#if __GNUC__ >= 3 368#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 370# define noinline __attribute__ ((noinline))
133#else 371#else
134# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
135# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
136#endif 377#endif
137 378
138#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
140 388
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
144typedef struct ev_watcher *W; 395typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
147 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 410#endif
411
412#ifdef _WIN32
413# include "ev_win32.c"
414#endif
415
416/*****************************************************************************/
417
418static void (*syserr_cb)(const char *msg);
419
420void
421ev_set_syserr_cb (void (*cb)(const char *msg))
422{
423 syserr_cb = cb;
424}
425
426static void noinline
427ev_syserr (const char *msg)
428{
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439}
440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458void
459ev_set_allocator (void *(*cb)(void *ptr, long size))
460{
461 alloc = cb;
462}
463
464inline_speed void *
465ev_realloc (void *ptr, long size)
466{
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476}
477
478#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0)
155 480
156/*****************************************************************************/ 481/*****************************************************************************/
157 482
158typedef struct 483typedef struct
159{ 484{
160 WL head; 485 WL head;
161 unsigned char events; 486 unsigned char events;
162 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
493#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495#endif
163} ANFD; 496} ANFD;
164 497
165typedef struct 498typedef struct
166{ 499{
167 W w; 500 W w;
168 int events; 501 int events;
169} ANPENDING; 502} ANPENDING;
170 503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
529
171#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
172 531
173struct ev_loop 532 struct ev_loop
174{ 533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 536 #define VAR(name,decl) decl;
176# include "ev_vars.h" 537 #include "ev_vars.h"
177};
178# undef VAR 538 #undef VAR
539 };
179# include "ev_wrap.h" 540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
180 544
181#else 545#else
182 546
547 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 549 #include "ev_vars.h"
185# undef VAR 550 #undef VAR
551
552 static int ev_default_loop_ptr;
186 553
187#endif 554#endif
188 555
189/*****************************************************************************/ 556/*****************************************************************************/
190 557
191inline ev_tstamp 558ev_tstamp
192ev_time (void) 559ev_time (void)
193{ 560{
194#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
195 struct timespec ts; 564 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
197 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
198#else 567 }
568#endif
569
199 struct timeval tv; 570 struct timeval tv;
200 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif
203} 573}
204 574
205inline ev_tstamp 575inline_size ev_tstamp
206get_clock (void) 576get_clock (void)
207{ 577{
208#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
210 { 580 {
215#endif 585#endif
216 586
217 return ev_time (); 587 return ev_time ();
218} 588}
219 589
590#if EV_MULTIPLICITY
220ev_tstamp 591ev_tstamp
221ev_now (EV_P) 592ev_now (EV_P)
222{ 593{
223 return rt_now; 594 return ev_rt_now;
224} 595}
596#endif
225 597
226#define array_roundsize(base,n) ((n) | 4 & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
227 605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660
228#define array_needsize(base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
230 { \ 663 { \
231 int newcnt = cur; \ 664 int ocur_ = (cur); \
232 do \ 665 (base) = (type *)array_realloc \
233 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 668 }
242 669
670#if 0
243#define array_slim(stem) \ 671#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 673 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 677 }
678#endif
250 679
251#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
253 682
254/*****************************************************************************/ 683/*****************************************************************************/
255 684
256static void 685void noinline
257anfds_init (ANFD *base, int count) 686ev_feed_event (EV_P_ void *w, int revents)
258{ 687{
259 while (count--) 688 W w_ = (W)w;
260 { 689 int pri = ABSPRI (w_);
261 base->head = 0;
262 base->events = EV_NONE;
263 base->reify = 0;
264 690
265 ++base; 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
266 } 694 {
267} 695 w_->pending = ++pendingcnt [pri];
268 696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
269static void 697 pendings [pri][w_->pending - 1].w = w_;
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 698 pendings [pri][w_->pending - 1].events = revents;
275 return;
276 } 699 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282} 700}
283 701
284static void 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
285queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 719{
287 int i; 720 int i;
288 721
289 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
291} 724}
292 725
293static void 726/*****************************************************************************/
727
728inline_speed void
294fd_event (EV_P_ int fd, int events) 729fd_event (EV_P_ int fd, int revents)
295{ 730{
296 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 732 ev_io *w;
298 733
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 735 {
301 int ev = w->events & events; 736 int ev = w->events & revents;
302 737
303 if (ev) 738 if (ev)
304 event (EV_A_ (W)w, ev); 739 ev_feed_event (EV_A_ (W)w, ev);
305 } 740 }
306} 741}
307 742
308/*****************************************************************************/ 743void
744ev_feed_fd_event (EV_P_ int fd, int revents)
745{
746 if (fd >= 0 && fd < anfdmax)
747 fd_event (EV_A_ fd, revents);
748}
309 749
310static void 750inline_size void
311fd_reify (EV_P) 751fd_reify (EV_P)
312{ 752{
313 int i; 753 int i;
314 754
315 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
316 { 756 {
317 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 759 ev_io *w;
320 760
321 int events = 0; 761 unsigned char events = 0;
322 762
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 764 events |= (unsigned char)w->events;
325 765
766#if EV_SELECT_IS_WINSOCKET
767 if (events)
768 {
769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
773 anfd->handle = _get_osfhandle (fd);
774 #endif
775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
776 }
777#endif
778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
326 anfd->reify = 0; 783 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
330 } 789 }
331 790
332 fdchangecnt = 0; 791 fdchangecnt = 0;
333} 792}
334 793
335static void 794inline_size void
336fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
337{ 796{
338 if (anfds [fd].reify || fdchangecnt < 0) 797 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
342 799
800 if (expect_true (!reify))
801 {
343 ++fdchangecnt; 802 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
346} 806}
347 807
348static void 808inline_speed void
349fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
350{ 810{
351 struct ev_io *w; 811 ev_io *w;
352 812
353 while ((w = (struct ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
354 { 814 {
355 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 817 }
818}
819
820inline_size int
821fd_valid (int fd)
822{
823#ifdef _WIN32
824 return _get_osfhandle (fd) != -1;
825#else
826 return fcntl (fd, F_GETFD) != -1;
827#endif
358} 828}
359 829
360/* called on EBADF to verify fds */ 830/* called on EBADF to verify fds */
361static void 831static void noinline
362fd_ebadf (EV_P) 832fd_ebadf (EV_P)
363{ 833{
364 int fd; 834 int fd;
365 835
366 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 837 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
369 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
370} 840}
371 841
372/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 843static void noinline
374fd_enomem (EV_P) 844fd_enomem (EV_P)
375{ 845{
376 int fd; 846 int fd;
377 847
378 for (fd = anfdmax; fd--; ) 848 for (fd = anfdmax; fd--; )
381 fd_kill (EV_A_ fd); 851 fd_kill (EV_A_ fd);
382 return; 852 return;
383 } 853 }
384} 854}
385 855
386/* susually called after fork if method needs to re-arm all fds from scratch */ 856/* usually called after fork if backend needs to re-arm all fds from scratch */
387static void 857static void noinline
388fd_rearm_all (EV_P) 858fd_rearm_all (EV_P)
389{ 859{
390 int fd; 860 int fd;
391 861
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events) 863 if (anfds [fd].events)
395 { 864 {
396 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
397 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
398 } 868 }
399} 869}
400 870
401/*****************************************************************************/ 871/*****************************************************************************/
402 872
403static void 873/*
404upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
405{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
406 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
407 878
408 while (k && heap [k >> 1]->at > w->at) 879/*
409 { 880 * at the moment we allow libev the luxury of two heaps,
410 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
411 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
412 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
413 } 884 */
885#if EV_USE_4HEAP
414 886
415 heap [k] = w; 887#define DHEAP 4
416 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
417 891
418} 892/* away from the root */
419 893inline_speed void
420static void
421downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
422{ 895{
423 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
424 898
425 while (k < (N >> 1)) 899 for (;;)
426 { 900 {
427 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
428 904
429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
430 ++j; 907 {
431 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
432 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
433 break; 921 break;
434 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
435 heap [k] = heap [j]; 961 heap [k] = heap [c];
436 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
437 k = j; 964 k = c;
438 } 965 }
439 966
440 heap [k] = w; 967 heap [k] = he;
441 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
995adjustheap (ANHE *heap, int N, int k)
996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
998 upheap (heap, k);
999 else
1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
442} 1013}
443 1014
444/*****************************************************************************/ 1015/*****************************************************************************/
445 1016
446typedef struct 1017typedef struct
447{ 1018{
448 WL head; 1019 WL head;
449 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
450} ANSIG; 1021} ANSIG;
451 1022
452static ANSIG *signals; 1023static ANSIG *signals;
453static int signalmax; 1024static int signalmax;
454 1025
455static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
456static sig_atomic_t volatile gotsig; 1027
457static struct ev_io sigev; 1028/*****************************************************************************/
1029
1030inline_speed void
1031fd_intern (int fd)
1032{
1033#ifdef _WIN32
1034 unsigned long arg = 1;
1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1036#else
1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
1038 fcntl (fd, F_SETFL, O_NONBLOCK);
1039#endif
1040}
1041
1042static void noinline
1043evpipe_init (EV_P)
1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
1060 fd_intern (evpipe [0]);
1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
1064
1065 ev_io_start (EV_A_ &pipeev);
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
458 1092
459static void 1093static void
460signals_init (ANSIG *base, int count) 1094pipecb (EV_P_ ev_io *iow, int revents)
461{ 1095{
462 while (count--) 1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
463 { 1101 }
464 base->head = 0; 1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
465 base->gotsig = 0; 1112 gotsig = 0;
466 1113
467 ++base; 1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
468 } 1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
469} 1133}
1134
1135/*****************************************************************************/
470 1136
471static void 1137static void
472sighandler (int signum) 1138ev_sighandler (int signum)
473{ 1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
474#if WIN32 1144#if _WIN32
475 signal (signum, sighandler); 1145 signal (signum, ev_sighandler);
476#endif 1146#endif
477 1147
478 signals [signum - 1].gotsig = 1; 1148 signals [signum - 1].gotsig = 1;
479 1149 evpipe_write (EV_A_ &gotsig);
480 if (!gotsig)
481 {
482 int old_errno = errno;
483 gotsig = 1;
484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
486 }
487} 1150}
488 1151
489static void 1152void noinline
490sigcb (EV_P_ struct ev_io *iow, int revents) 1153ev_feed_signal_event (EV_P_ int signum)
491{ 1154{
492 WL w; 1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
493 int signum; 1161 --signum;
494 1162
495 read (sigpipe [0], &revents, 1); 1163 if (signum < 0 || signum >= signalmax)
496 gotsig = 0; 1164 return;
497 1165
498 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig)
500 {
501 signals [signum].gotsig = 0; 1166 signals [signum].gotsig = 0;
502 1167
503 for (w = signals [signum].head; w; w = w->next) 1168 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
505 }
506}
507
508static void
509siginit (EV_P)
510{
511#ifndef WIN32
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519
520 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 1170}
524 1171
525/*****************************************************************************/ 1172/*****************************************************************************/
526 1173
1174static WL childs [EV_PID_HASHSIZE];
1175
527#ifndef WIN32 1176#ifndef _WIN32
528 1177
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 1178static ev_signal childev;
1179
1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status)
1186{
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201}
531 1202
532#ifndef WCONTINUED 1203#ifndef WCONTINUED
533# define WCONTINUED 0 1204# define WCONTINUED 0
534#endif 1205#endif
535 1206
536static void 1207static void
537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
538{
539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 1208childcb (EV_P_ ev_signal *sw, int revents)
553{ 1209{
554 int pid, status; 1210 int pid, status;
555 1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 1214 if (!WCONTINUED
1215 || errno != EINVAL
1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1217 return;
1218
558 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */
559 event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 1222
561 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
563 }
564} 1226}
565 1227
566#endif 1228#endif
567 1229
568/*****************************************************************************/ 1230/*****************************************************************************/
569 1231
1232#if EV_USE_PORT
1233# include "ev_port.c"
1234#endif
570#if EV_USE_KQUEUE 1235#if EV_USE_KQUEUE
571# include "ev_kqueue.c" 1236# include "ev_kqueue.c"
572#endif 1237#endif
573#if EV_USE_EPOLL 1238#if EV_USE_EPOLL
574# include "ev_epoll.c" 1239# include "ev_epoll.c"
591{ 1256{
592 return EV_VERSION_MINOR; 1257 return EV_VERSION_MINOR;
593} 1258}
594 1259
595/* return true if we are running with elevated privileges and should ignore env variables */ 1260/* return true if we are running with elevated privileges and should ignore env variables */
596static int 1261int inline_size
597enable_secure (void) 1262enable_secure (void)
598{ 1263{
599#ifdef WIN32 1264#ifdef _WIN32
600 return 0; 1265 return 0;
601#else 1266#else
602 return getuid () != geteuid () 1267 return getuid () != geteuid ()
603 || getgid () != getegid (); 1268 || getgid () != getegid ();
604#endif 1269#endif
605} 1270}
606 1271
607int 1272unsigned int
608ev_method (EV_P) 1273ev_supported_backends (void)
609{ 1274{
610 return method; 1275 unsigned int flags = 0;
611}
612 1276
613static void 1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
614loop_init (EV_P_ int methods) 1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1279 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1280 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282
1283 return flags;
1284}
1285
1286unsigned int
1287ev_recommended_backends (void)
615{ 1288{
616 if (!method) 1289 unsigned int flags = ev_supported_backends ();
1290
1291#ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */
1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1294 flags &= ~EVBACKEND_KQUEUE;
1295#endif
1296#ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300#endif
1301
1302 return flags;
1303}
1304
1305unsigned int
1306ev_embeddable_backends (void)
1307{
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315}
1316
1317unsigned int
1318ev_backend (EV_P)
1319{
1320 return backend;
1321}
1322
1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
1341static void noinline
1342loop_init (EV_P_ unsigned int flags)
1343{
1344 if (!backend)
617 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
618#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1358 {
1359 struct timespec ts;
1360
1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1362 have_monotonic = 1;
1363 }
1364#endif
1365
1366 ev_rt_now = ev_time ();
1367 mn_now = get_clock ();
1368 now_floor = mn_now;
1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */
1381#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384#endif
1385
1386 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS"))
1389 flags = atoi (getenv ("LIBEV_FLAGS"));
1390
1391 if (!(flags & 0x0000ffffU))
1392 flags |= ev_recommended_backends ();
1393
1394#if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396#endif
1397#if EV_USE_KQUEUE
1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1399#endif
1400#if EV_USE_EPOLL
1401 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1402#endif
1403#if EV_USE_POLL
1404 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1405#endif
1406#if EV_USE_SELECT
1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1408#endif
1409
1410 ev_init (&pipeev, pipecb);
1411 ev_set_priority (&pipeev, EV_MAXPRI);
1412 }
1413}
1414
1415static void noinline
1416loop_destroy (EV_P)
1417{
1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437#if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440#endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
1444
1445#if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447#endif
1448#if EV_USE_KQUEUE
1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1450#endif
1451#if EV_USE_EPOLL
1452 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1453#endif
1454#if EV_USE_POLL
1455 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1456#endif
1457#if EV_USE_SELECT
1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1459#endif
1460
1461 for (i = NUMPRI; i--; )
1462 {
1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
1470
1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1473 array_free (fdchange, EMPTY);
1474 array_free (timer, EMPTY);
1475#if EV_PERIODIC_ENABLE
1476 array_free (periodic, EMPTY);
1477#endif
1478#if EV_FORK_ENABLE
1479 array_free (fork, EMPTY);
1480#endif
1481 array_free (prepare, EMPTY);
1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
1486
1487 backend = 0;
1488}
1489
1490#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P);
1492#endif
1493
1494inline_size void
1495loop_fork (EV_P)
1496{
1497#if EV_USE_PORT
1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1499#endif
1500#if EV_USE_KQUEUE
1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1502#endif
1503#if EV_USE_EPOLL
1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1505#endif
1506#if EV_USE_INOTIFY
1507 infy_fork (EV_A);
1508#endif
1509
1510 if (ev_is_active (&pipeev))
1511 {
1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
1518
1519 ev_ref (EV_A);
1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1529 close (evpipe [0]);
1530 close (evpipe [1]);
1531 }
1532
1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1536 }
1537
1538 postfork = 0;
1539}
1540
1541#if EV_MULTIPLICITY
1542
1543struct ev_loop *
1544ev_loop_new (unsigned int flags)
1545{
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547
1548 memset (loop, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags);
1551
1552 if (ev_backend (EV_A))
1553 return loop;
1554
1555 return 0;
1556}
1557
1558void
1559ev_loop_destroy (EV_P)
1560{
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563}
1564
1565void
1566ev_loop_fork (EV_P)
1567{
1568 postfork = 1; /* must be in line with ev_default_fork */
1569}
1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
619 { 1623 {
620 struct timespec ts; 1624 verify_watcher (EV_A_ (W)w);
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
622 have_monotonic = 1; 1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
623 } 1627 }
624#endif
625 1628
626 rt_now = ev_time (); 1629 assert (timermax >= timercnt);
627 mn_now = get_clock (); 1630 verify_heap (EV_A_ timers, timercnt);
628 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now;
630 1631
631 if (methods == EVMETHOD_AUTO) 1632#if EV_PERIODIC_ENABLE
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1633 assert (periodicmax >= periodiccnt);
633 methods = atoi (getenv ("LIBEV_METHODS")); 1634 verify_heap (EV_A_ periodics, periodiccnt);
634 else
635 methods = EVMETHOD_ANY;
636
637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
644#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646#endif
647#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif
650#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif
653 }
654}
655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif 1635#endif
676 1636
677 for (i = NUMPRI; i--; ) 1637 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
679 1646
680 array_free (fdchange, ); 1647#if EV_FORK_ENABLE
681 array_free (timer, ); 1648 assert (forkmax >= forkcnt);
682 array_free (periodic, ); 1649 array_verify (EV_A_ (W *)forks, forkcnt);
683 array_free (idle, ); 1650#endif
684 array_free (prepare, );
685 array_free (check, );
686 1651
687 method = 0; 1652#if EV_ASYNC_ENABLE
688 /*TODO*/ 1653 assert (asyncmax >= asynccnt);
689} 1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
690 1656
691void 1657 assert (preparemax >= preparecnt);
692loop_fork (EV_P) 1658 array_verify (EV_A_ (W *)prepares, preparecnt);
693{ 1659
694 /*TODO*/ 1660 assert (checkmax >= checkcnt);
695#if EV_USE_EPOLL 1661 array_verify (EV_A_ (W *)checks, checkcnt);
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
697#endif 1666# endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif 1667#endif
701} 1668}
1669
1670#endif /* multiplicity */
702 1671
703#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
704struct ev_loop * 1673struct ev_loop *
705ev_loop_new (int methods) 1674ev_default_loop_init (unsigned int flags)
706{ 1675#else
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1676int
708 1677ev_default_loop (unsigned int flags)
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif 1678#endif
731 1679{
1680 if (!ev_default_loop_ptr)
1681 {
732#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else 1684#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1; 1685 ev_default_loop_ptr = 1;
754#endif 1686#endif
755 1687
756 loop_init (EV_A_ methods); 1688 loop_init (EV_A_ flags);
757 1689
758 if (ev_method (EV_A)) 1690 if (ev_backend (EV_A))
759 { 1691 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A);
763
764#ifndef WIN32 1692#ifndef _WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 1697#endif
770 } 1698 }
771 else 1699 else
772 default_loop = 0; 1700 ev_default_loop_ptr = 0;
773 } 1701 }
774 1702
775 return default_loop; 1703 return ev_default_loop_ptr;
776} 1704}
777 1705
778void 1706void
779ev_default_destroy (void) 1707ev_default_destroy (void)
780{ 1708{
781#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 1710 struct ev_loop *loop = ev_default_loop_ptr;
783#endif 1711#endif
784 1712
1713 ev_default_loop_ptr = 0;
1714
1715#ifndef _WIN32
785 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
787 1718#endif
788 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793 1719
794 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
795} 1721}
796 1722
797void 1723void
798ev_default_fork (void) 1724ev_default_fork (void)
799{ 1725{
800#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 1727 struct ev_loop *loop = ev_default_loop_ptr;
802#endif 1728#endif
803 1729
804 loop_fork (EV_A); 1730 postfork = 1; /* must be in line with ev_loop_fork */
805
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 1731}
814 1732
815/*****************************************************************************/ 1733/*****************************************************************************/
816 1734
817static void 1735void
1736ev_invoke (EV_P_ void *w, int revents)
1737{
1738 EV_CB_INVOKE ((W)w, revents);
1739}
1740
1741inline_speed void
818call_pending (EV_P) 1742call_pending (EV_P)
819{ 1743{
820 int pri; 1744 int pri;
821 1745
822 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri]) 1747 while (pendingcnt [pri])
824 { 1748 {
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 1750
827 if (p->w) 1751 if (expect_true (p->w))
828 { 1752 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1754
829 p->w->pending = 0; 1755 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
831 } 1758 }
832 } 1759 }
833} 1760}
834 1761
835static void 1762#if EV_IDLE_ENABLE
1763inline_size void
836timers_reify (EV_P) 1764idle_reify (EV_P)
837{ 1765{
838 while (timercnt && ((WT)timers [0])->at <= mn_now) 1766 if (expect_false (idleall))
839 { 1767 {
840 struct ev_timer *w = timers [0]; 1768 int pri;
841 1769
842 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1770 for (pri = NUMPRI; pri--; )
843
844 /* first reschedule or stop timer */
845 if (w->repeat)
846 { 1771 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1772 if (pendingcnt [pri])
848 ((WT)w)->at = mn_now + w->repeat; 1773 break;
849 downheap ((WT *)timers, timercnt, 0);
850 }
851 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1774
854 event (EV_A_ (W)w, EV_TIMEOUT); 1775 if (idlecnt [pri])
855 }
856}
857
858static void
859periodics_reify (EV_P)
860{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
862 {
863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866
867 /* first reschedule or stop timer */
868 if (w->interval)
869 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0);
873 }
874 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876
877 event (EV_A_ (W)w, EV_PERIODIC);
878 }
879}
880
881static void
882periodics_reschedule (EV_P)
883{
884 int i;
885
886 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i)
888 {
889 struct ev_periodic *w = periodics [i];
890
891 if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 { 1776 {
897 ev_periodic_stop (EV_A_ w); 1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
898 ev_periodic_start (EV_A_ w); 1778 break;
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 } 1779 }
902 } 1780 }
903 } 1781 }
904} 1782}
1783#endif
905 1784
906inline int 1785inline_size void
907time_update_monotonic (EV_P) 1786timers_reify (EV_P)
908{ 1787{
909 mn_now = get_clock (); 1788 EV_FREQUENT_CHECK;
910 1789
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 } 1791 {
916 else 1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
917 { 1819 }
918 now_floor = mn_now; 1820}
919 rt_now = ev_time (); 1821
920 return 1; 1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
921 } 1829 {
922} 1830 int feed_count = 0;
923 1831
924static void 1832 do
925time_update (EV_P) 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1915time_update (EV_P_ ev_tstamp max_block)
926{ 1916{
927 int i; 1917 int i;
928 1918
929#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
930 if (expect_true (have_monotonic)) 1920 if (expect_true (have_monotonic))
931 { 1921 {
932 if (time_update_monotonic (EV_A)) 1922 ev_tstamp odiff = rtmn_diff;
1923
1924 mn_now = get_clock ();
1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
933 { 1929 {
934 ev_tstamp odiff = rtmn_diff; 1930 ev_rt_now = rtmn_diff + mn_now;
1931 return;
1932 }
935 1933
1934 now_floor = mn_now;
1935 ev_rt_now = ev_time ();
1936
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1937 /* loop a few times, before making important decisions.
1938 * on the choice of "4": one iteration isn't enough,
1939 * in case we get preempted during the calls to
1940 * ev_time and get_clock. a second call is almost guaranteed
1941 * to succeed in that case, though. and looping a few more times
1942 * doesn't hurt either as we only do this on time-jumps or
1943 * in the unlikely event of having been preempted here.
1944 */
1945 for (i = 4; --i; )
937 { 1946 {
938 rtmn_diff = rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
939 1948
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
941 return; /* all is well */ 1950 return; /* all is well */
942 1951
943 rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1953 mn_now = get_clock ();
945 now_floor = mn_now; 1954 now_floor = mn_now;
946 } 1955 }
947 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1959# if EV_PERIODIC_ENABLE
1960 periodics_reschedule (EV_A);
1961# endif
1962 }
1963 else
1964#endif
1965 {
1966 ev_rt_now = ev_time ();
1967
1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1972#if EV_PERIODIC_ENABLE
948 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1974#endif
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 1975 }
952 }
953 else
954#endif
955 {
956 rt_now = ev_time ();
957 1976
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 {
960 periodics_reschedule (EV_A);
961
962 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now;
965 }
966
967 mn_now = rt_now; 1977 mn_now = ev_rt_now;
968 } 1978 }
969}
970
971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981} 1979}
982 1980
983static int loop_done; 1981static int loop_done;
984 1982
985void 1983void
986ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
987{ 1985{
988 double block; 1986 loop_done = EVUNLOOP_CANCEL;
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1987
1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
990 1989
991 do 1990 do
992 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1996#ifndef _WIN32
1997 if (expect_false (curpid)) /* penalise the forking check even more */
1998 if (expect_false (getpid () != curpid))
1999 {
2000 curpid = getpid ();
2001 postfork = 1;
2002 }
2003#endif
2004
2005#if EV_FORK_ENABLE
2006 /* we might have forked, so queue fork handlers */
2007 if (expect_false (postfork))
2008 if (forkcnt)
2009 {
2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2011 call_pending (EV_A);
2012 }
2013#endif
2014
993 /* queue check watchers (and execute them) */ 2015 /* queue prepare watchers (and execute them) */
994 if (expect_false (preparecnt)) 2016 if (expect_false (preparecnt))
995 { 2017 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 2019 call_pending (EV_A);
998 } 2020 }
999 2021
2022 /* we might have forked, so reify kernel state if necessary */
2023 if (expect_false (postfork))
2024 loop_fork (EV_A);
2025
1000 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 2027 fd_reify (EV_A);
1002 2028
1003 /* calculate blocking time */ 2029 /* calculate blocking time */
2030 {
2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1004 2033
1005 /* we only need this for !monotonic clockor timers, but as we basically 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1006 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else
1011#endif
1012 { 2035 {
1013 rt_now = ev_time (); 2036 /* update time to cancel out callback processing overhead */
1014 mn_now = rt_now; 2037 time_update (EV_A_ 1e100);
1015 }
1016 2038
1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.;
1019 else
1020 {
1021 block = MAX_BLOCKTIME; 2039 waittime = MAX_BLOCKTIME;
1022 2040
1023 if (timercnt) 2041 if (timercnt)
1024 { 2042 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2043 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1026 if (block > to) block = to; 2044 if (waittime > to) waittime = to;
1027 } 2045 }
1028 2046
2047#if EV_PERIODIC_ENABLE
1029 if (periodiccnt) 2048 if (periodiccnt)
1030 { 2049 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2050 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1032 if (block > to) block = to; 2051 if (waittime > to) waittime = to;
1033 } 2052 }
2053#endif
1034 2054
1035 if (block < 0.) block = 0.; 2055 if (expect_false (waittime < timeout_blocktime))
2056 waittime = timeout_blocktime;
2057
2058 sleeptime = waittime - backend_fudge;
2059
2060 if (expect_true (sleeptime > io_blocktime))
2061 sleeptime = io_blocktime;
2062
2063 if (sleeptime)
2064 {
2065 ev_sleep (sleeptime);
2066 waittime -= sleeptime;
2067 }
1036 } 2068 }
1037 2069
1038 method_poll (EV_A_ block); 2070 ++loop_count;
2071 backend_poll (EV_A_ waittime);
1039 2072
1040 /* update rt_now, do magic */ 2073 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 2074 time_update (EV_A_ waittime + sleeptime);
2075 }
1042 2076
1043 /* queue pending timers and reschedule them */ 2077 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 2078 timers_reify (EV_A); /* relative timers called last */
2079#if EV_PERIODIC_ENABLE
1045 periodics_reify (EV_A); /* absolute timers called first */ 2080 periodics_reify (EV_A); /* absolute timers called first */
2081#endif
1046 2082
2083#if EV_IDLE_ENABLE
1047 /* queue idle watchers unless io or timers are pending */ 2084 /* queue idle watchers unless other events are pending */
1048 if (!pendingcnt) 2085 idle_reify (EV_A);
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2086#endif
1050 2087
1051 /* queue check watchers, to be executed first */ 2088 /* queue check watchers, to be executed first */
1052 if (checkcnt) 2089 if (expect_false (checkcnt))
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2090 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054 2091
1055 call_pending (EV_A); 2092 call_pending (EV_A);
1056 } 2093 }
1057 while (activecnt && !loop_done); 2094 while (expect_true (
2095 activecnt
2096 && !loop_done
2097 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2098 ));
1058 2099
1059 if (loop_done != 2) 2100 if (loop_done == EVUNLOOP_ONE)
1060 loop_done = 0; 2101 loop_done = EVUNLOOP_CANCEL;
1061} 2102}
1062 2103
1063void 2104void
1064ev_unloop (EV_P_ int how) 2105ev_unloop (EV_P_ int how)
1065{ 2106{
1066 loop_done = how; 2107 loop_done = how;
1067} 2108}
1068 2109
2110void
2111ev_ref (EV_P)
2112{
2113 ++activecnt;
2114}
2115
2116void
2117ev_unref (EV_P)
2118{
2119 --activecnt;
2120}
2121
2122void
2123ev_now_update (EV_P)
2124{
2125 time_update (EV_A_ 1e100);
2126}
2127
2128void
2129ev_suspend (EV_P)
2130{
2131 ev_now_update (EV_A);
2132}
2133
2134void
2135ev_resume (EV_P)
2136{
2137 ev_tstamp mn_prev = mn_now;
2138
2139 ev_now_update (EV_A);
2140 timers_reschedule (EV_A_ mn_now - mn_prev);
2141#if EV_PERIODIC_ENABLE
2142 periodics_reschedule (EV_A);
2143#endif
2144}
2145
1069/*****************************************************************************/ 2146/*****************************************************************************/
1070 2147
1071inline void 2148inline_size void
1072wlist_add (WL *head, WL elem) 2149wlist_add (WL *head, WL elem)
1073{ 2150{
1074 elem->next = *head; 2151 elem->next = *head;
1075 *head = elem; 2152 *head = elem;
1076} 2153}
1077 2154
1078inline void 2155inline_size void
1079wlist_del (WL *head, WL elem) 2156wlist_del (WL *head, WL elem)
1080{ 2157{
1081 while (*head) 2158 while (*head)
1082 { 2159 {
1083 if (*head == elem) 2160 if (*head == elem)
1088 2165
1089 head = &(*head)->next; 2166 head = &(*head)->next;
1090 } 2167 }
1091} 2168}
1092 2169
1093inline void 2170inline_speed void
1094ev_clear_pending (EV_P_ W w) 2171clear_pending (EV_P_ W w)
1095{ 2172{
1096 if (w->pending) 2173 if (w->pending)
1097 { 2174 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2175 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1099 w->pending = 0; 2176 w->pending = 0;
1100 } 2177 }
1101} 2178}
1102 2179
2180int
2181ev_clear_pending (EV_P_ void *w)
2182{
2183 W w_ = (W)w;
2184 int pending = w_->pending;
2185
2186 if (expect_true (pending))
2187 {
2188 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2189 w_->pending = 0;
2190 p->w = 0;
2191 return p->events;
2192 }
2193 else
2194 return 0;
2195}
2196
1103inline void 2197inline_size void
2198pri_adjust (EV_P_ W w)
2199{
2200 int pri = w->priority;
2201 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2202 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2203 w->priority = pri;
2204}
2205
2206inline_speed void
1104ev_start (EV_P_ W w, int active) 2207ev_start (EV_P_ W w, int active)
1105{ 2208{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2209 pri_adjust (EV_A_ w);
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
1109 w->active = active; 2210 w->active = active;
1110 ev_ref (EV_A); 2211 ev_ref (EV_A);
1111} 2212}
1112 2213
1113inline void 2214inline_size void
1114ev_stop (EV_P_ W w) 2215ev_stop (EV_P_ W w)
1115{ 2216{
1116 ev_unref (EV_A); 2217 ev_unref (EV_A);
1117 w->active = 0; 2218 w->active = 0;
1118} 2219}
1119 2220
1120/*****************************************************************************/ 2221/*****************************************************************************/
1121 2222
1122void 2223void noinline
1123ev_io_start (EV_P_ struct ev_io *w) 2224ev_io_start (EV_P_ ev_io *w)
1124{ 2225{
1125 int fd = w->fd; 2226 int fd = w->fd;
1126 2227
1127 if (ev_is_active (w)) 2228 if (expect_false (ev_is_active (w)))
1128 return; 2229 return;
1129 2230
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 2231 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2232 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2233
2234 EV_FREQUENT_CHECK;
1131 2235
1132 ev_start (EV_A_ (W)w, 1); 2236 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2237 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2238 wlist_add (&anfds[fd].head, (WL)w);
1135 2239
1136 fd_change (EV_A_ fd); 2240 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1137} 2241 w->events &= ~EV__IOFDSET;
1138 2242
1139void 2243 EV_FREQUENT_CHECK;
2244}
2245
2246void noinline
1140ev_io_stop (EV_P_ struct ev_io *w) 2247ev_io_stop (EV_P_ ev_io *w)
1141{ 2248{
1142 ev_clear_pending (EV_A_ (W)w); 2249 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 2250 if (expect_false (!ev_is_active (w)))
1144 return; 2251 return;
1145 2252
2253 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2254
2255 EV_FREQUENT_CHECK;
2256
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2257 wlist_del (&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 2258 ev_stop (EV_A_ (W)w);
1148 2259
1149 fd_change (EV_A_ w->fd); 2260 fd_change (EV_A_ w->fd, 1);
1150}
1151 2261
1152void 2262 EV_FREQUENT_CHECK;
2263}
2264
2265void noinline
1153ev_timer_start (EV_P_ struct ev_timer *w) 2266ev_timer_start (EV_P_ ev_timer *w)
1154{ 2267{
1155 if (ev_is_active (w)) 2268 if (expect_false (ev_is_active (w)))
1156 return; 2269 return;
1157 2270
1158 ((WT)w)->at += mn_now; 2271 ev_at (w) += mn_now;
1159 2272
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2273 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 2274
2275 EV_FREQUENT_CHECK;
2276
2277 ++timercnt;
1162 ev_start (EV_A_ (W)w, ++timercnt); 2278 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1163 array_needsize (timers, timermax, timercnt, ); 2279 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1164 timers [timercnt - 1] = w; 2280 ANHE_w (timers [ev_active (w)]) = (WT)w;
1165 upheap ((WT *)timers, timercnt - 1); 2281 ANHE_at_cache (timers [ev_active (w)]);
2282 upheap (timers, ev_active (w));
1166 2283
2284 EV_FREQUENT_CHECK;
2285
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2286 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1168} 2287}
1169 2288
1170void 2289void noinline
1171ev_timer_stop (EV_P_ struct ev_timer *w) 2290ev_timer_stop (EV_P_ ev_timer *w)
1172{ 2291{
1173 ev_clear_pending (EV_A_ (W)w); 2292 clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w)) 2293 if (expect_false (!ev_is_active (w)))
1175 return; 2294 return;
1176 2295
2296 EV_FREQUENT_CHECK;
2297
2298 {
2299 int active = ev_active (w);
2300
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2301 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1178 2302
1179 if (((W)w)->active < timercnt--) 2303 --timercnt;
2304
2305 if (expect_true (active < timercnt + HEAP0))
1180 { 2306 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 2307 timers [active] = timers [timercnt + HEAP0];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2308 adjustheap (timers, timercnt, active);
1183 } 2309 }
2310 }
1184 2311
1185 ((WT)w)->at = w->repeat; 2312 EV_FREQUENT_CHECK;
2313
2314 ev_at (w) -= mn_now;
1186 2315
1187 ev_stop (EV_A_ (W)w); 2316 ev_stop (EV_A_ (W)w);
1188} 2317}
1189 2318
1190void 2319void noinline
1191ev_timer_again (EV_P_ struct ev_timer *w) 2320ev_timer_again (EV_P_ ev_timer *w)
1192{ 2321{
2322 EV_FREQUENT_CHECK;
2323
1193 if (ev_is_active (w)) 2324 if (ev_is_active (w))
1194 { 2325 {
1195 if (w->repeat) 2326 if (w->repeat)
1196 { 2327 {
1197 ((WT)w)->at = mn_now + w->repeat; 2328 ev_at (w) = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2329 ANHE_at_cache (timers [ev_active (w)]);
2330 adjustheap (timers, timercnt, ev_active (w));
1199 } 2331 }
1200 else 2332 else
1201 ev_timer_stop (EV_A_ w); 2333 ev_timer_stop (EV_A_ w);
1202 } 2334 }
1203 else if (w->repeat) 2335 else if (w->repeat)
2336 {
2337 ev_at (w) = w->repeat;
1204 ev_timer_start (EV_A_ w); 2338 ev_timer_start (EV_A_ w);
1205} 2339 }
1206 2340
1207void 2341 EV_FREQUENT_CHECK;
2342}
2343
2344#if EV_PERIODIC_ENABLE
2345void noinline
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 2346ev_periodic_start (EV_P_ ev_periodic *w)
1209{ 2347{
1210 if (ev_is_active (w)) 2348 if (expect_false (ev_is_active (w)))
1211 return; 2349 return;
1212 2350
2351 if (w->reschedule_cb)
2352 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2353 else if (w->interval)
2354 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2355 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 2356 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2357 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2358 }
2359 else
2360 ev_at (w) = w->offset;
1218 2361
2362 EV_FREQUENT_CHECK;
2363
2364 ++periodiccnt;
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 2365 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 2366 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1221 periodics [periodiccnt - 1] = w; 2367 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 2368 ANHE_at_cache (periodics [ev_active (w)]);
2369 upheap (periodics, ev_active (w));
1223 2370
2371 EV_FREQUENT_CHECK;
2372
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2373 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1225} 2374}
1226 2375
1227void 2376void noinline
1228ev_periodic_stop (EV_P_ struct ev_periodic *w) 2377ev_periodic_stop (EV_P_ ev_periodic *w)
1229{ 2378{
1230 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w)) 2380 if (expect_false (!ev_is_active (w)))
1232 return; 2381 return;
1233 2382
2383 EV_FREQUENT_CHECK;
2384
2385 {
2386 int active = ev_active (w);
2387
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2388 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1235 2389
1236 if (((W)w)->active < periodiccnt--) 2390 --periodiccnt;
2391
2392 if (expect_true (active < periodiccnt + HEAP0))
1237 { 2393 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2394 periodics [active] = periodics [periodiccnt + HEAP0];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2395 adjustheap (periodics, periodiccnt, active);
1240 } 2396 }
2397 }
2398
2399 EV_FREQUENT_CHECK;
1241 2400
1242 ev_stop (EV_A_ (W)w); 2401 ev_stop (EV_A_ (W)w);
1243} 2402}
1244 2403
1245void 2404void noinline
1246ev_idle_start (EV_P_ struct ev_idle *w) 2405ev_periodic_again (EV_P_ ev_periodic *w)
1247{ 2406{
1248 if (ev_is_active (w)) 2407 /* TODO: use adjustheap and recalculation */
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 2408 ev_periodic_stop (EV_A_ w);
2409 ev_periodic_start (EV_A_ w);
1265} 2410}
1266 2411#endif
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310 2412
1311#ifndef SA_RESTART 2413#ifndef SA_RESTART
1312# define SA_RESTART 0 2414# define SA_RESTART 0
1313#endif 2415#endif
1314 2416
1315void 2417void noinline
1316ev_signal_start (EV_P_ struct ev_signal *w) 2418ev_signal_start (EV_P_ ev_signal *w)
1317{ 2419{
1318#if EV_MULTIPLICITY 2420#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2421 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1320#endif 2422#endif
1321 if (ev_is_active (w)) 2423 if (expect_false (ev_is_active (w)))
1322 return; 2424 return;
1323 2425
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2427
2428 evpipe_init (EV_A);
2429
2430 EV_FREQUENT_CHECK;
2431
2432 {
2433#ifndef _WIN32
2434 sigset_t full, prev;
2435 sigfillset (&full);
2436 sigprocmask (SIG_SETMASK, &full, &prev);
2437#endif
2438
2439 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2440
2441#ifndef _WIN32
2442 sigprocmask (SIG_SETMASK, &prev, 0);
2443#endif
2444 }
1325 2445
1326 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2447 wlist_add (&signals [w->signum - 1].head, (WL)w);
1329 2448
1330 if (!((WL)w)->next) 2449 if (!((WL)w)->next)
1331 { 2450 {
1332#if WIN32 2451#if _WIN32
1333 signal (w->signum, sighandler); 2452 signal (w->signum, ev_sighandler);
1334#else 2453#else
1335 struct sigaction sa; 2454 struct sigaction sa;
1336 sa.sa_handler = sighandler; 2455 sa.sa_handler = ev_sighandler;
1337 sigfillset (&sa.sa_mask); 2456 sigfillset (&sa.sa_mask);
1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2457 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1339 sigaction (w->signum, &sa, 0); 2458 sigaction (w->signum, &sa, 0);
1340#endif 2459#endif
1341 } 2460 }
1342}
1343 2461
1344void 2462 EV_FREQUENT_CHECK;
2463}
2464
2465void noinline
1345ev_signal_stop (EV_P_ struct ev_signal *w) 2466ev_signal_stop (EV_P_ ev_signal *w)
1346{ 2467{
1347 ev_clear_pending (EV_A_ (W)w); 2468 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2469 if (expect_false (!ev_is_active (w)))
1349 return; 2470 return;
1350 2471
2472 EV_FREQUENT_CHECK;
2473
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2474 wlist_del (&signals [w->signum - 1].head, (WL)w);
1352 ev_stop (EV_A_ (W)w); 2475 ev_stop (EV_A_ (W)w);
1353 2476
1354 if (!signals [w->signum - 1].head) 2477 if (!signals [w->signum - 1].head)
1355 signal (w->signum, SIG_DFL); 2478 signal (w->signum, SIG_DFL);
1356}
1357 2479
2480 EV_FREQUENT_CHECK;
2481}
2482
1358void 2483void
1359ev_child_start (EV_P_ struct ev_child *w) 2484ev_child_start (EV_P_ ev_child *w)
1360{ 2485{
1361#if EV_MULTIPLICITY 2486#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2487 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1363#endif 2488#endif
1364 if (ev_is_active (w)) 2489 if (expect_false (ev_is_active (w)))
1365 return; 2490 return;
1366 2491
2492 EV_FREQUENT_CHECK;
2493
1367 ev_start (EV_A_ (W)w, 1); 2494 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2495 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1369}
1370 2496
2497 EV_FREQUENT_CHECK;
2498}
2499
1371void 2500void
1372ev_child_stop (EV_P_ struct ev_child *w) 2501ev_child_stop (EV_P_ ev_child *w)
1373{ 2502{
1374 ev_clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 2504 if (expect_false (!ev_is_active (w)))
1376 return; 2505 return;
1377 2506
2507 EV_FREQUENT_CHECK;
2508
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2509 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2511
2512 EV_FREQUENT_CHECK;
1380} 2513}
2514
2515#if EV_STAT_ENABLE
2516
2517# ifdef _WIN32
2518# undef lstat
2519# define lstat(a,b) _stati64 (a,b)
2520# endif
2521
2522#define DEF_STAT_INTERVAL 5.0074891
2523#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2524#define MIN_STAT_INTERVAL 0.1074891
2525
2526static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2527
2528#if EV_USE_INOTIFY
2529# define EV_INOTIFY_BUFSIZE 8192
2530
2531static void noinline
2532infy_add (EV_P_ ev_stat *w)
2533{
2534 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2535
2536 if (w->wd < 0)
2537 {
2538 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2539 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2540
2541 /* monitor some parent directory for speedup hints */
2542 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2543 /* but an efficiency issue only */
2544 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2545 {
2546 char path [4096];
2547 strcpy (path, w->path);
2548
2549 do
2550 {
2551 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2552 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2553
2554 char *pend = strrchr (path, '/');
2555
2556 if (!pend || pend == path)
2557 break;
2558
2559 *pend = 0;
2560 w->wd = inotify_add_watch (fs_fd, path, mask);
2561 }
2562 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2563 }
2564 }
2565
2566 if (w->wd >= 0)
2567 {
2568 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2569
2570 /* now local changes will be tracked by inotify, but remote changes won't */
2571 /* unless the filesystem it known to be local, we therefore still poll */
2572 /* also do poll on <2.6.25, but with normal frequency */
2573 struct statfs sfs;
2574
2575 if (fs_2625 && !statfs (w->path, &sfs))
2576 if (sfs.f_type == 0x1373 /* devfs */
2577 || sfs.f_type == 0xEF53 /* ext2/3 */
2578 || sfs.f_type == 0x3153464a /* jfs */
2579 || sfs.f_type == 0x52654973 /* reiser3 */
2580 || sfs.f_type == 0x01021994 /* tempfs */
2581 || sfs.f_type == 0x58465342 /* xfs */)
2582 return;
2583
2584 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2585 ev_timer_again (EV_A_ &w->timer);
2586 }
2587}
2588
2589static void noinline
2590infy_del (EV_P_ ev_stat *w)
2591{
2592 int slot;
2593 int wd = w->wd;
2594
2595 if (wd < 0)
2596 return;
2597
2598 w->wd = -2;
2599 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2600 wlist_del (&fs_hash [slot].head, (WL)w);
2601
2602 /* remove this watcher, if others are watching it, they will rearm */
2603 inotify_rm_watch (fs_fd, wd);
2604}
2605
2606static void noinline
2607infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2608{
2609 if (slot < 0)
2610 /* overflow, need to check for all hash slots */
2611 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2612 infy_wd (EV_A_ slot, wd, ev);
2613 else
2614 {
2615 WL w_;
2616
2617 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2618 {
2619 ev_stat *w = (ev_stat *)w_;
2620 w_ = w_->next; /* lets us remove this watcher and all before it */
2621
2622 if (w->wd == wd || wd == -1)
2623 {
2624 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2625 {
2626 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2627 w->wd = -1;
2628 infy_add (EV_A_ w); /* re-add, no matter what */
2629 }
2630
2631 stat_timer_cb (EV_A_ &w->timer, 0);
2632 }
2633 }
2634 }
2635}
2636
2637static void
2638infy_cb (EV_P_ ev_io *w, int revents)
2639{
2640 char buf [EV_INOTIFY_BUFSIZE];
2641 struct inotify_event *ev = (struct inotify_event *)buf;
2642 int ofs;
2643 int len = read (fs_fd, buf, sizeof (buf));
2644
2645 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2646 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2647}
2648
2649inline_size void
2650check_2625 (EV_P)
2651{
2652 /* kernels < 2.6.25 are borked
2653 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2654 */
2655 struct utsname buf;
2656 int major, minor, micro;
2657
2658 if (uname (&buf))
2659 return;
2660
2661 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2662 return;
2663
2664 if (major < 2
2665 || (major == 2 && minor < 6)
2666 || (major == 2 && minor == 6 && micro < 25))
2667 return;
2668
2669 fs_2625 = 1;
2670}
2671
2672inline_size void
2673infy_init (EV_P)
2674{
2675 if (fs_fd != -2)
2676 return;
2677
2678 fs_fd = -1;
2679
2680 check_2625 (EV_A);
2681
2682 fs_fd = inotify_init ();
2683
2684 if (fs_fd >= 0)
2685 {
2686 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2687 ev_set_priority (&fs_w, EV_MAXPRI);
2688 ev_io_start (EV_A_ &fs_w);
2689 }
2690}
2691
2692inline_size void
2693infy_fork (EV_P)
2694{
2695 int slot;
2696
2697 if (fs_fd < 0)
2698 return;
2699
2700 close (fs_fd);
2701 fs_fd = inotify_init ();
2702
2703 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2704 {
2705 WL w_ = fs_hash [slot].head;
2706 fs_hash [slot].head = 0;
2707
2708 while (w_)
2709 {
2710 ev_stat *w = (ev_stat *)w_;
2711 w_ = w_->next; /* lets us add this watcher */
2712
2713 w->wd = -1;
2714
2715 if (fs_fd >= 0)
2716 infy_add (EV_A_ w); /* re-add, no matter what */
2717 else
2718 ev_timer_again (EV_A_ &w->timer);
2719 }
2720 }
2721}
2722
2723#endif
2724
2725#ifdef _WIN32
2726# define EV_LSTAT(p,b) _stati64 (p, b)
2727#else
2728# define EV_LSTAT(p,b) lstat (p, b)
2729#endif
2730
2731void
2732ev_stat_stat (EV_P_ ev_stat *w)
2733{
2734 if (lstat (w->path, &w->attr) < 0)
2735 w->attr.st_nlink = 0;
2736 else if (!w->attr.st_nlink)
2737 w->attr.st_nlink = 1;
2738}
2739
2740static void noinline
2741stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2742{
2743 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2744
2745 /* we copy this here each the time so that */
2746 /* prev has the old value when the callback gets invoked */
2747 w->prev = w->attr;
2748 ev_stat_stat (EV_A_ w);
2749
2750 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2751 if (
2752 w->prev.st_dev != w->attr.st_dev
2753 || w->prev.st_ino != w->attr.st_ino
2754 || w->prev.st_mode != w->attr.st_mode
2755 || w->prev.st_nlink != w->attr.st_nlink
2756 || w->prev.st_uid != w->attr.st_uid
2757 || w->prev.st_gid != w->attr.st_gid
2758 || w->prev.st_rdev != w->attr.st_rdev
2759 || w->prev.st_size != w->attr.st_size
2760 || w->prev.st_atime != w->attr.st_atime
2761 || w->prev.st_mtime != w->attr.st_mtime
2762 || w->prev.st_ctime != w->attr.st_ctime
2763 ) {
2764 #if EV_USE_INOTIFY
2765 if (fs_fd >= 0)
2766 {
2767 infy_del (EV_A_ w);
2768 infy_add (EV_A_ w);
2769 ev_stat_stat (EV_A_ w); /* avoid race... */
2770 }
2771 #endif
2772
2773 ev_feed_event (EV_A_ w, EV_STAT);
2774 }
2775}
2776
2777void
2778ev_stat_start (EV_P_ ev_stat *w)
2779{
2780 if (expect_false (ev_is_active (w)))
2781 return;
2782
2783 ev_stat_stat (EV_A_ w);
2784
2785 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2786 w->interval = MIN_STAT_INTERVAL;
2787
2788 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2789 ev_set_priority (&w->timer, ev_priority (w));
2790
2791#if EV_USE_INOTIFY
2792 infy_init (EV_A);
2793
2794 if (fs_fd >= 0)
2795 infy_add (EV_A_ w);
2796 else
2797#endif
2798 ev_timer_again (EV_A_ &w->timer);
2799
2800 ev_start (EV_A_ (W)w, 1);
2801
2802 EV_FREQUENT_CHECK;
2803}
2804
2805void
2806ev_stat_stop (EV_P_ ev_stat *w)
2807{
2808 clear_pending (EV_A_ (W)w);
2809 if (expect_false (!ev_is_active (w)))
2810 return;
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_INOTIFY
2815 infy_del (EV_A_ w);
2816#endif
2817 ev_timer_stop (EV_A_ &w->timer);
2818
2819 ev_stop (EV_A_ (W)w);
2820
2821 EV_FREQUENT_CHECK;
2822}
2823#endif
2824
2825#if EV_IDLE_ENABLE
2826void
2827ev_idle_start (EV_P_ ev_idle *w)
2828{
2829 if (expect_false (ev_is_active (w)))
2830 return;
2831
2832 pri_adjust (EV_A_ (W)w);
2833
2834 EV_FREQUENT_CHECK;
2835
2836 {
2837 int active = ++idlecnt [ABSPRI (w)];
2838
2839 ++idleall;
2840 ev_start (EV_A_ (W)w, active);
2841
2842 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2843 idles [ABSPRI (w)][active - 1] = w;
2844 }
2845
2846 EV_FREQUENT_CHECK;
2847}
2848
2849void
2850ev_idle_stop (EV_P_ ev_idle *w)
2851{
2852 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w)))
2854 return;
2855
2856 EV_FREQUENT_CHECK;
2857
2858 {
2859 int active = ev_active (w);
2860
2861 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2862 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2863
2864 ev_stop (EV_A_ (W)w);
2865 --idleall;
2866 }
2867
2868 EV_FREQUENT_CHECK;
2869}
2870#endif
2871
2872void
2873ev_prepare_start (EV_P_ ev_prepare *w)
2874{
2875 if (expect_false (ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 ev_start (EV_A_ (W)w, ++preparecnt);
2881 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2882 prepares [preparecnt - 1] = w;
2883
2884 EV_FREQUENT_CHECK;
2885}
2886
2887void
2888ev_prepare_stop (EV_P_ ev_prepare *w)
2889{
2890 clear_pending (EV_A_ (W)w);
2891 if (expect_false (!ev_is_active (w)))
2892 return;
2893
2894 EV_FREQUENT_CHECK;
2895
2896 {
2897 int active = ev_active (w);
2898
2899 prepares [active - 1] = prepares [--preparecnt];
2900 ev_active (prepares [active - 1]) = active;
2901 }
2902
2903 ev_stop (EV_A_ (W)w);
2904
2905 EV_FREQUENT_CHECK;
2906}
2907
2908void
2909ev_check_start (EV_P_ ev_check *w)
2910{
2911 if (expect_false (ev_is_active (w)))
2912 return;
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++checkcnt);
2917 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2918 checks [checkcnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_check_stop (EV_P_ ev_check *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 checks [active - 1] = checks [--checkcnt];
2936 ev_active (checks [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944#if EV_EMBED_ENABLE
2945void noinline
2946ev_embed_sweep (EV_P_ ev_embed *w)
2947{
2948 ev_loop (w->other, EVLOOP_NONBLOCK);
2949}
2950
2951static void
2952embed_io_cb (EV_P_ ev_io *io, int revents)
2953{
2954 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2955
2956 if (ev_cb (w))
2957 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2958 else
2959 ev_loop (w->other, EVLOOP_NONBLOCK);
2960}
2961
2962static void
2963embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2964{
2965 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2966
2967 {
2968 struct ev_loop *loop = w->other;
2969
2970 while (fdchangecnt)
2971 {
2972 fd_reify (EV_A);
2973 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2974 }
2975 }
2976}
2977
2978static void
2979embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2980{
2981 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2982
2983 ev_embed_stop (EV_A_ w);
2984
2985 {
2986 struct ev_loop *loop = w->other;
2987
2988 ev_loop_fork (EV_A);
2989 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2990 }
2991
2992 ev_embed_start (EV_A_ w);
2993}
2994
2995#if 0
2996static void
2997embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2998{
2999 ev_idle_stop (EV_A_ idle);
3000}
3001#endif
3002
3003void
3004ev_embed_start (EV_P_ ev_embed *w)
3005{
3006 if (expect_false (ev_is_active (w)))
3007 return;
3008
3009 {
3010 struct ev_loop *loop = w->other;
3011 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3012 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3013 }
3014
3015 EV_FREQUENT_CHECK;
3016
3017 ev_set_priority (&w->io, ev_priority (w));
3018 ev_io_start (EV_A_ &w->io);
3019
3020 ev_prepare_init (&w->prepare, embed_prepare_cb);
3021 ev_set_priority (&w->prepare, EV_MINPRI);
3022 ev_prepare_start (EV_A_ &w->prepare);
3023
3024 ev_fork_init (&w->fork, embed_fork_cb);
3025 ev_fork_start (EV_A_ &w->fork);
3026
3027 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3028
3029 ev_start (EV_A_ (W)w, 1);
3030
3031 EV_FREQUENT_CHECK;
3032}
3033
3034void
3035ev_embed_stop (EV_P_ ev_embed *w)
3036{
3037 clear_pending (EV_A_ (W)w);
3038 if (expect_false (!ev_is_active (w)))
3039 return;
3040
3041 EV_FREQUENT_CHECK;
3042
3043 ev_io_stop (EV_A_ &w->io);
3044 ev_prepare_stop (EV_A_ &w->prepare);
3045 ev_fork_stop (EV_A_ &w->fork);
3046
3047 EV_FREQUENT_CHECK;
3048}
3049#endif
3050
3051#if EV_FORK_ENABLE
3052void
3053ev_fork_start (EV_P_ ev_fork *w)
3054{
3055 if (expect_false (ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 ev_start (EV_A_ (W)w, ++forkcnt);
3061 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3062 forks [forkcnt - 1] = w;
3063
3064 EV_FREQUENT_CHECK;
3065}
3066
3067void
3068ev_fork_stop (EV_P_ ev_fork *w)
3069{
3070 clear_pending (EV_A_ (W)w);
3071 if (expect_false (!ev_is_active (w)))
3072 return;
3073
3074 EV_FREQUENT_CHECK;
3075
3076 {
3077 int active = ev_active (w);
3078
3079 forks [active - 1] = forks [--forkcnt];
3080 ev_active (forks [active - 1]) = active;
3081 }
3082
3083 ev_stop (EV_A_ (W)w);
3084
3085 EV_FREQUENT_CHECK;
3086}
3087#endif
3088
3089#if EV_ASYNC_ENABLE
3090void
3091ev_async_start (EV_P_ ev_async *w)
3092{
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 evpipe_init (EV_A);
3097
3098 EV_FREQUENT_CHECK;
3099
3100 ev_start (EV_A_ (W)w, ++asynccnt);
3101 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3102 asyncs [asynccnt - 1] = w;
3103
3104 EV_FREQUENT_CHECK;
3105}
3106
3107void
3108ev_async_stop (EV_P_ ev_async *w)
3109{
3110 clear_pending (EV_A_ (W)w);
3111 if (expect_false (!ev_is_active (w)))
3112 return;
3113
3114 EV_FREQUENT_CHECK;
3115
3116 {
3117 int active = ev_active (w);
3118
3119 asyncs [active - 1] = asyncs [--asynccnt];
3120 ev_active (asyncs [active - 1]) = active;
3121 }
3122
3123 ev_stop (EV_A_ (W)w);
3124
3125 EV_FREQUENT_CHECK;
3126}
3127
3128void
3129ev_async_send (EV_P_ ev_async *w)
3130{
3131 w->sent = 1;
3132 evpipe_write (EV_A_ &gotasync);
3133}
3134#endif
1381 3135
1382/*****************************************************************************/ 3136/*****************************************************************************/
1383 3137
1384struct ev_once 3138struct ev_once
1385{ 3139{
1386 struct ev_io io; 3140 ev_io io;
1387 struct ev_timer to; 3141 ev_timer to;
1388 void (*cb)(int revents, void *arg); 3142 void (*cb)(int revents, void *arg);
1389 void *arg; 3143 void *arg;
1390}; 3144};
1391 3145
1392static void 3146static void
1393once_cb (EV_P_ struct ev_once *once, int revents) 3147once_cb (EV_P_ struct ev_once *once, int revents)
1394{ 3148{
1395 void (*cb)(int revents, void *arg) = once->cb; 3149 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 3150 void *arg = once->arg;
1397 3151
1398 ev_io_stop (EV_A_ &once->io); 3152 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 3153 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 3154 ev_free (once);
1401 3155
1402 cb (revents, arg); 3156 cb (revents, arg);
1403} 3157}
1404 3158
1405static void 3159static void
1406once_cb_io (EV_P_ struct ev_io *w, int revents) 3160once_cb_io (EV_P_ ev_io *w, int revents)
1407{ 3161{
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3162 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3163
3164 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1409} 3165}
1410 3166
1411static void 3167static void
1412once_cb_to (EV_P_ struct ev_timer *w, int revents) 3168once_cb_to (EV_P_ ev_timer *w, int revents)
1413{ 3169{
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3170 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3171
3172 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1415} 3173}
1416 3174
1417void 3175void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3176ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 3177{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 3178 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 3179
1422 if (!once) 3180 if (expect_false (!once))
3181 {
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3182 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 3183 return;
1425 { 3184 }
3185
1426 once->cb = cb; 3186 once->cb = cb;
1427 once->arg = arg; 3187 once->arg = arg;
1428 3188
1429 ev_watcher_init (&once->io, once_cb_io); 3189 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 3190 if (fd >= 0)
3191 {
3192 ev_io_set (&once->io, fd, events);
3193 ev_io_start (EV_A_ &once->io);
3194 }
3195
3196 ev_init (&once->to, once_cb_to);
3197 if (timeout >= 0.)
3198 {
3199 ev_timer_set (&once->to, timeout, 0.);
3200 ev_timer_start (EV_A_ &once->to);
3201 }
3202}
3203
3204/*****************************************************************************/
3205
3206#if 0
3207void
3208ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3209{
3210 int i, j;
3211 ev_watcher_list *wl, *wn;
3212
3213 if (types & (EV_IO | EV_EMBED))
3214 for (i = 0; i < anfdmax; ++i)
3215 for (wl = anfds [i].head; wl; )
1431 { 3216 {
1432 ev_io_set (&once->io, fd, events); 3217 wn = wl->next;
1433 ev_io_start (EV_A_ &once->io); 3218
3219#if EV_EMBED_ENABLE
3220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3221 {
3222 if (types & EV_EMBED)
3223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3224 }
3225 else
3226#endif
3227#if EV_USE_INOTIFY
3228 if (ev_cb ((ev_io *)wl) == infy_cb)
3229 ;
3230 else
3231#endif
3232 if ((ev_io *)wl != &pipeev)
3233 if (types & EV_IO)
3234 cb (EV_A_ EV_IO, wl);
3235
3236 wl = wn;
1434 } 3237 }
1435 3238
1436 ev_watcher_init (&once->to, once_cb_to); 3239 if (types & (EV_TIMER | EV_STAT))
1437 if (timeout >= 0.) 3240 for (i = timercnt + HEAP0; i-- > HEAP0; )
3241#if EV_STAT_ENABLE
3242 /*TODO: timer is not always active*/
3243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1438 { 3244 {
1439 ev_timer_set (&once->to, timeout, 0.); 3245 if (types & EV_STAT)
1440 ev_timer_start (EV_A_ &once->to); 3246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1441 } 3247 }
1442 } 3248 else
1443} 3249#endif
3250 if (types & EV_TIMER)
3251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1444 3252
3253#if EV_PERIODIC_ENABLE
3254 if (types & EV_PERIODIC)
3255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3257#endif
3258
3259#if EV_IDLE_ENABLE
3260 if (types & EV_IDLE)
3261 for (j = NUMPRI; i--; )
3262 for (i = idlecnt [j]; i--; )
3263 cb (EV_A_ EV_IDLE, idles [j][i]);
3264#endif
3265
3266#if EV_FORK_ENABLE
3267 if (types & EV_FORK)
3268 for (i = forkcnt; i--; )
3269 if (ev_cb (forks [i]) != embed_fork_cb)
3270 cb (EV_A_ EV_FORK, forks [i]);
3271#endif
3272
3273#if EV_ASYNC_ENABLE
3274 if (types & EV_ASYNC)
3275 for (i = asynccnt; i--; )
3276 cb (EV_A_ EV_ASYNC, asyncs [i]);
3277#endif
3278
3279 if (types & EV_PREPARE)
3280 for (i = preparecnt; i--; )
3281#if EV_EMBED_ENABLE
3282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3283#endif
3284 cb (EV_A_ EV_PREPARE, prepares [i]);
3285
3286 if (types & EV_CHECK)
3287 for (i = checkcnt; i--; )
3288 cb (EV_A_ EV_CHECK, checks [i]);
3289
3290 if (types & EV_SIGNAL)
3291 for (i = 0; i < signalmax; ++i)
3292 for (wl = signals [i].head; wl; )
3293 {
3294 wn = wl->next;
3295 cb (EV_A_ EV_SIGNAL, wl);
3296 wl = wn;
3297 }
3298
3299 if (types & EV_CHILD)
3300 for (i = EV_PID_HASHSIZE; i--; )
3301 for (wl = childs [i]; wl; )
3302 {
3303 wn = wl->next;
3304 cb (EV_A_ EV_CHILD, wl);
3305 wl = wn;
3306 }
3307/* EV_STAT 0x00001000 /* stat data changed */
3308/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3309}
3310#endif
3311
3312#if EV_MULTIPLICITY
3313 #include "ev_wrap.h"
3314#endif
3315
3316#ifdef __cplusplus
3317}
3318#endif
3319

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines