ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.329 by root, Tue Feb 16 09:32:39 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
37# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
38 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
41# endif 95# endif
96# endif
42 97
98# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
45# endif 103# endif
46 104# endif
105
106# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
49# endif 111# endif
50 112# endif
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
52# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
53# endif 119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
55#endif 154#endif
56 155
57#include <math.h> 156#include <math.h>
58#include <stdlib.h> 157#include <stdlib.h>
59#include <unistd.h> 158#include <string.h>
60#include <fcntl.h> 159#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 160#include <stddef.h>
63 161
64#include <stdio.h> 162#include <stdio.h>
65 163
66#include <assert.h> 164#include <assert.h>
67#include <errno.h> 165#include <errno.h>
68#include <sys/types.h> 166#include <sys/types.h>
167#include <time.h>
168#include <limits.h>
169
170#include <signal.h>
171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
69#ifndef WIN32 178#ifndef _WIN32
179# include <sys/time.h>
70# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
182#else
183# include <io.h>
184# define WIN32_LEAN_AND_MEAN
185# include <windows.h>
186# ifndef EV_SELECT_IS_WINSOCKET
187# define EV_SELECT_IS_WINSOCKET 1
71#endif 188# endif
72#include <sys/time.h> 189#endif
73#include <time.h>
74 190
75/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
76 227
77#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 230# define EV_USE_MONOTONIC 1
231# else
232# define EV_USE_MONOTONIC 0
233# endif
234#endif
235
236#ifndef EV_USE_REALTIME
237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
245# endif
79#endif 246#endif
80 247
81#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
83#endif 250#endif
84 251
85#ifndef EV_USE_POLL 252#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 253# ifdef _WIN32
254# define EV_USE_POLL 0
255# else
256# define EV_USE_POLL 1
257# endif
87#endif 258#endif
88 259
89#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
90# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
91#endif 266#endif
92 267
93#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
95#endif 270#endif
96 271
272#ifndef EV_USE_PORT
273# define EV_USE_PORT 0
274#endif
275
97#ifndef EV_USE_WIN32 276#ifndef EV_USE_INOTIFY
98# ifdef WIN32 277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 278# define EV_USE_INOTIFY 1
100# else 279# else
101# define EV_USE_WIN32 0 280# define EV_USE_INOTIFY 0
102# endif
103#endif 281# endif
282#endif
104 283
105#ifndef EV_USE_REALTIME 284#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 285# if EV_MINIMAL
286# define EV_PID_HASHSIZE 1
287# else
288# define EV_PID_HASHSIZE 16
107#endif 289# endif
290#endif
108 291
109/**/ 292#ifndef EV_INOTIFY_HASHSIZE
293# if EV_MINIMAL
294# define EV_INOTIFY_HASHSIZE 1
295# else
296# define EV_INOTIFY_HASHSIZE 16
297# endif
298#endif
299
300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
110 355
111#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
114#endif 359#endif
116#ifndef CLOCK_REALTIME 361#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 362# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 363# define EV_USE_REALTIME 0
119#endif 364#endif
120 365
366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
388#if EV_SELECT_IS_WINSOCKET
389# include <winsock.h>
390#endif
391
392#if EV_USE_EVENTFD
393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int (eventfd) (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
121/**/ 443/**/
122 444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
460
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 463
128#include "ev.h"
129
130#if __GNUC__ >= 3 464#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 466# define noinline __attribute__ ((noinline))
133#else 467#else
134# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
135# define inline static 469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
136#endif 473#endif
137 474
138#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
140 478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
143 492
493#define EMPTY /* required for microsofts broken pseudo-c compiler */
494#define EMPTY2(a,b) /* used to suppress some warnings */
495
144typedef struct ev_watcher *W; 496typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
147 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
149 512
150#if WIN32 513#ifndef EV_FD_TO_WIN32_HANDLE
151/* note: the comment below could not be substantiated, but what would I care */ 514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
152/* MSDN says this is required to handle SIGFPE */ 515#endif
153volatile double SIGFPE_REQ = 0.0f; 516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
522
523#ifdef _WIN32
524# include "ev_win32.c"
154#endif 525#endif
155 526
156/*****************************************************************************/ 527/*****************************************************************************/
157 528
529static void (*syserr_cb)(const char *msg);
530
531void
532ev_set_syserr_cb (void (*cb)(const char *msg))
533{
534 syserr_cb = cb;
535}
536
537static void noinline
538ev_syserr (const char *msg)
539{
540 if (!msg)
541 msg = "(libev) system error";
542
543 if (syserr_cb)
544 syserr_cb (msg);
545 else
546 {
547 perror (msg);
548 abort ();
549 }
550}
551
552static void *
553ev_realloc_emul (void *ptr, long size)
554{
555 /* some systems, notably openbsd and darwin, fail to properly
556 * implement realloc (x, 0) (as required by both ansi c-98 and
557 * the single unix specification, so work around them here.
558 */
559
560 if (size)
561 return realloc (ptr, size);
562
563 free (ptr);
564 return 0;
565}
566
567static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
568
569void
570ev_set_allocator (void *(*cb)(void *ptr, long size))
571{
572 alloc = cb;
573}
574
575inline_speed void *
576ev_realloc (void *ptr, long size)
577{
578 ptr = alloc (ptr, size);
579
580 if (!ptr && size)
581 {
582 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
583 abort ();
584 }
585
586 return ptr;
587}
588
589#define ev_malloc(size) ev_realloc (0, (size))
590#define ev_free(ptr) ev_realloc ((ptr), 0)
591
592/*****************************************************************************/
593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
158typedef struct 598typedef struct
159{ 599{
160 WL head; 600 WL head;
161 unsigned char events; 601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
162 unsigned char reify; 604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
608#if EV_SELECT_IS_WINSOCKET
609 SOCKET handle;
610#endif
163} ANFD; 611} ANFD;
164 612
613/* stores the pending event set for a given watcher */
165typedef struct 614typedef struct
166{ 615{
167 W w; 616 W w;
168 int events; 617 int events; /* the pending event set for the given watcher */
169} ANPENDING; 618} ANPENDING;
170 619
620#if EV_USE_INOTIFY
621/* hash table entry per inotify-id */
622typedef struct
623{
624 WL head;
625} ANFS;
626#endif
627
628/* Heap Entry */
629#if EV_HEAP_CACHE_AT
630 /* a heap element */
631 typedef struct {
632 ev_tstamp at;
633 WT w;
634 } ANHE;
635
636 #define ANHE_w(he) (he).w /* access watcher, read-write */
637 #define ANHE_at(he) (he).at /* access cached at, read-only */
638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
639#else
640 /* a heap element */
641 typedef WT ANHE;
642
643 #define ANHE_w(he) (he)
644 #define ANHE_at(he) (he)->at
645 #define ANHE_at_cache(he)
646#endif
647
171#if EV_MULTIPLICITY 648#if EV_MULTIPLICITY
172 649
173struct ev_loop 650 struct ev_loop
174{ 651 {
652 ev_tstamp ev_rt_now;
653 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 654 #define VAR(name,decl) decl;
176# include "ev_vars.h" 655 #include "ev_vars.h"
177};
178# undef VAR 656 #undef VAR
657 };
179# include "ev_wrap.h" 658 #include "ev_wrap.h"
659
660 static struct ev_loop default_loop_struct;
661 struct ev_loop *ev_default_loop_ptr;
180 662
181#else 663#else
182 664
665 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 666 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 667 #include "ev_vars.h"
185# undef VAR 668 #undef VAR
186 669
670 static int ev_default_loop_ptr;
671
187#endif 672#endif
673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
188 685
189/*****************************************************************************/ 686/*****************************************************************************/
190 687
191inline ev_tstamp 688#ifndef EV_HAVE_EV_TIME
689ev_tstamp
192ev_time (void) 690ev_time (void)
193{ 691{
194#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
195 struct timespec ts; 695 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
197 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
198#else 698 }
699#endif
700
199 struct timeval tv; 701 struct timeval tv;
200 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif
203} 704}
705#endif
204 706
205inline ev_tstamp 707inline_size ev_tstamp
206get_clock (void) 708get_clock (void)
207{ 709{
208#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
210 { 712 {
215#endif 717#endif
216 718
217 return ev_time (); 719 return ev_time ();
218} 720}
219 721
722#if EV_MULTIPLICITY
220ev_tstamp 723ev_tstamp
221ev_now (EV_P) 724ev_now (EV_P)
222{ 725{
223 return rt_now; 726 return ev_rt_now;
224} 727}
728#endif
225 729
226#define array_roundsize(base,n) ((n) | 4 & ~3) 730void
731ev_sleep (ev_tstamp delay)
732{
733 if (delay > 0.)
734 {
735#if EV_USE_NANOSLEEP
736 struct timespec ts;
227 737
738 ts.tv_sec = (time_t)delay;
739 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
740
741 nanosleep (&ts, 0);
742#elif defined(_WIN32)
743 Sleep ((unsigned long)(delay * 1e3));
744#else
745 struct timeval tv;
746
747 tv.tv_sec = (time_t)delay;
748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
753 select (0, 0, 0, 0, &tv);
754#endif
755 }
756}
757
758/*****************************************************************************/
759
760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
761
762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
765array_nextsize (int elem, int cur, int cnt)
766{
767 int ncur = cur + 1;
768
769 do
770 ncur <<= 1;
771 while (cnt > ncur);
772
773 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
774 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
775 {
776 ncur *= elem;
777 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
778 ncur = ncur - sizeof (void *) * 4;
779 ncur /= elem;
780 }
781
782 return ncur;
783}
784
785static noinline void *
786array_realloc (int elem, void *base, int *cur, int cnt)
787{
788 *cur = array_nextsize (elem, *cur, cnt);
789 return ev_realloc (base, elem * *cur);
790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
794
228#define array_needsize(base,cur,cnt,init) \ 795#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 796 if (expect_false ((cnt) > (cur))) \
230 { \ 797 { \
231 int newcnt = cur; \ 798 int ocur_ = (cur); \
232 do \ 799 (base) = (type *)array_realloc \
233 { \ 800 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 801 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 802 }
242 803
804#if 0
243#define array_slim(stem) \ 805#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 806 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 807 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 808 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 809 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 811 }
812#endif
250 813
251#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
253 816
254/*****************************************************************************/ 817/*****************************************************************************/
255 818
256static void 819/* dummy callback for pending events */
257anfds_init (ANFD *base, int count) 820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
258{ 822{
259 while (count--) 823}
260 {
261 base->head = 0;
262 base->events = EV_NONE;
263 base->reify = 0;
264 824
265 ++base; 825void noinline
826ev_feed_event (EV_P_ void *w, int revents)
827{
828 W w_ = (W)w;
829 int pri = ABSPRI (w_);
830
831 if (expect_false (w_->pending))
832 pendings [pri][w_->pending - 1].events |= revents;
833 else
266 } 834 {
267} 835 w_->pending = ++pendingcnt [pri];
268 836 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
269static void 837 pendings [pri][w_->pending - 1].w = w_;
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 838 pendings [pri][w_->pending - 1].events = revents;
275 return;
276 } 839 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282} 840}
283 841
284static void 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
285queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 859{
287 int i; 860 int i;
288 861
289 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
291} 864}
292 865
293static void 866/*****************************************************************************/
867
868inline_speed void
294fd_event (EV_P_ int fd, int events) 869fd_event_nc (EV_P_ int fd, int revents)
295{ 870{
296 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 872 ev_io *w;
298 873
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 875 {
301 int ev = w->events & events; 876 int ev = w->events & revents;
302 877
303 if (ev) 878 if (ev)
304 event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
305 } 880 }
306} 881}
307 882
308/*****************************************************************************/ 883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
309 889
310static void 890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
894void
895ev_feed_fd_event (EV_P_ int fd, int revents)
896{
897 if (fd >= 0 && fd < anfdmax)
898 fd_event_nc (EV_A_ fd, revents);
899}
900
901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
311fd_reify (EV_P) 904fd_reify (EV_P)
312{ 905{
313 int i; 906 int i;
314 907
315 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
316 { 909 {
317 int fd = fdchanges [i]; 910 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 911 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 912 ev_io *w;
320 913
321 int events = 0; 914 unsigned char events = 0;
322 915
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 916 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
324 events |= w->events; 917 events |= (unsigned char)w->events;
325 918
919#if EV_SELECT_IS_WINSOCKET
920 if (events)
921 {
922 unsigned long arg;
923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
925 }
926#endif
927
928 {
929 unsigned char o_events = anfd->events;
930 unsigned char o_reify = anfd->reify;
931
326 anfd->reify = 0; 932 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 933 anfd->events = events;
934
935 if (o_events != events || o_reify & EV__IOFDSET)
936 backend_modify (EV_A_ fd, o_events, events);
937 }
330 } 938 }
331 939
332 fdchangecnt = 0; 940 fdchangecnt = 0;
333} 941}
334 942
335static void 943/* something about the given fd changed */
944inline_size void
336fd_change (EV_P_ int fd) 945fd_change (EV_P_ int fd, int flags)
337{ 946{
338 if (anfds [fd].reify || fdchangecnt < 0) 947 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 948 anfds [fd].reify |= flags;
342 949
950 if (expect_true (!reify))
951 {
343 ++fdchangecnt; 952 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
955 }
346} 956}
347 957
348static void 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
349fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
350{ 961{
351 struct ev_io *w; 962 ev_io *w;
352 963
353 while ((w = (struct ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
354 { 965 {
355 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 968 }
969}
970
971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
973fd_valid (int fd)
974{
975#ifdef _WIN32
976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
977#else
978 return fcntl (fd, F_GETFD) != -1;
979#endif
358} 980}
359 981
360/* called on EBADF to verify fds */ 982/* called on EBADF to verify fds */
361static void 983static void noinline
362fd_ebadf (EV_P) 984fd_ebadf (EV_P)
363{ 985{
364 int fd; 986 int fd;
365 987
366 for (fd = 0; fd < anfdmax; ++fd) 988 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 989 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 990 if (!fd_valid (fd) && errno == EBADF)
369 fd_kill (EV_A_ fd); 991 fd_kill (EV_A_ fd);
370} 992}
371 993
372/* called on ENOMEM in select/poll to kill some fds and retry */ 994/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 995static void noinline
374fd_enomem (EV_P) 996fd_enomem (EV_P)
375{ 997{
376 int fd; 998 int fd;
377 999
378 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 1001 if (anfds [fd].events)
380 { 1002 {
381 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
382 return; 1004 break;
383 } 1005 }
384} 1006}
385 1007
386/* susually called after fork if method needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
387static void 1009static void noinline
388fd_rearm_all (EV_P) 1010fd_rearm_all (EV_P)
389{ 1011{
390 int fd; 1012 int fd;
391 1013
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events) 1015 if (anfds [fd].events)
395 { 1016 {
396 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
397 fd_change (EV_A_ fd); 1018 anfds [fd].emask = 0;
1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
398 } 1020 }
399} 1021}
400 1022
401/*****************************************************************************/ 1023/*****************************************************************************/
402 1024
1025/*
1026 * the heap functions want a real array index. array index 0 uis guaranteed to not
1027 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1028 * the branching factor of the d-tree.
1029 */
1030
1031/*
1032 * at the moment we allow libev the luxury of two heaps,
1033 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1034 * which is more cache-efficient.
1035 * the difference is about 5% with 50000+ watchers.
1036 */
1037#if EV_USE_4HEAP
1038
1039#define DHEAP 4
1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1042#define UPHEAP_DONE(p,k) ((p) == (k))
1043
1044/* away from the root */
1045inline_speed void
1046downheap (ANHE *heap, int N, int k)
1047{
1048 ANHE he = heap [k];
1049 ANHE *E = heap + N + HEAP0;
1050
1051 for (;;)
1052 {
1053 ev_tstamp minat;
1054 ANHE *minpos;
1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1056
1057 /* find minimum child */
1058 if (expect_true (pos + DHEAP - 1 < E))
1059 {
1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else if (pos < E)
1066 {
1067 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1068 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1069 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1070 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1071 }
1072 else
1073 break;
1074
1075 if (ANHE_at (he) <= minat)
1076 break;
1077
1078 heap [k] = *minpos;
1079 ev_active (ANHE_w (*minpos)) = k;
1080
1081 k = minpos - heap;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087
1088#else /* 4HEAP */
1089
1090#define HEAP0 1
1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099
1100 for (;;)
1101 {
1102 int c = k << 1;
1103
1104 if (c >= N + HEAP0)
1105 break;
1106
1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1108 ? 1 : 0;
1109
1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
1111 break;
1112
1113 heap [k] = heap [c];
1114 ev_active (ANHE_w (heap [k])) = k;
1115
1116 k = c;
1117 }
1118
1119 heap [k] = he;
1120 ev_active (ANHE_w (he)) = k;
1121}
1122#endif
1123
1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
1137 heap [k] = heap [p];
1138 ev_active (ANHE_w (heap [k])) = k;
1139 k = p;
1140 }
1141
1142 heap [k] = he;
1143 ev_active (ANHE_w (he)) = k;
1144}
1145
1146/* move an element suitably so it is in a correct place */
1147inline_size void
1148adjustheap (ANHE *heap, int N, int k)
1149{
1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1151 upheap (heap, k);
1152 else
1153 downheap (heap, N, k);
1154}
1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
1166}
1167
1168/*****************************************************************************/
1169
1170/* associate signal watchers to a signal signal */
1171typedef struct
1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
1177 WL head;
1178} ANSIG;
1179
1180static ANSIG signals [EV_NSIG - 1];
1181
1182/*****************************************************************************/
1183
1184/* used to prepare libev internal fd's */
1185/* this is not fork-safe */
1186inline_speed void
1187fd_intern (int fd)
1188{
1189#ifdef _WIN32
1190 unsigned long arg = 1;
1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1192#else
1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
1194 fcntl (fd, F_SETFL, O_NONBLOCK);
1195#endif
1196}
1197
1198static void noinline
1199evpipe_init (EV_P)
1200{
1201 if (!ev_is_active (&pipe_w))
1202 {
1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1209 {
1210 evpipe [0] = -1;
1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1212 ev_io_set (&pipe_w, evfd, EV_READ);
1213 }
1214 else
1215#endif
1216 {
1217 while (pipe (evpipe))
1218 ev_syserr ("(libev) error creating signal/async pipe");
1219
1220 fd_intern (evpipe [0]);
1221 fd_intern (evpipe [1]);
1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1223 }
1224
1225 ev_io_start (EV_A_ &pipe_w);
1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1227 }
1228}
1229
1230inline_size void
1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1232{
1233 if (!*flag)
1234 {
1235 int old_errno = errno; /* save errno because write might clobber it */
1236
1237 *flag = 1;
1238
1239#if EV_USE_EVENTFD
1240 if (evfd >= 0)
1241 {
1242 uint64_t counter = 1;
1243 write (evfd, &counter, sizeof (uint64_t));
1244 }
1245 else
1246#endif
1247 write (evpipe [1], &old_errno, 1);
1248
1249 errno = old_errno;
1250 }
1251}
1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
403static void 1255static void
404upheap (WT *heap, int k) 1256pipecb (EV_P_ ev_io *iow, int revents)
405{ 1257{
406 WT w = heap [k]; 1258 int i;
407 1259
408 while (k && heap [k >> 1]->at > w->at) 1260#if EV_USE_EVENTFD
409 { 1261 if (evfd >= 0)
410 heap [k] = heap [k >> 1];
411 ((W)heap [k])->active = k + 1;
412 k >>= 1;
413 } 1262 {
1263 uint64_t counter;
1264 read (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 {
1269 char dummy;
1270 read (evpipe [0], &dummy, 1);
1271 }
414 1272
415 heap [k] = w; 1273 if (sig_pending)
416 ((W)heap [k])->active = k + 1; 1274 {
1275 sig_pending = 0;
417 1276
1277 for (i = EV_NSIG - 1; i--; )
1278 if (expect_false (signals [i].pending))
1279 ev_feed_signal_event (EV_A_ i + 1);
1280 }
1281
1282#if EV_ASYNC_ENABLE
1283 if (async_pending)
1284 {
1285 async_pending = 0;
1286
1287 for (i = asynccnt; i--; )
1288 if (asyncs [i]->sent)
1289 {
1290 asyncs [i]->sent = 0;
1291 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1292 }
1293 }
1294#endif
418} 1295}
1296
1297/*****************************************************************************/
419 1298
420static void 1299static void
421downheap (WT *heap, int N, int k) 1300ev_sighandler (int signum)
422{ 1301{
423 WT w = heap [k]; 1302#if EV_MULTIPLICITY
1303 EV_P = signals [signum - 1].loop;
1304#endif
424 1305
425 while (k < (N >> 1)) 1306#ifdef _WIN32
426 { 1307 signal (signum, ev_sighandler);
427 int j = k << 1; 1308#endif
428 1309
429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1310 signals [signum - 1].pending = 1;
430 ++j; 1311 evpipe_write (EV_A_ &sig_pending);
1312}
431 1313
432 if (w->at <= heap [j]->at) 1314void noinline
1315ev_feed_signal_event (EV_P_ int signum)
1316{
1317 WL w;
1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1324#if EV_MULTIPLICITY
1325 /* it is permissible to try to feed a signal to the wrong loop */
1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1327
1328 if (expect_false (signals [signum].loop != EV_A))
1329 return;
1330#endif
1331
1332 signals [signum].pending = 0;
1333
1334 for (w = signals [signum].head; w; w = w->next)
1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1336}
1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
433 break; 1353 break;
434
435 heap [k] = heap [j];
436 ((W)heap [k])->active = k + 1;
437 k = j;
438 } 1354 }
439
440 heap [k] = w;
441 ((W)heap [k])->active = k + 1;
442} 1355}
1356#endif
443 1357
444/*****************************************************************************/ 1358/*****************************************************************************/
445 1359
446typedef struct 1360static WL childs [EV_PID_HASHSIZE];
447{
448 WL head;
449 sig_atomic_t volatile gotsig;
450} ANSIG;
451 1361
452static ANSIG *signals;
453static int signalmax;
454
455static int sigpipe [2];
456static sig_atomic_t volatile gotsig;
457static struct ev_io sigev;
458
459static void
460signals_init (ANSIG *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->gotsig = 0;
466
467 ++base;
468 }
469}
470
471static void
472sighandler (int signum)
473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
478 signals [signum - 1].gotsig = 1;
479
480 if (!gotsig)
481 {
482 int old_errno = errno;
483 gotsig = 1;
484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
486 }
487}
488
489static void
490sigcb (EV_P_ struct ev_io *iow, int revents)
491{
492 WL w;
493 int signum;
494
495 read (sigpipe [0], &revents, 1);
496 gotsig = 0;
497
498 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig)
500 {
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506}
507
508static void
509siginit (EV_P)
510{
511#ifndef WIN32 1362#ifndef _WIN32
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514 1363
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519
520 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
523}
524
525/*****************************************************************************/
526
527#ifndef WIN32
528
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 1364static ev_signal childev;
1365
1366#ifndef WIFCONTINUED
1367# define WIFCONTINUED(status) 0
1368#endif
1369
1370/* handle a single child status event */
1371inline_speed void
1372child_reap (EV_P_ int chain, int pid, int status)
1373{
1374 ev_child *w;
1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1376
1377 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1378 {
1379 if ((w->pid == pid || !w->pid)
1380 && (!traced || (w->flags & 1)))
1381 {
1382 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1383 w->rpid = pid;
1384 w->rstatus = status;
1385 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1386 }
1387 }
1388}
531 1389
532#ifndef WCONTINUED 1390#ifndef WCONTINUED
533# define WCONTINUED 0 1391# define WCONTINUED 0
534#endif 1392#endif
535 1393
1394/* called on sigchld etc., calls waitpid */
536static void 1395static void
537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
538{
539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
553{ 1397{
554 int pid, status; 1398 int pid, status;
555 1399
1400 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1401 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 1402 if (!WCONTINUED
1403 || errno != EINVAL
1404 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1405 return;
1406
558 /* make sure we are called again until all childs have been reaped */ 1407 /* make sure we are called again until all children have been reaped */
1408 /* we need to do it this way so that the callback gets called before we continue */
559 event (EV_A_ (W)sw, EV_SIGNAL); 1409 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 1410
561 child_reap (EV_A_ sw, pid, pid, status); 1411 child_reap (EV_A_ pid, pid, status);
1412 if (EV_PID_HASHSIZE > 1)
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1413 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
563 }
564} 1414}
565 1415
566#endif 1416#endif
567 1417
568/*****************************************************************************/ 1418/*****************************************************************************/
569 1419
1420#if EV_USE_PORT
1421# include "ev_port.c"
1422#endif
570#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
571# include "ev_kqueue.c" 1424# include "ev_kqueue.c"
572#endif 1425#endif
573#if EV_USE_EPOLL 1426#if EV_USE_EPOLL
574# include "ev_epoll.c" 1427# include "ev_epoll.c"
591{ 1444{
592 return EV_VERSION_MINOR; 1445 return EV_VERSION_MINOR;
593} 1446}
594 1447
595/* return true if we are running with elevated privileges and should ignore env variables */ 1448/* return true if we are running with elevated privileges and should ignore env variables */
596static int 1449int inline_size
597enable_secure (void) 1450enable_secure (void)
598{ 1451{
599#ifdef WIN32 1452#ifdef _WIN32
600 return 0; 1453 return 0;
601#else 1454#else
602 return getuid () != geteuid () 1455 return getuid () != geteuid ()
603 || getgid () != getegid (); 1456 || getgid () != getegid ();
604#endif 1457#endif
605} 1458}
606 1459
607int 1460unsigned int
608ev_method (EV_P) 1461ev_supported_backends (void)
609{ 1462{
610 return method; 1463 unsigned int flags = 0;
611}
612 1464
613static void 1465 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
614loop_init (EV_P_ int methods) 1466 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1467 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1468 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1469 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1470
1471 return flags;
1472}
1473
1474unsigned int
1475ev_recommended_backends (void)
615{ 1476{
616 if (!method) 1477 unsigned int flags = ev_supported_backends ();
1478
1479#ifndef __NetBSD__
1480 /* kqueue is borked on everything but netbsd apparently */
1481 /* it usually doesn't work correctly on anything but sockets and pipes */
1482 flags &= ~EVBACKEND_KQUEUE;
1483#endif
1484#ifdef __APPLE__
1485 /* only select works correctly on that "unix-certified" platform */
1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1488#endif
1489
1490 return flags;
1491}
1492
1493unsigned int
1494ev_embeddable_backends (void)
1495{
1496 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1497
1498 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1499 /* please fix it and tell me how to detect the fix */
1500 flags &= ~EVBACKEND_EPOLL;
1501
1502 return flags;
1503}
1504
1505unsigned int
1506ev_backend (EV_P)
1507{
1508 return backend;
1509}
1510
1511#if EV_MINIMAL < 2
1512unsigned int
1513ev_loop_count (EV_P)
1514{
1515 return loop_count;
1516}
1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
1524void
1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1526{
1527 io_blocktime = interval;
1528}
1529
1530void
1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1532{
1533 timeout_blocktime = interval;
1534}
1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
1561static void noinline
1562loop_init (EV_P_ unsigned int flags)
1563{
1564 if (!backend)
617 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
618#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
1578 {
1579 struct timespec ts;
1580
1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1582 have_monotonic = 1;
1583 }
1584#endif
1585
1586 /* pid check not overridable via env */
1587#ifndef _WIN32
1588 if (flags & EVFLAG_FORKCHECK)
1589 curpid = getpid ();
1590#endif
1591
1592 if (!(flags & EVFLAG_NOENV)
1593 && !enable_secure ()
1594 && getenv ("LIBEV_FLAGS"))
1595 flags = atoi (getenv ("LIBEV_FLAGS"));
1596
1597 ev_rt_now = ev_time ();
1598 mn_now = get_clock ();
1599 now_floor = mn_now;
1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1604
1605 io_blocktime = 0.;
1606 timeout_blocktime = 0.;
1607 backend = 0;
1608 backend_fd = -1;
1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1613#if EV_USE_INOTIFY
1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1615#endif
1616#if EV_USE_SIGNALFD
1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1618#endif
1619
1620 if (!(flags & 0x0000ffffU))
1621 flags |= ev_recommended_backends ();
1622
1623#if EV_USE_PORT
1624 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1625#endif
1626#if EV_USE_KQUEUE
1627 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1628#endif
1629#if EV_USE_EPOLL
1630 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1631#endif
1632#if EV_USE_POLL
1633 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1634#endif
1635#if EV_USE_SELECT
1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1637#endif
1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
1641 ev_init (&pipe_w, pipecb);
1642 ev_set_priority (&pipe_w, EV_MAXPRI);
1643 }
1644}
1645
1646/* free up a loop structure */
1647static void noinline
1648loop_destroy (EV_P)
1649{
1650 int i;
1651
1652 if (ev_is_active (&pipe_w))
1653 {
1654 /*ev_ref (EV_A);*/
1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1656
1657#if EV_USE_EVENTFD
1658 if (evfd >= 0)
1659 close (evfd);
1660#endif
1661
1662 if (evpipe [0] >= 0)
1663 {
1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1666 }
1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
1673
1674#if EV_USE_INOTIFY
1675 if (fs_fd >= 0)
1676 close (fs_fd);
1677#endif
1678
1679 if (backend_fd >= 0)
1680 close (backend_fd);
1681
1682#if EV_USE_PORT
1683 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1684#endif
1685#if EV_USE_KQUEUE
1686 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1687#endif
1688#if EV_USE_EPOLL
1689 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1690#endif
1691#if EV_USE_POLL
1692 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1693#endif
1694#if EV_USE_SELECT
1695 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1696#endif
1697
1698 for (i = NUMPRI; i--; )
1699 {
1700 array_free (pending, [i]);
1701#if EV_IDLE_ENABLE
1702 array_free (idle, [i]);
1703#endif
1704 }
1705
1706 ev_free (anfds); anfds = 0; anfdmax = 0;
1707
1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
1710 array_free (fdchange, EMPTY);
1711 array_free (timer, EMPTY);
1712#if EV_PERIODIC_ENABLE
1713 array_free (periodic, EMPTY);
1714#endif
1715#if EV_FORK_ENABLE
1716 array_free (fork, EMPTY);
1717#endif
1718 array_free (prepare, EMPTY);
1719 array_free (check, EMPTY);
1720#if EV_ASYNC_ENABLE
1721 array_free (async, EMPTY);
1722#endif
1723
1724 backend = 0;
1725}
1726
1727#if EV_USE_INOTIFY
1728inline_size void infy_fork (EV_P);
1729#endif
1730
1731inline_size void
1732loop_fork (EV_P)
1733{
1734#if EV_USE_PORT
1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1736#endif
1737#if EV_USE_KQUEUE
1738 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1739#endif
1740#if EV_USE_EPOLL
1741 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1742#endif
1743#if EV_USE_INOTIFY
1744 infy_fork (EV_A);
1745#endif
1746
1747 if (ev_is_active (&pipe_w))
1748 {
1749 /* this "locks" the handlers against writing to the pipe */
1750 /* while we modify the fd vars */
1751 sig_pending = 1;
1752#if EV_ASYNC_ENABLE
1753 async_pending = 1;
1754#endif
1755
1756 ev_ref (EV_A);
1757 ev_io_stop (EV_A_ &pipe_w);
1758
1759#if EV_USE_EVENTFD
1760 if (evfd >= 0)
1761 close (evfd);
1762#endif
1763
1764 if (evpipe [0] >= 0)
1765 {
1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1768 }
1769
1770 evpipe_init (EV_A);
1771 /* now iterate over everything, in case we missed something */
1772 pipecb (EV_A_ &pipe_w, EV_READ);
1773 }
1774
1775 postfork = 0;
1776}
1777
1778#if EV_MULTIPLICITY
1779
1780struct ev_loop *
1781ev_loop_new (unsigned int flags)
1782{
1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1784
1785 memset (EV_A, 0, sizeof (struct ev_loop));
1786 loop_init (EV_A_ flags);
1787
1788 if (ev_backend (EV_A))
1789 return EV_A;
1790
1791 return 0;
1792}
1793
1794void
1795ev_loop_destroy (EV_P)
1796{
1797 loop_destroy (EV_A);
1798 ev_free (loop);
1799}
1800
1801void
1802ev_loop_fork (EV_P)
1803{
1804 postfork = 1; /* must be in line with ev_default_fork */
1805}
1806#endif /* multiplicity */
1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
619 { 1861 {
620 struct timespec ts; 1862 verify_watcher (EV_A_ (W)w);
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
622 have_monotonic = 1; 1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
623 } 1865 }
624#endif
625 1866
626 rt_now = ev_time (); 1867 assert (timermax >= timercnt);
627 mn_now = get_clock (); 1868 verify_heap (EV_A_ timers, timercnt);
628 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now;
630 1869
631 if (methods == EVMETHOD_AUTO) 1870#if EV_PERIODIC_ENABLE
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1871 assert (periodicmax >= periodiccnt);
633 methods = atoi (getenv ("LIBEV_METHODS")); 1872 verify_heap (EV_A_ periodics, periodiccnt);
634 else
635 methods = EVMETHOD_ANY;
636
637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
644#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646#endif
647#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif
650#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif
653 }
654}
655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif 1873#endif
676 1874
677 for (i = NUMPRI; i--; ) 1875 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
679 1884
680 array_free (fdchange, ); 1885#if EV_FORK_ENABLE
681 array_free (timer, ); 1886 assert (forkmax >= forkcnt);
682 array_free (periodic, ); 1887 array_verify (EV_A_ (W *)forks, forkcnt);
683 array_free (idle, ); 1888#endif
684 array_free (prepare, );
685 array_free (check, );
686 1889
687 method = 0; 1890#if EV_ASYNC_ENABLE
688 /*TODO*/ 1891 assert (asyncmax >= asynccnt);
689} 1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
690 1894
691void 1895 assert (preparemax >= preparecnt);
692loop_fork (EV_P) 1896 array_verify (EV_A_ (W *)prepares, preparecnt);
693{ 1897
694 /*TODO*/ 1898 assert (checkmax >= checkcnt);
695#if EV_USE_EPOLL 1899 array_verify (EV_A_ (W *)checks, checkcnt);
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
697#endif 1904# endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif 1905#endif
701} 1906}
1907#endif
702 1908
703#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
704struct ev_loop * 1910struct ev_loop *
705ev_loop_new (int methods) 1911ev_default_loop_init (unsigned int flags)
706{ 1912#else
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1913int
708 1914ev_default_loop (unsigned int flags)
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif 1915#endif
731 1916{
1917 if (!ev_default_loop_ptr)
1918 {
732#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else 1921#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1; 1922 ev_default_loop_ptr = 1;
754#endif 1923#endif
755 1924
756 loop_init (EV_A_ methods); 1925 loop_init (EV_A_ flags);
757 1926
758 if (ev_method (EV_A)) 1927 if (ev_backend (EV_A))
759 { 1928 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A);
763
764#ifndef WIN32 1929#ifndef _WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 1930 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 1931 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 1932 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1933 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 1934#endif
770 } 1935 }
771 else 1936 else
772 default_loop = 0; 1937 ev_default_loop_ptr = 0;
773 } 1938 }
774 1939
775 return default_loop; 1940 return ev_default_loop_ptr;
776} 1941}
777 1942
778void 1943void
779ev_default_destroy (void) 1944ev_default_destroy (void)
780{ 1945{
781#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 1947 EV_P = ev_default_loop_ptr;
783#endif 1948#endif
784 1949
1950 ev_default_loop_ptr = 0;
1951
1952#ifndef _WIN32
785 ev_ref (EV_A); /* child watcher */ 1953 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 1954 ev_signal_stop (EV_A_ &childev);
787 1955#endif
788 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793 1956
794 loop_destroy (EV_A); 1957 loop_destroy (EV_A);
795} 1958}
796 1959
797void 1960void
798ev_default_fork (void) 1961ev_default_fork (void)
799{ 1962{
800#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 1964 EV_P = ev_default_loop_ptr;
802#endif 1965#endif
803 1966
804 loop_fork (EV_A); 1967 postfork = 1; /* must be in line with ev_loop_fork */
805
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 1968}
814 1969
815/*****************************************************************************/ 1970/*****************************************************************************/
816 1971
817static void 1972void
818call_pending (EV_P) 1973ev_invoke (EV_P_ void *w, int revents)
1974{
1975 EV_CB_INVOKE ((W)w, revents);
1976}
1977
1978unsigned int
1979ev_pending_count (EV_P)
1980{
1981 int pri;
1982 unsigned int count = 0;
1983
1984 for (pri = NUMPRI; pri--; )
1985 count += pendingcnt [pri];
1986
1987 return count;
1988}
1989
1990void noinline
1991ev_invoke_pending (EV_P)
819{ 1992{
820 int pri; 1993 int pri;
821 1994
822 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
824 { 1997 {
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 1999
827 if (p->w) 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
828 { 2001 /* ^ this is no longer true, as pending_w could be here */
2002
829 p->w->pending = 0; 2003 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
831 } 2005 EV_FREQUENT_CHECK;
832 } 2006 }
833} 2007}
834 2008
835static void 2009#if EV_IDLE_ENABLE
2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
836timers_reify (EV_P) 2013idle_reify (EV_P)
837{ 2014{
838 while (timercnt && ((WT)timers [0])->at <= mn_now) 2015 if (expect_false (idleall))
839 { 2016 {
840 struct ev_timer *w = timers [0]; 2017 int pri;
841 2018
842 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2019 for (pri = NUMPRI; pri--; )
843
844 /* first reschedule or stop timer */
845 if (w->repeat)
846 { 2020 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2021 if (pendingcnt [pri])
848 ((WT)w)->at = mn_now + w->repeat; 2022 break;
849 downheap ((WT *)timers, timercnt, 0);
850 }
851 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 2023
854 event (EV_A_ (W)w, EV_TIMEOUT); 2024 if (idlecnt [pri])
855 }
856}
857
858static void
859periodics_reify (EV_P)
860{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
862 {
863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866
867 /* first reschedule or stop timer */
868 if (w->interval)
869 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0);
873 }
874 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876
877 event (EV_A_ (W)w, EV_PERIODIC);
878 }
879}
880
881static void
882periodics_reschedule (EV_P)
883{
884 int i;
885
886 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i)
888 {
889 struct ev_periodic *w = periodics [i];
890
891 if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 { 2025 {
897 ev_periodic_stop (EV_A_ w); 2026 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
898 ev_periodic_start (EV_A_ w); 2027 break;
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 } 2028 }
902 } 2029 }
903 } 2030 }
904} 2031}
2032#endif
905 2033
906inline int 2034/* make timers pending */
907time_update_monotonic (EV_P) 2035inline_size void
2036timers_reify (EV_P)
908{ 2037{
909 mn_now = get_clock (); 2038 EV_FREQUENT_CHECK;
910 2039
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 } 2041 {
916 else 2042 do
2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
2051 ev_at (w) += w->repeat;
2052 if (ev_at (w) < mn_now)
2053 ev_at (w) = mn_now;
2054
2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2056
2057 ANHE_at_cache (timers [HEAP0]);
2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
2065 }
2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2067
2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
917 { 2069 }
918 now_floor = mn_now; 2070}
919 rt_now = ev_time (); 2071
920 return 1; 2072#if EV_PERIODIC_ENABLE
2073/* make periodics pending */
2074inline_size void
2075periodics_reify (EV_P)
2076{
2077 EV_FREQUENT_CHECK;
2078
2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
921 } 2080 {
922} 2081 int feed_count = 0;
923 2082
924static void 2083 do
925time_update (EV_P) 2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2093
2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2095
2096 ANHE_at_cache (periodics [HEAP0]);
2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
2123 }
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2125
2126 feed_reverse_done (EV_A_ EV_PERIODIC);
2127 }
2128}
2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2132static void noinline
2133periodics_reschedule (EV_P)
926{ 2134{
927 int i; 2135 int i;
928 2136
2137 /* adjust periodics after time jump */
2138 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2139 {
2140 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2141
2142 if (w->reschedule_cb)
2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2144 else if (w->interval)
2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2146
2147 ANHE_at_cache (periodics [i]);
2148 }
2149
2150 reheap (periodics, periodiccnt);
2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
2166}
2167
2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
2171time_update (EV_P_ ev_tstamp max_block)
2172{
929#if EV_USE_MONOTONIC 2173#if EV_USE_MONOTONIC
930 if (expect_true (have_monotonic)) 2174 if (expect_true (have_monotonic))
931 { 2175 {
932 if (time_update_monotonic (EV_A)) 2176 int i;
2177 ev_tstamp odiff = rtmn_diff;
2178
2179 mn_now = get_clock ();
2180
2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2182 /* interpolate in the meantime */
2183 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
933 { 2184 {
934 ev_tstamp odiff = rtmn_diff; 2185 ev_rt_now = rtmn_diff + mn_now;
2186 return;
2187 }
935 2188
2189 now_floor = mn_now;
2190 ev_rt_now = ev_time ();
2191
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2192 /* loop a few times, before making important decisions.
2193 * on the choice of "4": one iteration isn't enough,
2194 * in case we get preempted during the calls to
2195 * ev_time and get_clock. a second call is almost guaranteed
2196 * to succeed in that case, though. and looping a few more times
2197 * doesn't hurt either as we only do this on time-jumps or
2198 * in the unlikely event of having been preempted here.
2199 */
2200 for (i = 4; --i; )
937 { 2201 {
938 rtmn_diff = rt_now - mn_now; 2202 rtmn_diff = ev_rt_now - mn_now;
939 2203
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2204 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
941 return; /* all is well */ 2205 return; /* all is well */
942 2206
943 rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 2208 mn_now = get_clock ();
945 now_floor = mn_now; 2209 now_floor = mn_now;
946 } 2210 }
947 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2214# if EV_PERIODIC_ENABLE
2215 periodics_reschedule (EV_A);
2216# endif
2217 }
2218 else
2219#endif
2220 {
2221 ev_rt_now = ev_time ();
2222
2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2227#if EV_PERIODIC_ENABLE
948 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 2229#endif
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 2230 }
952 }
953 else
954#endif
955 {
956 rt_now = ev_time ();
957 2231
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 {
960 periodics_reschedule (EV_A);
961
962 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now;
965 }
966
967 mn_now = rt_now; 2232 mn_now = ev_rt_now;
968 } 2233 }
969} 2234}
970
971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984 2235
985void 2236void
986ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
987{ 2238{
988 double block; 2239#if EV_MINIMAL < 2
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2240 ++loop_depth;
2241#endif
2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
2245 loop_done = EVUNLOOP_CANCEL;
2246
2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
990 2248
991 do 2249 do
992 { 2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
2255#ifndef _WIN32
2256 if (expect_false (curpid)) /* penalise the forking check even more */
2257 if (expect_false (getpid () != curpid))
2258 {
2259 curpid = getpid ();
2260 postfork = 1;
2261 }
2262#endif
2263
2264#if EV_FORK_ENABLE
2265 /* we might have forked, so queue fork handlers */
2266 if (expect_false (postfork))
2267 if (forkcnt)
2268 {
2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2270 EV_INVOKE_PENDING;
2271 }
2272#endif
2273
993 /* queue check watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
994 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
995 { 2276 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
998 } 2279 }
2280
2281 if (expect_false (loop_done))
2282 break;
2283
2284 /* we might have forked, so reify kernel state if necessary */
2285 if (expect_false (postfork))
2286 loop_fork (EV_A);
999 2287
1000 /* update fd-related kernel structures */ 2288 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 2289 fd_reify (EV_A);
1002 2290
1003 /* calculate blocking time */ 2291 /* calculate blocking time */
2292 {
2293 ev_tstamp waittime = 0.;
2294 ev_tstamp sleeptime = 0.;
1004 2295
1005 /* we only need this for !monotonic clockor timers, but as we basically 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1006 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A);
1010 else
1011#endif
1012 { 2297 {
1013 rt_now = ev_time (); 2298 /* remember old timestamp for io_blocktime calculation */
1014 mn_now = rt_now; 2299 ev_tstamp prev_mn_now = mn_now;
1015 }
1016 2300
1017 if (flags & EVLOOP_NONBLOCK || idlecnt) 2301 /* update time to cancel out callback processing overhead */
1018 block = 0.; 2302 time_update (EV_A_ 1e100);
1019 else 2303
1020 {
1021 block = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
1022 2305
1023 if (timercnt) 2306 if (timercnt)
1024 { 2307 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2308 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1026 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1027 } 2310 }
1028 2311
2312#if EV_PERIODIC_ENABLE
1029 if (periodiccnt) 2313 if (periodiccnt)
1030 { 2314 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1032 if (block > to) block = to; 2316 if (waittime > to) waittime = to;
1033 } 2317 }
2318#endif
1034 2319
1035 if (block < 0.) block = 0.; 2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
2321 if (expect_false (waittime < timeout_blocktime))
2322 waittime = timeout_blocktime;
2323
2324 /* extra check because io_blocktime is commonly 0 */
2325 if (expect_false (io_blocktime))
2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
2334 ev_sleep (sleeptime);
2335 waittime -= sleeptime;
2336 }
2337 }
1036 } 2338 }
1037 2339
1038 method_poll (EV_A_ block); 2340#if EV_MINIMAL < 2
2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1039 2346
1040 /* update rt_now, do magic */ 2347 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 2348 time_update (EV_A_ waittime + sleeptime);
2349 }
1042 2350
1043 /* queue pending timers and reschedule them */ 2351 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 2352 timers_reify (EV_A); /* relative timers called last */
2353#if EV_PERIODIC_ENABLE
1045 periodics_reify (EV_A); /* absolute timers called first */ 2354 periodics_reify (EV_A); /* absolute timers called first */
2355#endif
1046 2356
2357#if EV_IDLE_ENABLE
1047 /* queue idle watchers unless io or timers are pending */ 2358 /* queue idle watchers unless other events are pending */
1048 if (!pendingcnt) 2359 idle_reify (EV_A);
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2360#endif
1050 2361
1051 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
1052 if (checkcnt) 2363 if (expect_false (checkcnt))
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1054 2365
1055 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1056 } 2367 }
1057 while (activecnt && !loop_done); 2368 while (expect_true (
2369 activecnt
2370 && !loop_done
2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2372 ));
1058 2373
1059 if (loop_done != 2) 2374 if (loop_done == EVUNLOOP_ONE)
1060 loop_done = 0; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
1061} 2380}
1062 2381
1063void 2382void
1064ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
1065{ 2384{
1066 loop_done = how; 2385 loop_done = how;
1067} 2386}
1068 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
1069/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
1070 2427
1071inline void 2428inline_size void
1072wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
1073{ 2430{
1074 elem->next = *head; 2431 elem->next = *head;
1075 *head = elem; 2432 *head = elem;
1076} 2433}
1077 2434
1078inline void 2435inline_size void
1079wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
1080{ 2437{
1081 while (*head) 2438 while (*head)
1082 { 2439 {
1083 if (*head == elem) 2440 if (expect_true (*head == elem))
1084 { 2441 {
1085 *head = elem->next; 2442 *head = elem->next;
1086 return; 2443 break;
1087 } 2444 }
1088 2445
1089 head = &(*head)->next; 2446 head = &(*head)->next;
1090 } 2447 }
1091} 2448}
1092 2449
2450/* internal, faster, version of ev_clear_pending */
1093inline void 2451inline_speed void
1094ev_clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
1095{ 2453{
1096 if (w->pending) 2454 if (w->pending)
1097 { 2455 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1099 w->pending = 0; 2457 w->pending = 0;
1100 } 2458 }
1101} 2459}
1102 2460
2461int
2462ev_clear_pending (EV_P_ void *w)
2463{
2464 W w_ = (W)w;
2465 int pending = w_->pending;
2466
2467 if (expect_true (pending))
2468 {
2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
2471 w_->pending = 0;
2472 return p->events;
2473 }
2474 else
2475 return 0;
2476}
2477
1103inline void 2478inline_size void
2479pri_adjust (EV_P_ W w)
2480{
2481 int pri = ev_priority (w);
2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2484 ev_set_priority (w, pri);
2485}
2486
2487inline_speed void
1104ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
1105{ 2489{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2490 pri_adjust (EV_A_ w);
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
1109 w->active = active; 2491 w->active = active;
1110 ev_ref (EV_A); 2492 ev_ref (EV_A);
1111} 2493}
1112 2494
1113inline void 2495inline_size void
1114ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
1115{ 2497{
1116 ev_unref (EV_A); 2498 ev_unref (EV_A);
1117 w->active = 0; 2499 w->active = 0;
1118} 2500}
1119 2501
1120/*****************************************************************************/ 2502/*****************************************************************************/
1121 2503
1122void 2504void noinline
1123ev_io_start (EV_P_ struct ev_io *w) 2505ev_io_start (EV_P_ ev_io *w)
1124{ 2506{
1125 int fd = w->fd; 2507 int fd = w->fd;
1126 2508
1127 if (ev_is_active (w)) 2509 if (expect_false (ev_is_active (w)))
1128 return; 2510 return;
1129 2511
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
1131 2516
1132 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
1135 2520
1136 fd_change (EV_A_ fd); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1137} 2522 w->events &= ~EV__IOFDSET;
1138 2523
1139void 2524 EV_FREQUENT_CHECK;
2525}
2526
2527void noinline
1140ev_io_stop (EV_P_ struct ev_io *w) 2528ev_io_stop (EV_P_ ev_io *w)
1141{ 2529{
1142 ev_clear_pending (EV_A_ (W)w); 2530 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 2531 if (expect_false (!ev_is_active (w)))
1144 return; 2532 return;
1145 2533
2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2535
2536 EV_FREQUENT_CHECK;
2537
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2538 wlist_del (&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 2539 ev_stop (EV_A_ (W)w);
1148 2540
1149 fd_change (EV_A_ w->fd); 2541 fd_change (EV_A_ w->fd, 1);
1150}
1151 2542
1152void 2543 EV_FREQUENT_CHECK;
2544}
2545
2546void noinline
1153ev_timer_start (EV_P_ struct ev_timer *w) 2547ev_timer_start (EV_P_ ev_timer *w)
1154{ 2548{
1155 if (ev_is_active (w)) 2549 if (expect_false (ev_is_active (w)))
1156 return; 2550 return;
1157 2551
1158 ((WT)w)->at += mn_now; 2552 ev_at (w) += mn_now;
1159 2553
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
1162 ev_start (EV_A_ (W)w, ++timercnt); 2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1163 array_needsize (timers, timermax, timercnt, ); 2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1164 timers [timercnt - 1] = w; 2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
1165 upheap ((WT *)timers, timercnt - 1); 2562 ANHE_at_cache (timers [ev_active (w)]);
2563 upheap (timers, ev_active (w));
1166 2564
2565 EV_FREQUENT_CHECK;
2566
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1168} 2568}
1169 2569
1170void 2570void noinline
1171ev_timer_stop (EV_P_ struct ev_timer *w) 2571ev_timer_stop (EV_P_ ev_timer *w)
1172{ 2572{
1173 ev_clear_pending (EV_A_ (W)w); 2573 clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w)) 2574 if (expect_false (!ev_is_active (w)))
1175 return; 2575 return;
1176 2576
2577 EV_FREQUENT_CHECK;
2578
2579 {
2580 int active = ev_active (w);
2581
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1178 2583
1179 if (((W)w)->active < timercnt--) 2584 --timercnt;
2585
2586 if (expect_true (active < timercnt + HEAP0))
1180 { 2587 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 2588 timers [active] = timers [timercnt + HEAP0];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2589 adjustheap (timers, timercnt, active);
1183 } 2590 }
2591 }
1184 2592
1185 ((WT)w)->at = w->repeat; 2593 ev_at (w) -= mn_now;
1186 2594
1187 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1188}
1189 2596
1190void 2597 EV_FREQUENT_CHECK;
2598}
2599
2600void noinline
1191ev_timer_again (EV_P_ struct ev_timer *w) 2601ev_timer_again (EV_P_ ev_timer *w)
1192{ 2602{
2603 EV_FREQUENT_CHECK;
2604
1193 if (ev_is_active (w)) 2605 if (ev_is_active (w))
1194 { 2606 {
1195 if (w->repeat) 2607 if (w->repeat)
1196 { 2608 {
1197 ((WT)w)->at = mn_now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2610 ANHE_at_cache (timers [ev_active (w)]);
2611 adjustheap (timers, timercnt, ev_active (w));
1199 } 2612 }
1200 else 2613 else
1201 ev_timer_stop (EV_A_ w); 2614 ev_timer_stop (EV_A_ w);
1202 } 2615 }
1203 else if (w->repeat) 2616 else if (w->repeat)
2617 {
2618 ev_at (w) = w->repeat;
1204 ev_timer_start (EV_A_ w); 2619 ev_timer_start (EV_A_ w);
1205} 2620 }
1206 2621
1207void 2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2629}
2630
2631#if EV_PERIODIC_ENABLE
2632void noinline
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
1209{ 2634{
1210 if (ev_is_active (w)) 2635 if (expect_false (ev_is_active (w)))
1211 return; 2636 return;
1212 2637
2638 if (w->reschedule_cb)
2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2640 else if (w->interval)
2641 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 2643 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2645 }
2646 else
2647 ev_at (w) = w->offset;
1218 2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1221 periodics [periodiccnt - 1] = w; 2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 2655 ANHE_at_cache (periodics [ev_active (w)]);
2656 upheap (periodics, ev_active (w));
1223 2657
2658 EV_FREQUENT_CHECK;
2659
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1225} 2661}
1226 2662
1227void 2663void noinline
1228ev_periodic_stop (EV_P_ struct ev_periodic *w) 2664ev_periodic_stop (EV_P_ ev_periodic *w)
1229{ 2665{
1230 ev_clear_pending (EV_A_ (W)w); 2666 clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w)) 2667 if (expect_false (!ev_is_active (w)))
1232 return; 2668 return;
1233 2669
2670 EV_FREQUENT_CHECK;
2671
2672 {
2673 int active = ev_active (w);
2674
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1235 2676
1236 if (((W)w)->active < periodiccnt--) 2677 --periodiccnt;
2678
2679 if (expect_true (active < periodiccnt + HEAP0))
1237 { 2680 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2681 periodics [active] = periodics [periodiccnt + HEAP0];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2682 adjustheap (periodics, periodiccnt, active);
1240 } 2683 }
2684 }
1241 2685
1242 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1243}
1244 2687
1245void 2688 EV_FREQUENT_CHECK;
1246ev_idle_start (EV_P_ struct ev_idle *w)
1247{
1248 if (ev_is_active (w))
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254} 2689}
1255 2690
1256void 2691void noinline
1257ev_idle_stop (EV_P_ struct ev_idle *w) 2692ev_periodic_again (EV_P_ ev_periodic *w)
1258{ 2693{
1259 ev_clear_pending (EV_A_ (W)w); 2694 /* TODO: use adjustheap and recalculation */
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 2695 ev_periodic_stop (EV_A_ w);
2696 ev_periodic_start (EV_A_ w);
1265} 2697}
1266 2698#endif
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310 2699
1311#ifndef SA_RESTART 2700#ifndef SA_RESTART
1312# define SA_RESTART 0 2701# define SA_RESTART 0
1313#endif 2702#endif
1314 2703
1315void 2704void noinline
1316ev_signal_start (EV_P_ struct ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
1317{ 2706{
2707 if (expect_false (ev_is_active (w)))
2708 return;
2709
2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2711
1318#if EV_MULTIPLICITY 2712#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
2723 {
2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2725 if (sigfd < 0 && errno == EINVAL)
2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2727
2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
2731
2732 sigemptyset (&sigfd_set);
2733
2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
2750
2751 ev_start (EV_A_ (W)w, 1);
2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
2753
2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
1320#endif 2757# endif
1321 if (ev_is_active (w)) 2758 {
2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
2762 signal (w->signum, ev_sighandler);
2763# else
2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
2768 sa.sa_handler = ev_sighandler;
2769 sigfillset (&sa.sa_mask);
2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2776#endif
2777 }
2778
2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
2783ev_signal_stop (EV_P_ ev_signal *w)
2784{
2785 clear_pending (EV_A_ (W)w);
2786 if (expect_false (!ev_is_active (w)))
1322 return; 2787 return;
1323 2788
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2789 EV_FREQUENT_CHECK;
2790
2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
2792 ev_stop (EV_A_ (W)w);
2793
2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
2813 signal (w->signum, SIG_DFL);
2814 }
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819void
2820ev_child_start (EV_P_ ev_child *w)
2821{
2822#if EV_MULTIPLICITY
2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2824#endif
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 EV_FREQUENT_CHECK;
1325 2829
1326 ev_start (EV_A_ (W)w, 1); 2830 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 2832
1330 if (!((WL)w)->next) 2833 EV_FREQUENT_CHECK;
2834}
2835
2836void
2837ev_child_stop (EV_P_ ev_child *w)
2838{
2839 clear_pending (EV_A_ (W)w);
2840 if (expect_false (!ev_is_active (w)))
2841 return;
2842
2843 EV_FREQUENT_CHECK;
2844
2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
2849}
2850
2851#if EV_STAT_ENABLE
2852
2853# ifdef _WIN32
2854# undef lstat
2855# define lstat(a,b) _stati64 (a,b)
2856# endif
2857
2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2860#define MIN_STAT_INTERVAL 0.1074891
2861
2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2863
2864#if EV_USE_INOTIFY
2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2868
2869static void noinline
2870infy_add (EV_P_ ev_stat *w)
2871{
2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2873
2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1331 { 2894 }
1332#if WIN32 2895 else
1333 signal (w->signum, sighandler); 2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2899
2900 /* if path is not there, monitor some parent directory for speedup hints */
2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2902 /* but an efficiency issue only */
2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2904 {
2905 char path [4096];
2906 strcpy (path, w->path);
2907
2908 do
2909 {
2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2912
2913 char *pend = strrchr (path, '/');
2914
2915 if (!pend || pend == path)
2916 break;
2917
2918 *pend = 0;
2919 w->wd = inotify_add_watch (fs_fd, path, mask);
2920 }
2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2922 }
2923 }
2924
2925 if (w->wd >= 0)
2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2932}
2933
2934static void noinline
2935infy_del (EV_P_ ev_stat *w)
2936{
2937 int slot;
2938 int wd = w->wd;
2939
2940 if (wd < 0)
2941 return;
2942
2943 w->wd = -2;
2944 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2945 wlist_del (&fs_hash [slot].head, (WL)w);
2946
2947 /* remove this watcher, if others are watching it, they will rearm */
2948 inotify_rm_watch (fs_fd, wd);
2949}
2950
2951static void noinline
2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2953{
2954 if (slot < 0)
2955 /* overflow, need to check for all hash slots */
2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2957 infy_wd (EV_A_ slot, wd, ev);
2958 else
2959 {
2960 WL w_;
2961
2962 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2963 {
2964 ev_stat *w = (ev_stat *)w_;
2965 w_ = w_->next; /* lets us remove this watcher and all before it */
2966
2967 if (w->wd == wd || wd == -1)
2968 {
2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2972 w->wd = -1;
2973 infy_add (EV_A_ w); /* re-add, no matter what */
2974 }
2975
2976 stat_timer_cb (EV_A_ &w->timer, 0);
2977 }
2978 }
2979 }
2980}
2981
2982static void
2983infy_cb (EV_P_ ev_io *w, int revents)
2984{
2985 char buf [EV_INOTIFY_BUFSIZE];
2986 int ofs;
2987 int len = read (fs_fd, buf, sizeof (buf));
2988
2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
2995}
2996
2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
3032infy_init (EV_P)
3033{
3034 if (fs_fd != -2)
3035 return;
3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
3041 fs_fd = infy_newfd ();
3042
3043 if (fs_fd >= 0)
3044 {
3045 fd_intern (fs_fd);
3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3047 ev_set_priority (&fs_w, EV_MAXPRI);
3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
3050 }
3051}
3052
3053inline_size void
3054infy_fork (EV_P)
3055{
3056 int slot;
3057
3058 if (fs_fd < 0)
3059 return;
3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
3063 close (fs_fd);
3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
3073
3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3075 {
3076 WL w_ = fs_hash [slot].head;
3077 fs_hash [slot].head = 0;
3078
3079 while (w_)
3080 {
3081 ev_stat *w = (ev_stat *)w_;
3082 w_ = w_->next; /* lets us add this watcher */
3083
3084 w->wd = -1;
3085
3086 if (fs_fd >= 0)
3087 infy_add (EV_A_ w); /* re-add, no matter what */
3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
3095 }
3096 }
3097}
3098
3099#endif
3100
3101#ifdef _WIN32
3102# define EV_LSTAT(p,b) _stati64 (p, b)
1334#else 3103#else
1335 struct sigaction sa; 3104# define EV_LSTAT(p,b) lstat (p, b)
1336 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask);
1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1339 sigaction (w->signum, &sa, 0);
1340#endif 3105#endif
1341 }
1342}
1343 3106
1344void 3107void
1345ev_signal_stop (EV_P_ struct ev_signal *w) 3108ev_stat_stat (EV_P_ ev_stat *w)
1346{ 3109{
1347 ev_clear_pending (EV_A_ (W)w); 3110 if (lstat (w->path, &w->attr) < 0)
1348 if (!ev_is_active (w)) 3111 w->attr.st_nlink = 0;
3112 else if (!w->attr.st_nlink)
3113 w->attr.st_nlink = 1;
3114}
3115
3116static void noinline
3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3118{
3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3120
3121 ev_statdata prev = w->attr;
3122 ev_stat_stat (EV_A_ w);
3123
3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3125 if (
3126 prev.st_dev != w->attr.st_dev
3127 || prev.st_ino != w->attr.st_ino
3128 || prev.st_mode != w->attr.st_mode
3129 || prev.st_nlink != w->attr.st_nlink
3130 || prev.st_uid != w->attr.st_uid
3131 || prev.st_gid != w->attr.st_gid
3132 || prev.st_rdev != w->attr.st_rdev
3133 || prev.st_size != w->attr.st_size
3134 || prev.st_atime != w->attr.st_atime
3135 || prev.st_mtime != w->attr.st_mtime
3136 || prev.st_ctime != w->attr.st_ctime
3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
3146 infy_del (EV_A_ w);
3147 infy_add (EV_A_ w);
3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
3150 #endif
3151
3152 ev_feed_event (EV_A_ w, EV_STAT);
3153 }
3154}
3155
3156void
3157ev_stat_start (EV_P_ ev_stat *w)
3158{
3159 if (expect_false (ev_is_active (w)))
1349 return; 3160 return;
1350 3161
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3162 ev_stat_stat (EV_A_ w);
3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3165 w->interval = MIN_STAT_INTERVAL;
3166
3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3168 ev_set_priority (&w->timer, ev_priority (w));
3169
3170#if EV_USE_INOTIFY
3171 infy_init (EV_A);
3172
3173 if (fs_fd >= 0)
3174 infy_add (EV_A_ w);
3175 else
3176#endif
3177 {
3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
3181
3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
3185}
3186
3187void
3188ev_stat_stop (EV_P_ ev_stat *w)
3189{
3190 clear_pending (EV_A_ (W)w);
3191 if (expect_false (!ev_is_active (w)))
3192 return;
3193
3194 EV_FREQUENT_CHECK;
3195
3196#if EV_USE_INOTIFY
3197 infy_del (EV_A_ w);
3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
3205
1352 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
1353 3207
1354 if (!signals [w->signum - 1].head) 3208 EV_FREQUENT_CHECK;
1355 signal (w->signum, SIG_DFL);
1356} 3209}
3210#endif
1357 3211
3212#if EV_IDLE_ENABLE
1358void 3213void
1359ev_child_start (EV_P_ struct ev_child *w) 3214ev_idle_start (EV_P_ ev_idle *w)
1360{ 3215{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
1364 if (ev_is_active (w)) 3216 if (expect_false (ev_is_active (w)))
1365 return; 3217 return;
1366 3218
3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
3222
3223 {
3224 int active = ++idlecnt [ABSPRI (w)];
3225
3226 ++idleall;
3227 ev_start (EV_A_ (W)w, active);
3228
3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3230 idles [ABSPRI (w)][active - 1] = w;
3231 }
3232
3233 EV_FREQUENT_CHECK;
3234}
3235
3236void
3237ev_idle_stop (EV_P_ ev_idle *w)
3238{
3239 clear_pending (EV_A_ (W)w);
3240 if (expect_false (!ev_is_active (w)))
3241 return;
3242
3243 EV_FREQUENT_CHECK;
3244
3245 {
3246 int active = ev_active (w);
3247
3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3250
3251 ev_stop (EV_A_ (W)w);
3252 --idleall;
3253 }
3254
3255 EV_FREQUENT_CHECK;
3256}
3257#endif
3258
3259void
3260ev_prepare_start (EV_P_ ev_prepare *w)
3261{
3262 if (expect_false (ev_is_active (w)))
3263 return;
3264
3265 EV_FREQUENT_CHECK;
3266
3267 ev_start (EV_A_ (W)w, ++preparecnt);
3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
3272}
3273
3274void
3275ev_prepare_stop (EV_P_ ev_prepare *w)
3276{
3277 clear_pending (EV_A_ (W)w);
3278 if (expect_false (!ev_is_active (w)))
3279 return;
3280
3281 EV_FREQUENT_CHECK;
3282
3283 {
3284 int active = ev_active (w);
3285
3286 prepares [active - 1] = prepares [--preparecnt];
3287 ev_active (prepares [active - 1]) = active;
3288 }
3289
3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
3293}
3294
3295void
3296ev_check_start (EV_P_ ev_check *w)
3297{
3298 if (expect_false (ev_is_active (w)))
3299 return;
3300
3301 EV_FREQUENT_CHECK;
3302
3303 ev_start (EV_A_ (W)w, ++checkcnt);
3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
3308}
3309
3310void
3311ev_check_stop (EV_P_ ev_check *w)
3312{
3313 clear_pending (EV_A_ (W)w);
3314 if (expect_false (!ev_is_active (w)))
3315 return;
3316
3317 EV_FREQUENT_CHECK;
3318
3319 {
3320 int active = ev_active (w);
3321
3322 checks [active - 1] = checks [--checkcnt];
3323 ev_active (checks [active - 1]) = active;
3324 }
3325
3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
3329}
3330
3331#if EV_EMBED_ENABLE
3332void noinline
3333ev_embed_sweep (EV_P_ ev_embed *w)
3334{
3335 ev_loop (w->other, EVLOOP_NONBLOCK);
3336}
3337
3338static void
3339embed_io_cb (EV_P_ ev_io *io, int revents)
3340{
3341 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3342
3343 if (ev_cb (w))
3344 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3345 else
3346 ev_loop (w->other, EVLOOP_NONBLOCK);
3347}
3348
3349static void
3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3351{
3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3353
3354 {
3355 EV_P = w->other;
3356
3357 while (fdchangecnt)
3358 {
3359 fd_reify (EV_A);
3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3361 }
3362 }
3363}
3364
3365static void
3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3367{
3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3369
3370 ev_embed_stop (EV_A_ w);
3371
3372 {
3373 EV_P = w->other;
3374
3375 ev_loop_fork (EV_A);
3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3377 }
3378
3379 ev_embed_start (EV_A_ w);
3380}
3381
3382#if 0
3383static void
3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3385{
3386 ev_idle_stop (EV_A_ idle);
3387}
3388#endif
3389
3390void
3391ev_embed_start (EV_P_ ev_embed *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 {
3397 EV_P = w->other;
3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3400 }
3401
3402 EV_FREQUENT_CHECK;
3403
3404 ev_set_priority (&w->io, ev_priority (w));
3405 ev_io_start (EV_A_ &w->io);
3406
3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
3408 ev_set_priority (&w->prepare, EV_MINPRI);
3409 ev_prepare_start (EV_A_ &w->prepare);
3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3415
1367 ev_start (EV_A_ (W)w, 1); 3416 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1369}
1370 3417
3418 EV_FREQUENT_CHECK;
3419}
3420
1371void 3421void
1372ev_child_stop (EV_P_ struct ev_child *w) 3422ev_embed_stop (EV_P_ ev_embed *w)
1373{ 3423{
1374 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 3425 if (expect_false (!ev_is_active (w)))
1376 return; 3426 return;
1377 3427
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3428 EV_FREQUENT_CHECK;
3429
3430 ev_io_stop (EV_A_ &w->io);
3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
3433
1379 ev_stop (EV_A_ (W)w); 3434 ev_stop (EV_A_ (W)w);
3435
3436 EV_FREQUENT_CHECK;
1380} 3437}
3438#endif
3439
3440#if EV_FORK_ENABLE
3441void
3442ev_fork_start (EV_P_ ev_fork *w)
3443{
3444 if (expect_false (ev_is_active (w)))
3445 return;
3446
3447 EV_FREQUENT_CHECK;
3448
3449 ev_start (EV_A_ (W)w, ++forkcnt);
3450 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3451 forks [forkcnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
3454}
3455
3456void
3457ev_fork_stop (EV_P_ ev_fork *w)
3458{
3459 clear_pending (EV_A_ (W)w);
3460 if (expect_false (!ev_is_active (w)))
3461 return;
3462
3463 EV_FREQUENT_CHECK;
3464
3465 {
3466 int active = ev_active (w);
3467
3468 forks [active - 1] = forks [--forkcnt];
3469 ev_active (forks [active - 1]) = active;
3470 }
3471
3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476#endif
3477
3478#if EV_ASYNC_ENABLE
3479void
3480ev_async_start (EV_P_ ev_async *w)
3481{
3482 if (expect_false (ev_is_active (w)))
3483 return;
3484
3485 evpipe_init (EV_A);
3486
3487 EV_FREQUENT_CHECK;
3488
3489 ev_start (EV_A_ (W)w, ++asynccnt);
3490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3491 asyncs [asynccnt - 1] = w;
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_stop (EV_P_ ev_async *w)
3498{
3499 clear_pending (EV_A_ (W)w);
3500 if (expect_false (!ev_is_active (w)))
3501 return;
3502
3503 EV_FREQUENT_CHECK;
3504
3505 {
3506 int active = ev_active (w);
3507
3508 asyncs [active - 1] = asyncs [--asynccnt];
3509 ev_active (asyncs [active - 1]) = active;
3510 }
3511
3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
3515}
3516
3517void
3518ev_async_send (EV_P_ ev_async *w)
3519{
3520 w->sent = 1;
3521 evpipe_write (EV_A_ &async_pending);
3522}
3523#endif
1381 3524
1382/*****************************************************************************/ 3525/*****************************************************************************/
1383 3526
1384struct ev_once 3527struct ev_once
1385{ 3528{
1386 struct ev_io io; 3529 ev_io io;
1387 struct ev_timer to; 3530 ev_timer to;
1388 void (*cb)(int revents, void *arg); 3531 void (*cb)(int revents, void *arg);
1389 void *arg; 3532 void *arg;
1390}; 3533};
1391 3534
1392static void 3535static void
1393once_cb (EV_P_ struct ev_once *once, int revents) 3536once_cb (EV_P_ struct ev_once *once, int revents)
1394{ 3537{
1395 void (*cb)(int revents, void *arg) = once->cb; 3538 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 3539 void *arg = once->arg;
1397 3540
1398 ev_io_stop (EV_A_ &once->io); 3541 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 3542 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 3543 ev_free (once);
1401 3544
1402 cb (revents, arg); 3545 cb (revents, arg);
1403} 3546}
1404 3547
1405static void 3548static void
1406once_cb_io (EV_P_ struct ev_io *w, int revents) 3549once_cb_io (EV_P_ ev_io *w, int revents)
1407{ 3550{
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1409} 3554}
1410 3555
1411static void 3556static void
1412once_cb_to (EV_P_ struct ev_timer *w, int revents) 3557once_cb_to (EV_P_ ev_timer *w, int revents)
1413{ 3558{
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3559 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3560
3561 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1415} 3562}
1416 3563
1417void 3564void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3565ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 3566{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 3567 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 3568
1422 if (!once) 3569 if (expect_false (!once))
3570 {
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3571 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 3572 return;
1425 { 3573 }
3574
1426 once->cb = cb; 3575 once->cb = cb;
1427 once->arg = arg; 3576 once->arg = arg;
1428 3577
1429 ev_watcher_init (&once->io, once_cb_io); 3578 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 3579 if (fd >= 0)
3580 {
3581 ev_io_set (&once->io, fd, events);
3582 ev_io_start (EV_A_ &once->io);
3583 }
3584
3585 ev_init (&once->to, once_cb_to);
3586 if (timeout >= 0.)
3587 {
3588 ev_timer_set (&once->to, timeout, 0.);
3589 ev_timer_start (EV_A_ &once->to);
3590 }
3591}
3592
3593/*****************************************************************************/
3594
3595#if EV_WALK_ENABLE
3596void
3597ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3598{
3599 int i, j;
3600 ev_watcher_list *wl, *wn;
3601
3602 if (types & (EV_IO | EV_EMBED))
3603 for (i = 0; i < anfdmax; ++i)
3604 for (wl = anfds [i].head; wl; )
1431 { 3605 {
1432 ev_io_set (&once->io, fd, events); 3606 wn = wl->next;
1433 ev_io_start (EV_A_ &once->io); 3607
3608#if EV_EMBED_ENABLE
3609 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3610 {
3611 if (types & EV_EMBED)
3612 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3613 }
3614 else
3615#endif
3616#if EV_USE_INOTIFY
3617 if (ev_cb ((ev_io *)wl) == infy_cb)
3618 ;
3619 else
3620#endif
3621 if ((ev_io *)wl != &pipe_w)
3622 if (types & EV_IO)
3623 cb (EV_A_ EV_IO, wl);
3624
3625 wl = wn;
1434 } 3626 }
1435 3627
1436 ev_watcher_init (&once->to, once_cb_to); 3628 if (types & (EV_TIMER | EV_STAT))
1437 if (timeout >= 0.) 3629 for (i = timercnt + HEAP0; i-- > HEAP0; )
3630#if EV_STAT_ENABLE
3631 /*TODO: timer is not always active*/
3632 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1438 { 3633 {
1439 ev_timer_set (&once->to, timeout, 0.); 3634 if (types & EV_STAT)
1440 ev_timer_start (EV_A_ &once->to); 3635 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1441 } 3636 }
1442 } 3637 else
1443} 3638#endif
3639 if (types & EV_TIMER)
3640 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1444 3641
3642#if EV_PERIODIC_ENABLE
3643 if (types & EV_PERIODIC)
3644 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3645 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3646#endif
3647
3648#if EV_IDLE_ENABLE
3649 if (types & EV_IDLE)
3650 for (j = NUMPRI; i--; )
3651 for (i = idlecnt [j]; i--; )
3652 cb (EV_A_ EV_IDLE, idles [j][i]);
3653#endif
3654
3655#if EV_FORK_ENABLE
3656 if (types & EV_FORK)
3657 for (i = forkcnt; i--; )
3658 if (ev_cb (forks [i]) != embed_fork_cb)
3659 cb (EV_A_ EV_FORK, forks [i]);
3660#endif
3661
3662#if EV_ASYNC_ENABLE
3663 if (types & EV_ASYNC)
3664 for (i = asynccnt; i--; )
3665 cb (EV_A_ EV_ASYNC, asyncs [i]);
3666#endif
3667
3668 if (types & EV_PREPARE)
3669 for (i = preparecnt; i--; )
3670#if EV_EMBED_ENABLE
3671 if (ev_cb (prepares [i]) != embed_prepare_cb)
3672#endif
3673 cb (EV_A_ EV_PREPARE, prepares [i]);
3674
3675 if (types & EV_CHECK)
3676 for (i = checkcnt; i--; )
3677 cb (EV_A_ EV_CHECK, checks [i]);
3678
3679 if (types & EV_SIGNAL)
3680 for (i = 0; i < EV_NSIG - 1; ++i)
3681 for (wl = signals [i].head; wl; )
3682 {
3683 wn = wl->next;
3684 cb (EV_A_ EV_SIGNAL, wl);
3685 wl = wn;
3686 }
3687
3688 if (types & EV_CHILD)
3689 for (i = EV_PID_HASHSIZE; i--; )
3690 for (wl = childs [i]; wl; )
3691 {
3692 wn = wl->next;
3693 cb (EV_A_ EV_CHILD, wl);
3694 wl = wn;
3695 }
3696/* EV_STAT 0x00001000 /* stat data changed */
3697/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3698}
3699#endif
3700
3701#if EV_MULTIPLICITY
3702 #include "ev_wrap.h"
3703#endif
3704
3705#ifdef __cplusplus
3706}
3707#endif
3708

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines