ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.391 by root, Thu Aug 4 13:57:16 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
59#include <unistd.h> 168#include <string.h>
60#include <fcntl.h> 169#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 170#include <stddef.h>
63 171
64#include <stdio.h> 172#include <stdio.h>
65 173
66#include <assert.h> 174#include <assert.h>
67#include <errno.h> 175#include <errno.h>
68#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
69#ifndef WIN32 190#ifndef _WIN32
191# include <sys/time.h>
70# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
194#else
195# include <io.h>
196# define WIN32_LEAN_AND_MEAN
197# include <windows.h>
198# ifndef EV_SELECT_IS_WINSOCKET
199# define EV_SELECT_IS_WINSOCKET 1
71#endif 200# endif
72#include <sys/time.h> 201# undef EV_AVOID_STDIO
73#include <time.h> 202#endif
74 203
75/**/ 204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
76 253
77#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
78# define EV_USE_MONOTONIC 1 258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
79#endif 272#endif
80 273
81#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 276#endif
84 277
85#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
87#endif 284#endif
88 285
89#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
90# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
91#endif 292#endif
92 293
93#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
95#endif 296#endif
96 297
298#ifndef EV_USE_PORT
299# define EV_USE_PORT 0
300#endif
301
97#ifndef EV_USE_WIN32 302#ifndef EV_USE_INOTIFY
98# ifdef WIN32 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
100# else 305# else
101# define EV_USE_WIN32 0 306# define EV_USE_INOTIFY 0
102# endif 307# endif
103#endif 308#endif
104 309
310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
105#ifndef EV_USE_REALTIME 318#ifndef EV_USE_EVENTFD
106# define EV_USE_REALTIME 1 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
107#endif 323# endif
324#endif
108 325
109/**/ 326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
110 373
111#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
114#endif 377#endif
116#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
119#endif 382#endif
120 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
406#if EV_SELECT_IS_WINSOCKET
407# include <winsock.h>
408#endif
409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
121/**/ 448/**/
122 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 465
128#include "ev.h" 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
129 468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
130#if __GNUC__ >= 3 510 #if __GNUC__
131# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
132# define inline inline 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
133#else 517#else
134# define expect(expr,value) (expr) 518 #include <inttypes.h>
135# define inline static 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
136#endif 533 #endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
144typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
147
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 534#endif
155 535
156/*****************************************************************************/ 536/*****************************************************************************/
157 537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543 #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544 #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545#endif
546
547#ifndef ECB_MEMORY_FENCE
548 #if ECB_GCC_VERSION(2,5)
549 #if __x86
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553 #elif __amd64
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
555 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557 #endif
558 #endif
559#endif
560
561#ifndef ECB_MEMORY_FENCE
562 #if ECB_GCC_VERSION(4,4)
563 #define ECB_MEMORY_FENCE __sync_synchronize ()
564 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
565 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
566 #elif _MSC_VER >= 1400 /* VC++ 2005 */
567 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
568 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
569 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
570 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
571 #elif defined(_WIN32)
572 #include <WinNT.h>
573 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
574 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
575 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
576 #endif
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 /*
581 * if you get undefined symbol references to pthread_mutex_lock,
582 * or failure to find pthread.h, then you should implement
583 * the ECB_MEMORY_FENCE operations for your cpu/compiler
584 * OR provide pthread.h and link against the posix thread library
585 * of your system.
586 */
587 #include <pthread.h>
588 #define ECB_NEEDS_PTHREADS 1
589 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
590
591 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
592 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
593 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
594 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
595#endif
596
597/*****************************************************************************/
598
599#define ECB_C99 (__STDC_VERSION__ >= 199901L)
600
601#if __cplusplus
602 #define ecb_inline static inline
603#elif ECB_GCC_VERSION(2,5)
604 #define ecb_inline static __inline__
605#elif ECB_C99
606 #define ecb_inline static inline
607#else
608 #define ecb_inline static
609#endif
610
611#if ECB_GCC_VERSION(3,3)
612 #define ecb_restrict __restrict__
613#elif ECB_C99
614 #define ecb_restrict restrict
615#else
616 #define ecb_restrict
617#endif
618
619typedef int ecb_bool;
620
621#define ECB_CONCAT_(a, b) a ## b
622#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
623#define ECB_STRINGIFY_(a) # a
624#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
625
626#define ecb_function_ ecb_inline
627
628#if ECB_GCC_VERSION(3,1)
629 #define ecb_attribute(attrlist) __attribute__(attrlist)
630 #define ecb_is_constant(expr) __builtin_constant_p (expr)
631 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
632 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
633#else
634 #define ecb_attribute(attrlist)
635 #define ecb_is_constant(expr) 0
636 #define ecb_expect(expr,value) (expr)
637 #define ecb_prefetch(addr,rw,locality)
638#endif
639
640/* no emulation for ecb_decltype */
641#if ECB_GCC_VERSION(4,5)
642 #define ecb_decltype(x) __decltype(x)
643#elif ECB_GCC_VERSION(3,0)
644 #define ecb_decltype(x) __typeof(x)
645#endif
646
647#define ecb_noinline ecb_attribute ((__noinline__))
648#define ecb_noreturn ecb_attribute ((__noreturn__))
649#define ecb_unused ecb_attribute ((__unused__))
650#define ecb_const ecb_attribute ((__const__))
651#define ecb_pure ecb_attribute ((__pure__))
652
653#if ECB_GCC_VERSION(4,3)
654 #define ecb_artificial ecb_attribute ((__artificial__))
655 #define ecb_hot ecb_attribute ((__hot__))
656 #define ecb_cold ecb_attribute ((__cold__))
657#else
658 #define ecb_artificial
659 #define ecb_hot
660 #define ecb_cold
661#endif
662
663/* put around conditional expressions if you are very sure that the */
664/* expression is mostly true or mostly false. note that these return */
665/* booleans, not the expression. */
666#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
667#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
668/* for compatibility to the rest of the world */
669#define ecb_likely(expr) ecb_expect_true (expr)
670#define ecb_unlikely(expr) ecb_expect_false (expr)
671
672/* count trailing zero bits and count # of one bits */
673#if ECB_GCC_VERSION(3,4)
674 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
675 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
676 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
677 #define ecb_ctz32(x) __builtin_ctz (x)
678 #define ecb_ctz64(x) __builtin_ctzll (x)
679 #define ecb_popcount32(x) __builtin_popcount (x)
680 /* no popcountll */
681#else
682 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
683 ecb_function_ int
684 ecb_ctz32 (uint32_t x)
685 {
686 int r = 0;
687
688 x &= ~x + 1; /* this isolates the lowest bit */
689
690#if ECB_branchless_on_i386
691 r += !!(x & 0xaaaaaaaa) << 0;
692 r += !!(x & 0xcccccccc) << 1;
693 r += !!(x & 0xf0f0f0f0) << 2;
694 r += !!(x & 0xff00ff00) << 3;
695 r += !!(x & 0xffff0000) << 4;
696#else
697 if (x & 0xaaaaaaaa) r += 1;
698 if (x & 0xcccccccc) r += 2;
699 if (x & 0xf0f0f0f0) r += 4;
700 if (x & 0xff00ff00) r += 8;
701 if (x & 0xffff0000) r += 16;
702#endif
703
704 return r;
705 }
706
707 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
708 ecb_function_ int
709 ecb_ctz64 (uint64_t x)
710 {
711 int shift = x & 0xffffffffU ? 0 : 32;
712 return ecb_ctz32 (x >> shift) + shift;
713 }
714
715 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
716 ecb_function_ int
717 ecb_popcount32 (uint32_t x)
718 {
719 x -= (x >> 1) & 0x55555555;
720 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
721 x = ((x >> 4) + x) & 0x0f0f0f0f;
722 x *= 0x01010101;
723
724 return x >> 24;
725 }
726
727 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
728 ecb_function_ int ecb_ld32 (uint32_t x)
729 {
730 int r = 0;
731
732 if (x >> 16) { x >>= 16; r += 16; }
733 if (x >> 8) { x >>= 8; r += 8; }
734 if (x >> 4) { x >>= 4; r += 4; }
735 if (x >> 2) { x >>= 2; r += 2; }
736 if (x >> 1) { r += 1; }
737
738 return r;
739 }
740
741 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
742 ecb_function_ int ecb_ld64 (uint64_t x)
743 {
744 int r = 0;
745
746 if (x >> 32) { x >>= 32; r += 32; }
747
748 return r + ecb_ld32 (x);
749 }
750#endif
751
752/* popcount64 is only available on 64 bit cpus as gcc builtin */
753/* so for this version we are lazy */
754ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
755ecb_function_ int
756ecb_popcount64 (uint64_t x)
757{
758 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
759}
760
761ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
762ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
763ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
764ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
765ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
766ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
767ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
768ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
769
770ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
771ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
772ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
773ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
774ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
775ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
776ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
777ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
778
779#if ECB_GCC_VERSION(4,3)
780 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
781 #define ecb_bswap32(x) __builtin_bswap32 (x)
782 #define ecb_bswap64(x) __builtin_bswap64 (x)
783#else
784 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
785 ecb_function_ uint16_t
786 ecb_bswap16 (uint16_t x)
787 {
788 return ecb_rotl16 (x, 8);
789 }
790
791 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
792 ecb_function_ uint32_t
793 ecb_bswap32 (uint32_t x)
794 {
795 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
796 }
797
798 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
799 ecb_function_ uint64_t
800 ecb_bswap64 (uint64_t x)
801 {
802 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
803 }
804#endif
805
806#if ECB_GCC_VERSION(4,5)
807 #define ecb_unreachable() __builtin_unreachable ()
808#else
809 /* this seems to work fine, but gcc always emits a warning for it :/ */
810 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
811 ecb_function_ void ecb_unreachable (void) { }
812#endif
813
814/* try to tell the compiler that some condition is definitely true */
815#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
816
817ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
818ecb_function_ unsigned char
819ecb_byteorder_helper (void)
820{
821 const uint32_t u = 0x11223344;
822 return *(unsigned char *)&u;
823}
824
825ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
826ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
827ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
828ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
829
830#if ECB_GCC_VERSION(3,0) || ECB_C99
831 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
832#else
833 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
834#endif
835
836#if ecb_cplusplus_does_not_suck
837 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
838 template<typename T, int N>
839 static inline int ecb_array_length (const T (&arr)[N])
840 {
841 return N;
842 }
843#else
844 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
845#endif
846
847#endif
848
849/* ECB.H END */
850
851#define expect_false(cond) ecb_expect_false (cond)
852#define expect_true(cond) ecb_expect_true (cond)
853#define noinline ecb_noinline
854
855#define inline_size ecb_inline
856
857#if EV_FEATURE_CODE
858# define inline_speed ecb_inline
859#else
860# define inline_speed static noinline
861#endif
862
863#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
864
865#if EV_MINPRI == EV_MAXPRI
866# define ABSPRI(w) (((W)w), 0)
867#else
868# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
869#endif
870
871#define EMPTY /* required for microsofts broken pseudo-c compiler */
872#define EMPTY2(a,b) /* used to suppress some warnings */
873
874typedef ev_watcher *W;
875typedef ev_watcher_list *WL;
876typedef ev_watcher_time *WT;
877
878#define ev_active(w) ((W)(w))->active
879#define ev_at(w) ((WT)(w))->at
880
881#if EV_USE_REALTIME
882/* sig_atomic_t is used to avoid per-thread variables or locking but still */
883/* giving it a reasonably high chance of working on typical architectures */
884static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
885#endif
886
887#if EV_USE_MONOTONIC
888static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
889#endif
890
891#ifndef EV_FD_TO_WIN32_HANDLE
892# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
893#endif
894#ifndef EV_WIN32_HANDLE_TO_FD
895# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
896#endif
897#ifndef EV_WIN32_CLOSE_FD
898# define EV_WIN32_CLOSE_FD(fd) close (fd)
899#endif
900
901#ifdef _WIN32
902# include "ev_win32.c"
903#endif
904
905/*****************************************************************************/
906
907/* define a suitable floor function (only used by periodics atm) */
908
909#if EV_USE_FLOOR
910# include <math.h>
911# define ev_floor(v) floor (v)
912#else
913
914#include <float.h>
915
916/* a floor() replacement function, should be independent of ev_tstamp type */
917static ev_tstamp noinline
918ev_floor (ev_tstamp v)
919{
920 /* the choice of shift factor is not terribly important */
921#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
922 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
923#else
924 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
925#endif
926
927 /* argument too large for an unsigned long? */
928 if (expect_false (v >= shift))
929 {
930 ev_tstamp f;
931
932 if (v == v - 1.)
933 return v; /* very large number */
934
935 f = shift * ev_floor (v * (1. / shift));
936 return f + ev_floor (v - f);
937 }
938
939 /* special treatment for negative args? */
940 if (expect_false (v < 0.))
941 {
942 ev_tstamp f = -ev_floor (-v);
943
944 return f - (f == v ? 0 : 1);
945 }
946
947 /* fits into an unsigned long */
948 return (unsigned long)v;
949}
950
951#endif
952
953/*****************************************************************************/
954
955#ifdef __linux
956# include <sys/utsname.h>
957#endif
958
959static unsigned int noinline ecb_cold
960ev_linux_version (void)
961{
962#ifdef __linux
963 unsigned int v = 0;
964 struct utsname buf;
965 int i;
966 char *p = buf.release;
967
968 if (uname (&buf))
969 return 0;
970
971 for (i = 3+1; --i; )
972 {
973 unsigned int c = 0;
974
975 for (;;)
976 {
977 if (*p >= '0' && *p <= '9')
978 c = c * 10 + *p++ - '0';
979 else
980 {
981 p += *p == '.';
982 break;
983 }
984 }
985
986 v = (v << 8) | c;
987 }
988
989 return v;
990#else
991 return 0;
992#endif
993}
994
995/*****************************************************************************/
996
997#if EV_AVOID_STDIO
998static void noinline ecb_cold
999ev_printerr (const char *msg)
1000{
1001 write (STDERR_FILENO, msg, strlen (msg));
1002}
1003#endif
1004
1005static void (*syserr_cb)(const char *msg);
1006
1007void ecb_cold
1008ev_set_syserr_cb (void (*cb)(const char *msg))
1009{
1010 syserr_cb = cb;
1011}
1012
1013static void noinline ecb_cold
1014ev_syserr (const char *msg)
1015{
1016 if (!msg)
1017 msg = "(libev) system error";
1018
1019 if (syserr_cb)
1020 syserr_cb (msg);
1021 else
1022 {
1023#if EV_AVOID_STDIO
1024 ev_printerr (msg);
1025 ev_printerr (": ");
1026 ev_printerr (strerror (errno));
1027 ev_printerr ("\n");
1028#else
1029 perror (msg);
1030#endif
1031 abort ();
1032 }
1033}
1034
1035static void *
1036ev_realloc_emul (void *ptr, long size)
1037{
1038#if __GLIBC__
1039 return realloc (ptr, size);
1040#else
1041 /* some systems, notably openbsd and darwin, fail to properly
1042 * implement realloc (x, 0) (as required by both ansi c-89 and
1043 * the single unix specification, so work around them here.
1044 */
1045
1046 if (size)
1047 return realloc (ptr, size);
1048
1049 free (ptr);
1050 return 0;
1051#endif
1052}
1053
1054static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1055
1056void ecb_cold
1057ev_set_allocator (void *(*cb)(void *ptr, long size))
1058{
1059 alloc = cb;
1060}
1061
1062inline_speed void *
1063ev_realloc (void *ptr, long size)
1064{
1065 ptr = alloc (ptr, size);
1066
1067 if (!ptr && size)
1068 {
1069#if EV_AVOID_STDIO
1070 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1071#else
1072 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1073#endif
1074 abort ();
1075 }
1076
1077 return ptr;
1078}
1079
1080#define ev_malloc(size) ev_realloc (0, (size))
1081#define ev_free(ptr) ev_realloc ((ptr), 0)
1082
1083/*****************************************************************************/
1084
1085/* set in reify when reification needed */
1086#define EV_ANFD_REIFY 1
1087
1088/* file descriptor info structure */
158typedef struct 1089typedef struct
159{ 1090{
160 WL head; 1091 WL head;
161 unsigned char events; 1092 unsigned char events; /* the events watched for */
1093 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1094 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
162 unsigned char reify; 1095 unsigned char unused;
1096#if EV_USE_EPOLL
1097 unsigned int egen; /* generation counter to counter epoll bugs */
1098#endif
1099#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1100 SOCKET handle;
1101#endif
1102#if EV_USE_IOCP
1103 OVERLAPPED or, ow;
1104#endif
163} ANFD; 1105} ANFD;
164 1106
1107/* stores the pending event set for a given watcher */
165typedef struct 1108typedef struct
166{ 1109{
167 W w; 1110 W w;
168 int events; 1111 int events; /* the pending event set for the given watcher */
169} ANPENDING; 1112} ANPENDING;
170 1113
1114#if EV_USE_INOTIFY
1115/* hash table entry per inotify-id */
1116typedef struct
1117{
1118 WL head;
1119} ANFS;
1120#endif
1121
1122/* Heap Entry */
1123#if EV_HEAP_CACHE_AT
1124 /* a heap element */
1125 typedef struct {
1126 ev_tstamp at;
1127 WT w;
1128 } ANHE;
1129
1130 #define ANHE_w(he) (he).w /* access watcher, read-write */
1131 #define ANHE_at(he) (he).at /* access cached at, read-only */
1132 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1133#else
1134 /* a heap element */
1135 typedef WT ANHE;
1136
1137 #define ANHE_w(he) (he)
1138 #define ANHE_at(he) (he)->at
1139 #define ANHE_at_cache(he)
1140#endif
1141
171#if EV_MULTIPLICITY 1142#if EV_MULTIPLICITY
172 1143
173struct ev_loop 1144 struct ev_loop
174{ 1145 {
1146 ev_tstamp ev_rt_now;
1147 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 1148 #define VAR(name,decl) decl;
176# include "ev_vars.h" 1149 #include "ev_vars.h"
177};
178# undef VAR 1150 #undef VAR
1151 };
179# include "ev_wrap.h" 1152 #include "ev_wrap.h"
1153
1154 static struct ev_loop default_loop_struct;
1155 struct ev_loop *ev_default_loop_ptr;
180 1156
181#else 1157#else
182 1158
1159 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 1160 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 1161 #include "ev_vars.h"
185# undef VAR 1162 #undef VAR
186 1163
1164 static int ev_default_loop_ptr;
1165
187#endif 1166#endif
1167
1168#if EV_FEATURE_API
1169# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1170# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1171# define EV_INVOKE_PENDING invoke_cb (EV_A)
1172#else
1173# define EV_RELEASE_CB (void)0
1174# define EV_ACQUIRE_CB (void)0
1175# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1176#endif
1177
1178#define EVBREAK_RECURSE 0x80
188 1179
189/*****************************************************************************/ 1180/*****************************************************************************/
190 1181
191inline ev_tstamp 1182#ifndef EV_HAVE_EV_TIME
1183ev_tstamp
192ev_time (void) 1184ev_time (void)
193{ 1185{
194#if EV_USE_REALTIME 1186#if EV_USE_REALTIME
1187 if (expect_true (have_realtime))
1188 {
195 struct timespec ts; 1189 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 1190 clock_gettime (CLOCK_REALTIME, &ts);
197 return ts.tv_sec + ts.tv_nsec * 1e-9; 1191 return ts.tv_sec + ts.tv_nsec * 1e-9;
198#else 1192 }
1193#endif
1194
199 struct timeval tv; 1195 struct timeval tv;
200 gettimeofday (&tv, 0); 1196 gettimeofday (&tv, 0);
201 return tv.tv_sec + tv.tv_usec * 1e-6; 1197 return tv.tv_sec + tv.tv_usec * 1e-6;
202#endif
203} 1198}
1199#endif
204 1200
205inline ev_tstamp 1201inline_size ev_tstamp
206get_clock (void) 1202get_clock (void)
207{ 1203{
208#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
209 if (expect_true (have_monotonic)) 1205 if (expect_true (have_monotonic))
210 { 1206 {
215#endif 1211#endif
216 1212
217 return ev_time (); 1213 return ev_time ();
218} 1214}
219 1215
1216#if EV_MULTIPLICITY
220ev_tstamp 1217ev_tstamp
221ev_now (EV_P) 1218ev_now (EV_P)
222{ 1219{
223 return rt_now; 1220 return ev_rt_now;
224} 1221}
1222#endif
225 1223
226#define array_roundsize(base,n) ((n) | 4 & ~3) 1224void
1225ev_sleep (ev_tstamp delay)
1226{
1227 if (delay > 0.)
1228 {
1229#if EV_USE_NANOSLEEP
1230 struct timespec ts;
227 1231
1232 EV_TS_SET (ts, delay);
1233 nanosleep (&ts, 0);
1234#elif defined(_WIN32)
1235 Sleep ((unsigned long)(delay * 1e3));
1236#else
1237 struct timeval tv;
1238
1239 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1240 /* something not guaranteed by newer posix versions, but guaranteed */
1241 /* by older ones */
1242 EV_TV_SET (tv, delay);
1243 select (0, 0, 0, 0, &tv);
1244#endif
1245 }
1246}
1247
1248/*****************************************************************************/
1249
1250#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1251
1252/* find a suitable new size for the given array, */
1253/* hopefully by rounding to a nice-to-malloc size */
1254inline_size int
1255array_nextsize (int elem, int cur, int cnt)
1256{
1257 int ncur = cur + 1;
1258
1259 do
1260 ncur <<= 1;
1261 while (cnt > ncur);
1262
1263 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1264 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1265 {
1266 ncur *= elem;
1267 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1268 ncur = ncur - sizeof (void *) * 4;
1269 ncur /= elem;
1270 }
1271
1272 return ncur;
1273}
1274
1275static void * noinline ecb_cold
1276array_realloc (int elem, void *base, int *cur, int cnt)
1277{
1278 *cur = array_nextsize (elem, *cur, cnt);
1279 return ev_realloc (base, elem * *cur);
1280}
1281
1282#define array_init_zero(base,count) \
1283 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1284
228#define array_needsize(base,cur,cnt,init) \ 1285#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 1286 if (expect_false ((cnt) > (cur))) \
230 { \ 1287 { \
231 int newcnt = cur; \ 1288 int ecb_unused ocur_ = (cur); \
232 do \ 1289 (base) = (type *)array_realloc \
233 { \ 1290 (sizeof (type), (base), &(cur), (cnt)); \
234 newcnt = array_roundsize (base, newcnt << 1); \ 1291 init ((base) + (ocur_), (cur) - ocur_); \
235 } \
236 while ((cnt) > newcnt); \
237 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \
239 init (base + cur, newcnt - cur); \
240 cur = newcnt; \
241 } 1292 }
242 1293
1294#if 0
243#define array_slim(stem) \ 1295#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1296 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 1297 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1298 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 1299 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1300 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 1301 }
1302#endif
250 1303
251#define array_free(stem, idx) \ 1304#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1305 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
253 1306
254/*****************************************************************************/ 1307/*****************************************************************************/
255 1308
256static void 1309/* dummy callback for pending events */
257anfds_init (ANFD *base, int count) 1310static void noinline
1311pendingcb (EV_P_ ev_prepare *w, int revents)
258{ 1312{
259 while (count--) 1313}
260 {
261 base->head = 0;
262 base->events = EV_NONE;
263 base->reify = 0;
264 1314
265 ++base; 1315void noinline
1316ev_feed_event (EV_P_ void *w, int revents)
1317{
1318 W w_ = (W)w;
1319 int pri = ABSPRI (w_);
1320
1321 if (expect_false (w_->pending))
1322 pendings [pri][w_->pending - 1].events |= revents;
1323 else
266 } 1324 {
267} 1325 w_->pending = ++pendingcnt [pri];
268 1326 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
269static void 1327 pendings [pri][w_->pending - 1].w = w_;
270event (EV_P_ W w, int events)
271{
272 if (w->pending)
273 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1328 pendings [pri][w_->pending - 1].events = revents;
275 return;
276 } 1329 }
277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282} 1330}
283 1331
284static void 1332inline_speed void
1333feed_reverse (EV_P_ W w)
1334{
1335 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1336 rfeeds [rfeedcnt++] = w;
1337}
1338
1339inline_size void
1340feed_reverse_done (EV_P_ int revents)
1341{
1342 do
1343 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1344 while (rfeedcnt);
1345}
1346
1347inline_speed void
285queue_events (EV_P_ W *events, int eventcnt, int type) 1348queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 1349{
287 int i; 1350 int i;
288 1351
289 for (i = 0; i < eventcnt; ++i) 1352 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 1353 ev_feed_event (EV_A_ events [i], type);
291} 1354}
292 1355
293static void 1356/*****************************************************************************/
1357
1358inline_speed void
294fd_event (EV_P_ int fd, int events) 1359fd_event_nocheck (EV_P_ int fd, int revents)
295{ 1360{
296 ANFD *anfd = anfds + fd; 1361 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 1362 ev_io *w;
298 1363
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1364 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
300 { 1365 {
301 int ev = w->events & events; 1366 int ev = w->events & revents;
302 1367
303 if (ev) 1368 if (ev)
304 event (EV_A_ (W)w, ev); 1369 ev_feed_event (EV_A_ (W)w, ev);
305 } 1370 }
306} 1371}
307 1372
308/*****************************************************************************/ 1373/* do not submit kernel events for fds that have reify set */
1374/* because that means they changed while we were polling for new events */
1375inline_speed void
1376fd_event (EV_P_ int fd, int revents)
1377{
1378 ANFD *anfd = anfds + fd;
309 1379
310static void 1380 if (expect_true (!anfd->reify))
1381 fd_event_nocheck (EV_A_ fd, revents);
1382}
1383
1384void
1385ev_feed_fd_event (EV_P_ int fd, int revents)
1386{
1387 if (fd >= 0 && fd < anfdmax)
1388 fd_event_nocheck (EV_A_ fd, revents);
1389}
1390
1391/* make sure the external fd watch events are in-sync */
1392/* with the kernel/libev internal state */
1393inline_size void
311fd_reify (EV_P) 1394fd_reify (EV_P)
312{ 1395{
313 int i; 1396 int i;
314 1397
1398#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
315 for (i = 0; i < fdchangecnt; ++i) 1399 for (i = 0; i < fdchangecnt; ++i)
316 { 1400 {
317 int fd = fdchanges [i]; 1401 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd; 1402 ANFD *anfd = anfds + fd;
1403
1404 if (anfd->reify & EV__IOFDSET && anfd->head)
1405 {
1406 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1407
1408 if (handle != anfd->handle)
1409 {
1410 unsigned long arg;
1411
1412 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1413
1414 /* handle changed, but fd didn't - we need to do it in two steps */
1415 backend_modify (EV_A_ fd, anfd->events, 0);
1416 anfd->events = 0;
1417 anfd->handle = handle;
1418 }
1419 }
1420 }
1421#endif
1422
1423 for (i = 0; i < fdchangecnt; ++i)
1424 {
1425 int fd = fdchanges [i];
1426 ANFD *anfd = anfds + fd;
319 struct ev_io *w; 1427 ev_io *w;
320 1428
321 int events = 0; 1429 unsigned char o_events = anfd->events;
1430 unsigned char o_reify = anfd->reify;
322 1431
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0; 1432 anfd->reify = 0;
327 1433
328 method_modify (EV_A_ fd, anfd->events, events); 1434 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1435 {
329 anfd->events = events; 1436 anfd->events = 0;
1437
1438 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1439 anfd->events |= (unsigned char)w->events;
1440
1441 if (o_events != anfd->events)
1442 o_reify = EV__IOFDSET; /* actually |= */
1443 }
1444
1445 if (o_reify & EV__IOFDSET)
1446 backend_modify (EV_A_ fd, o_events, anfd->events);
330 } 1447 }
331 1448
332 fdchangecnt = 0; 1449 fdchangecnt = 0;
333} 1450}
334 1451
335static void 1452/* something about the given fd changed */
1453inline_size void
336fd_change (EV_P_ int fd) 1454fd_change (EV_P_ int fd, int flags)
337{ 1455{
338 if (anfds [fd].reify || fdchangecnt < 0) 1456 unsigned char reify = anfds [fd].reify;
339 return;
340
341 anfds [fd].reify = 1; 1457 anfds [fd].reify |= flags;
342 1458
1459 if (expect_true (!reify))
1460 {
343 ++fdchangecnt; 1461 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1462 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 1463 fdchanges [fdchangecnt - 1] = fd;
1464 }
346} 1465}
347 1466
348static void 1467/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1468inline_speed void ecb_cold
349fd_kill (EV_P_ int fd) 1469fd_kill (EV_P_ int fd)
350{ 1470{
351 struct ev_io *w; 1471 ev_io *w;
352 1472
353 while ((w = (struct ev_io *)anfds [fd].head)) 1473 while ((w = (ev_io *)anfds [fd].head))
354 { 1474 {
355 ev_io_stop (EV_A_ w); 1475 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1476 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 1477 }
1478}
1479
1480/* check whether the given fd is actually valid, for error recovery */
1481inline_size int ecb_cold
1482fd_valid (int fd)
1483{
1484#ifdef _WIN32
1485 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1486#else
1487 return fcntl (fd, F_GETFD) != -1;
1488#endif
358} 1489}
359 1490
360/* called on EBADF to verify fds */ 1491/* called on EBADF to verify fds */
361static void 1492static void noinline ecb_cold
362fd_ebadf (EV_P) 1493fd_ebadf (EV_P)
363{ 1494{
364 int fd; 1495 int fd;
365 1496
366 for (fd = 0; fd < anfdmax; ++fd) 1497 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 1498 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1499 if (!fd_valid (fd) && errno == EBADF)
369 fd_kill (EV_A_ fd); 1500 fd_kill (EV_A_ fd);
370} 1501}
371 1502
372/* called on ENOMEM in select/poll to kill some fds and retry */ 1503/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 1504static void noinline ecb_cold
374fd_enomem (EV_P) 1505fd_enomem (EV_P)
375{ 1506{
376 int fd; 1507 int fd;
377 1508
378 for (fd = anfdmax; fd--; ) 1509 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 1510 if (anfds [fd].events)
380 { 1511 {
381 fd_kill (EV_A_ fd); 1512 fd_kill (EV_A_ fd);
382 return; 1513 break;
383 } 1514 }
384} 1515}
385 1516
386/* susually called after fork if method needs to re-arm all fds from scratch */ 1517/* usually called after fork if backend needs to re-arm all fds from scratch */
387static void 1518static void noinline
388fd_rearm_all (EV_P) 1519fd_rearm_all (EV_P)
389{ 1520{
390 int fd; 1521 int fd;
391 1522
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd) 1523 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events) 1524 if (anfds [fd].events)
395 { 1525 {
396 anfds [fd].events = 0; 1526 anfds [fd].events = 0;
397 fd_change (EV_A_ fd); 1527 anfds [fd].emask = 0;
1528 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
398 } 1529 }
399} 1530}
400 1531
1532/* used to prepare libev internal fd's */
1533/* this is not fork-safe */
1534inline_speed void
1535fd_intern (int fd)
1536{
1537#ifdef _WIN32
1538 unsigned long arg = 1;
1539 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1540#else
1541 fcntl (fd, F_SETFD, FD_CLOEXEC);
1542 fcntl (fd, F_SETFL, O_NONBLOCK);
1543#endif
1544}
1545
401/*****************************************************************************/ 1546/*****************************************************************************/
402 1547
1548/*
1549 * the heap functions want a real array index. array index 0 is guaranteed to not
1550 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1551 * the branching factor of the d-tree.
1552 */
1553
1554/*
1555 * at the moment we allow libev the luxury of two heaps,
1556 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1557 * which is more cache-efficient.
1558 * the difference is about 5% with 50000+ watchers.
1559 */
1560#if EV_USE_4HEAP
1561
1562#define DHEAP 4
1563#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1564#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1565#define UPHEAP_DONE(p,k) ((p) == (k))
1566
1567/* away from the root */
1568inline_speed void
1569downheap (ANHE *heap, int N, int k)
1570{
1571 ANHE he = heap [k];
1572 ANHE *E = heap + N + HEAP0;
1573
1574 for (;;)
1575 {
1576 ev_tstamp minat;
1577 ANHE *minpos;
1578 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1579
1580 /* find minimum child */
1581 if (expect_true (pos + DHEAP - 1 < E))
1582 {
1583 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1584 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1585 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1586 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1587 }
1588 else if (pos < E)
1589 {
1590 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1591 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1592 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1593 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1594 }
1595 else
1596 break;
1597
1598 if (ANHE_at (he) <= minat)
1599 break;
1600
1601 heap [k] = *minpos;
1602 ev_active (ANHE_w (*minpos)) = k;
1603
1604 k = minpos - heap;
1605 }
1606
1607 heap [k] = he;
1608 ev_active (ANHE_w (he)) = k;
1609}
1610
1611#else /* 4HEAP */
1612
1613#define HEAP0 1
1614#define HPARENT(k) ((k) >> 1)
1615#define UPHEAP_DONE(p,k) (!(p))
1616
1617/* away from the root */
1618inline_speed void
1619downheap (ANHE *heap, int N, int k)
1620{
1621 ANHE he = heap [k];
1622
1623 for (;;)
1624 {
1625 int c = k << 1;
1626
1627 if (c >= N + HEAP0)
1628 break;
1629
1630 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1631 ? 1 : 0;
1632
1633 if (ANHE_at (he) <= ANHE_at (heap [c]))
1634 break;
1635
1636 heap [k] = heap [c];
1637 ev_active (ANHE_w (heap [k])) = k;
1638
1639 k = c;
1640 }
1641
1642 heap [k] = he;
1643 ev_active (ANHE_w (he)) = k;
1644}
1645#endif
1646
1647/* towards the root */
1648inline_speed void
1649upheap (ANHE *heap, int k)
1650{
1651 ANHE he = heap [k];
1652
1653 for (;;)
1654 {
1655 int p = HPARENT (k);
1656
1657 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1658 break;
1659
1660 heap [k] = heap [p];
1661 ev_active (ANHE_w (heap [k])) = k;
1662 k = p;
1663 }
1664
1665 heap [k] = he;
1666 ev_active (ANHE_w (he)) = k;
1667}
1668
1669/* move an element suitably so it is in a correct place */
1670inline_size void
1671adjustheap (ANHE *heap, int N, int k)
1672{
1673 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1674 upheap (heap, k);
1675 else
1676 downheap (heap, N, k);
1677}
1678
1679/* rebuild the heap: this function is used only once and executed rarely */
1680inline_size void
1681reheap (ANHE *heap, int N)
1682{
1683 int i;
1684
1685 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1686 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1687 for (i = 0; i < N; ++i)
1688 upheap (heap, i + HEAP0);
1689}
1690
1691/*****************************************************************************/
1692
1693/* associate signal watchers to a signal signal */
1694typedef struct
1695{
1696 EV_ATOMIC_T pending;
1697#if EV_MULTIPLICITY
1698 EV_P;
1699#endif
1700 WL head;
1701} ANSIG;
1702
1703static ANSIG signals [EV_NSIG - 1];
1704
1705/*****************************************************************************/
1706
1707#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1708
1709static void noinline ecb_cold
1710evpipe_init (EV_P)
1711{
1712 if (!ev_is_active (&pipe_w))
1713 {
1714# if EV_USE_EVENTFD
1715 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1716 if (evfd < 0 && errno == EINVAL)
1717 evfd = eventfd (0, 0);
1718
1719 if (evfd >= 0)
1720 {
1721 evpipe [0] = -1;
1722 fd_intern (evfd); /* doing it twice doesn't hurt */
1723 ev_io_set (&pipe_w, evfd, EV_READ);
1724 }
1725 else
1726# endif
1727 {
1728 while (pipe (evpipe))
1729 ev_syserr ("(libev) error creating signal/async pipe");
1730
1731 fd_intern (evpipe [0]);
1732 fd_intern (evpipe [1]);
1733 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1734 }
1735
1736 ev_io_start (EV_A_ &pipe_w);
1737 ev_unref (EV_A); /* watcher should not keep loop alive */
1738 }
1739}
1740
1741inline_speed void
1742evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1743{
1744 if (expect_true (*flag))
1745 return;
1746
1747 *flag = 1;
1748
1749 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1750
1751 pipe_write_skipped = 1;
1752
1753 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1754
1755 if (pipe_write_wanted)
1756 {
1757 int old_errno;
1758
1759 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1760
1761 old_errno = errno; /* save errno because write will clobber it */
1762
1763#if EV_USE_EVENTFD
1764 if (evfd >= 0)
1765 {
1766 uint64_t counter = 1;
1767 write (evfd, &counter, sizeof (uint64_t));
1768 }
1769 else
1770#endif
1771 {
1772 /* win32 people keep sending patches that change this write() to send() */
1773 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1774 /* so when you think this write should be a send instead, please find out */
1775 /* where your send() is from - it's definitely not the microsoft send, and */
1776 /* tell me. thank you. */
1777 write (evpipe [1], &(evpipe [1]), 1);
1778 }
1779
1780 errno = old_errno;
1781 }
1782}
1783
1784/* called whenever the libev signal pipe */
1785/* got some events (signal, async) */
403static void 1786static void
404upheap (WT *heap, int k) 1787pipecb (EV_P_ ev_io *iow, int revents)
405{ 1788{
406 WT w = heap [k]; 1789 int i;
407 1790
408 while (k && heap [k >> 1]->at > w->at) 1791 if (revents & EV_READ)
409 {
410 heap [k] = heap [k >> 1];
411 ((W)heap [k])->active = k + 1;
412 k >>= 1;
413 } 1792 {
1793#if EV_USE_EVENTFD
1794 if (evfd >= 0)
1795 {
1796 uint64_t counter;
1797 read (evfd, &counter, sizeof (uint64_t));
1798 }
1799 else
1800#endif
1801 {
1802 char dummy;
1803 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1804 read (evpipe [0], &dummy, 1);
1805 }
1806 }
414 1807
415 heap [k] = w; 1808 pipe_write_skipped = 0;
416 ((W)heap [k])->active = k + 1;
417 1809
1810#if EV_SIGNAL_ENABLE
1811 if (sig_pending)
1812 {
1813 sig_pending = 0;
1814
1815 for (i = EV_NSIG - 1; i--; )
1816 if (expect_false (signals [i].pending))
1817 ev_feed_signal_event (EV_A_ i + 1);
1818 }
1819#endif
1820
1821#if EV_ASYNC_ENABLE
1822 if (async_pending)
1823 {
1824 async_pending = 0;
1825
1826 for (i = asynccnt; i--; )
1827 if (asyncs [i]->sent)
1828 {
1829 asyncs [i]->sent = 0;
1830 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1831 }
1832 }
1833#endif
1834}
1835
1836/*****************************************************************************/
1837
1838void
1839ev_feed_signal (int signum)
1840{
1841#if EV_MULTIPLICITY
1842 EV_P = signals [signum - 1].loop;
1843
1844 if (!EV_A)
1845 return;
1846#endif
1847
1848 if (!ev_active (&pipe_w))
1849 return;
1850
1851 signals [signum - 1].pending = 1;
1852 evpipe_write (EV_A_ &sig_pending);
418} 1853}
419 1854
420static void 1855static void
421downheap (WT *heap, int N, int k) 1856ev_sighandler (int signum)
422{ 1857{
423 WT w = heap [k]; 1858#ifdef _WIN32
1859 signal (signum, ev_sighandler);
1860#endif
424 1861
425 while (k < (N >> 1)) 1862 ev_feed_signal (signum);
426 { 1863}
427 int j = k << 1;
428 1864
429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1865void noinline
430 ++j; 1866ev_feed_signal_event (EV_P_ int signum)
1867{
1868 WL w;
431 1869
432 if (w->at <= heap [j]->at) 1870 if (expect_false (signum <= 0 || signum > EV_NSIG))
1871 return;
1872
1873 --signum;
1874
1875#if EV_MULTIPLICITY
1876 /* it is permissible to try to feed a signal to the wrong loop */
1877 /* or, likely more useful, feeding a signal nobody is waiting for */
1878
1879 if (expect_false (signals [signum].loop != EV_A))
1880 return;
1881#endif
1882
1883 signals [signum].pending = 0;
1884
1885 for (w = signals [signum].head; w; w = w->next)
1886 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1887}
1888
1889#if EV_USE_SIGNALFD
1890static void
1891sigfdcb (EV_P_ ev_io *iow, int revents)
1892{
1893 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1894
1895 for (;;)
1896 {
1897 ssize_t res = read (sigfd, si, sizeof (si));
1898
1899 /* not ISO-C, as res might be -1, but works with SuS */
1900 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1901 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1902
1903 if (res < (ssize_t)sizeof (si))
433 break; 1904 break;
434
435 heap [k] = heap [j];
436 ((W)heap [k])->active = k + 1;
437 k = j;
438 } 1905 }
439
440 heap [k] = w;
441 ((W)heap [k])->active = k + 1;
442} 1906}
1907#endif
1908
1909#endif
443 1910
444/*****************************************************************************/ 1911/*****************************************************************************/
445 1912
446typedef struct 1913#if EV_CHILD_ENABLE
447{ 1914static WL childs [EV_PID_HASHSIZE];
448 WL head;
449 sig_atomic_t volatile gotsig;
450} ANSIG;
451 1915
452static ANSIG *signals;
453static int signalmax;
454
455static int sigpipe [2];
456static sig_atomic_t volatile gotsig;
457static struct ev_io sigev;
458
459static void
460signals_init (ANSIG *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->gotsig = 0;
466
467 ++base;
468 }
469}
470
471static void
472sighandler (int signum)
473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
478 signals [signum - 1].gotsig = 1;
479
480 if (!gotsig)
481 {
482 int old_errno = errno;
483 gotsig = 1;
484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
486 }
487}
488
489static void
490sigcb (EV_P_ struct ev_io *iow, int revents)
491{
492 WL w;
493 int signum;
494
495 read (sigpipe [0], &revents, 1);
496 gotsig = 0;
497
498 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig)
500 {
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506}
507
508static void
509siginit (EV_P)
510{
511#ifndef WIN32
512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
514
515 /* rather than sort out wether we really need nb, set it */
516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
519
520 ev_io_set (&sigev, sigpipe [0], EV_READ);
521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
523}
524
525/*****************************************************************************/
526
527#ifndef WIN32
528
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 1916static ev_signal childev;
1917
1918#ifndef WIFCONTINUED
1919# define WIFCONTINUED(status) 0
1920#endif
1921
1922/* handle a single child status event */
1923inline_speed void
1924child_reap (EV_P_ int chain, int pid, int status)
1925{
1926 ev_child *w;
1927 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1928
1929 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1930 {
1931 if ((w->pid == pid || !w->pid)
1932 && (!traced || (w->flags & 1)))
1933 {
1934 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1935 w->rpid = pid;
1936 w->rstatus = status;
1937 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1938 }
1939 }
1940}
531 1941
532#ifndef WCONTINUED 1942#ifndef WCONTINUED
533# define WCONTINUED 0 1943# define WCONTINUED 0
534#endif 1944#endif
535 1945
1946/* called on sigchld etc., calls waitpid */
536static void 1947static void
537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
538{
539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 1948childcb (EV_P_ ev_signal *sw, int revents)
553{ 1949{
554 int pid, status; 1950 int pid, status;
555 1951
1952 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1953 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 1954 if (!WCONTINUED
1955 || errno != EINVAL
1956 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1957 return;
1958
558 /* make sure we are called again until all childs have been reaped */ 1959 /* make sure we are called again until all children have been reaped */
1960 /* we need to do it this way so that the callback gets called before we continue */
559 event (EV_A_ (W)sw, EV_SIGNAL); 1961 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 1962
561 child_reap (EV_A_ sw, pid, pid, status); 1963 child_reap (EV_A_ pid, pid, status);
1964 if ((EV_PID_HASHSIZE) > 1)
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1965 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
563 }
564} 1966}
565 1967
566#endif 1968#endif
567 1969
568/*****************************************************************************/ 1970/*****************************************************************************/
569 1971
1972#if EV_USE_IOCP
1973# include "ev_iocp.c"
1974#endif
1975#if EV_USE_PORT
1976# include "ev_port.c"
1977#endif
570#if EV_USE_KQUEUE 1978#if EV_USE_KQUEUE
571# include "ev_kqueue.c" 1979# include "ev_kqueue.c"
572#endif 1980#endif
573#if EV_USE_EPOLL 1981#if EV_USE_EPOLL
574# include "ev_epoll.c" 1982# include "ev_epoll.c"
578#endif 1986#endif
579#if EV_USE_SELECT 1987#if EV_USE_SELECT
580# include "ev_select.c" 1988# include "ev_select.c"
581#endif 1989#endif
582 1990
583int 1991int ecb_cold
584ev_version_major (void) 1992ev_version_major (void)
585{ 1993{
586 return EV_VERSION_MAJOR; 1994 return EV_VERSION_MAJOR;
587} 1995}
588 1996
589int 1997int ecb_cold
590ev_version_minor (void) 1998ev_version_minor (void)
591{ 1999{
592 return EV_VERSION_MINOR; 2000 return EV_VERSION_MINOR;
593} 2001}
594 2002
595/* return true if we are running with elevated privileges and should ignore env variables */ 2003/* return true if we are running with elevated privileges and should ignore env variables */
596static int 2004int inline_size ecb_cold
597enable_secure (void) 2005enable_secure (void)
598{ 2006{
599#ifdef WIN32 2007#ifdef _WIN32
600 return 0; 2008 return 0;
601#else 2009#else
602 return getuid () != geteuid () 2010 return getuid () != geteuid ()
603 || getgid () != getegid (); 2011 || getgid () != getegid ();
604#endif 2012#endif
605} 2013}
606 2014
2015unsigned int ecb_cold
2016ev_supported_backends (void)
2017{
2018 unsigned int flags = 0;
2019
2020 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2021 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2022 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2023 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2024 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2025
2026 return flags;
2027}
2028
2029unsigned int ecb_cold
2030ev_recommended_backends (void)
2031{
2032 unsigned int flags = ev_supported_backends ();
2033
2034#ifndef __NetBSD__
2035 /* kqueue is borked on everything but netbsd apparently */
2036 /* it usually doesn't work correctly on anything but sockets and pipes */
2037 flags &= ~EVBACKEND_KQUEUE;
2038#endif
2039#ifdef __APPLE__
2040 /* only select works correctly on that "unix-certified" platform */
2041 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2042 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2043#endif
2044#ifdef __FreeBSD__
2045 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2046#endif
2047
2048 return flags;
2049}
2050
2051unsigned int ecb_cold
2052ev_embeddable_backends (void)
2053{
2054 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2055
2056 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2057 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2058 flags &= ~EVBACKEND_EPOLL;
2059
2060 return flags;
2061}
2062
2063unsigned int
2064ev_backend (EV_P)
2065{
2066 return backend;
2067}
2068
2069#if EV_FEATURE_API
2070unsigned int
2071ev_iteration (EV_P)
2072{
2073 return loop_count;
2074}
2075
2076unsigned int
2077ev_depth (EV_P)
2078{
2079 return loop_depth;
2080}
2081
2082void
2083ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2084{
2085 io_blocktime = interval;
2086}
2087
2088void
2089ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2090{
2091 timeout_blocktime = interval;
2092}
2093
2094void
2095ev_set_userdata (EV_P_ void *data)
2096{
2097 userdata = data;
2098}
2099
2100void *
2101ev_userdata (EV_P)
2102{
2103 return userdata;
2104}
2105
2106void
2107ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2108{
2109 invoke_cb = invoke_pending_cb;
2110}
2111
2112void
2113ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2114{
2115 release_cb = release;
2116 acquire_cb = acquire;
2117}
2118#endif
2119
2120/* initialise a loop structure, must be zero-initialised */
2121static void noinline ecb_cold
2122loop_init (EV_P_ unsigned int flags)
2123{
2124 if (!backend)
2125 {
2126 origflags = flags;
2127
2128#if EV_USE_REALTIME
2129 if (!have_realtime)
2130 {
2131 struct timespec ts;
2132
2133 if (!clock_gettime (CLOCK_REALTIME, &ts))
2134 have_realtime = 1;
2135 }
2136#endif
2137
2138#if EV_USE_MONOTONIC
2139 if (!have_monotonic)
2140 {
2141 struct timespec ts;
2142
2143 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2144 have_monotonic = 1;
2145 }
2146#endif
2147
2148 /* pid check not overridable via env */
2149#ifndef _WIN32
2150 if (flags & EVFLAG_FORKCHECK)
2151 curpid = getpid ();
2152#endif
2153
2154 if (!(flags & EVFLAG_NOENV)
2155 && !enable_secure ()
2156 && getenv ("LIBEV_FLAGS"))
2157 flags = atoi (getenv ("LIBEV_FLAGS"));
2158
2159 ev_rt_now = ev_time ();
2160 mn_now = get_clock ();
2161 now_floor = mn_now;
2162 rtmn_diff = ev_rt_now - mn_now;
2163#if EV_FEATURE_API
2164 invoke_cb = ev_invoke_pending;
2165#endif
2166
2167 io_blocktime = 0.;
2168 timeout_blocktime = 0.;
2169 backend = 0;
2170 backend_fd = -1;
2171 sig_pending = 0;
2172#if EV_ASYNC_ENABLE
2173 async_pending = 0;
2174#endif
2175 pipe_write_skipped = 0;
2176 pipe_write_wanted = 0;
2177#if EV_USE_INOTIFY
2178 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2179#endif
2180#if EV_USE_SIGNALFD
2181 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2182#endif
2183
2184 if (!(flags & EVBACKEND_MASK))
2185 flags |= ev_recommended_backends ();
2186
2187#if EV_USE_IOCP
2188 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2189#endif
2190#if EV_USE_PORT
2191 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2192#endif
2193#if EV_USE_KQUEUE
2194 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2195#endif
2196#if EV_USE_EPOLL
2197 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2198#endif
2199#if EV_USE_POLL
2200 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2201#endif
2202#if EV_USE_SELECT
2203 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2204#endif
2205
2206 ev_prepare_init (&pending_w, pendingcb);
2207
2208#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2209 ev_init (&pipe_w, pipecb);
2210 ev_set_priority (&pipe_w, EV_MAXPRI);
2211#endif
2212 }
2213}
2214
2215/* free up a loop structure */
2216void ecb_cold
2217ev_loop_destroy (EV_P)
2218{
2219 int i;
2220
2221#if EV_MULTIPLICITY
2222 /* mimic free (0) */
2223 if (!EV_A)
2224 return;
2225#endif
2226
2227#if EV_CLEANUP_ENABLE
2228 /* queue cleanup watchers (and execute them) */
2229 if (expect_false (cleanupcnt))
2230 {
2231 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2232 EV_INVOKE_PENDING;
2233 }
2234#endif
2235
2236#if EV_CHILD_ENABLE
2237 if (ev_is_active (&childev))
2238 {
2239 ev_ref (EV_A); /* child watcher */
2240 ev_signal_stop (EV_A_ &childev);
2241 }
2242#endif
2243
2244 if (ev_is_active (&pipe_w))
2245 {
2246 /*ev_ref (EV_A);*/
2247 /*ev_io_stop (EV_A_ &pipe_w);*/
2248
2249#if EV_USE_EVENTFD
2250 if (evfd >= 0)
2251 close (evfd);
2252#endif
2253
2254 if (evpipe [0] >= 0)
2255 {
2256 EV_WIN32_CLOSE_FD (evpipe [0]);
2257 EV_WIN32_CLOSE_FD (evpipe [1]);
2258 }
2259 }
2260
2261#if EV_USE_SIGNALFD
2262 if (ev_is_active (&sigfd_w))
2263 close (sigfd);
2264#endif
2265
2266#if EV_USE_INOTIFY
2267 if (fs_fd >= 0)
2268 close (fs_fd);
2269#endif
2270
2271 if (backend_fd >= 0)
2272 close (backend_fd);
2273
2274#if EV_USE_IOCP
2275 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2276#endif
2277#if EV_USE_PORT
2278 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2279#endif
2280#if EV_USE_KQUEUE
2281 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2282#endif
2283#if EV_USE_EPOLL
2284 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2285#endif
2286#if EV_USE_POLL
2287 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2288#endif
2289#if EV_USE_SELECT
2290 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2291#endif
2292
2293 for (i = NUMPRI; i--; )
2294 {
2295 array_free (pending, [i]);
2296#if EV_IDLE_ENABLE
2297 array_free (idle, [i]);
2298#endif
2299 }
2300
2301 ev_free (anfds); anfds = 0; anfdmax = 0;
2302
2303 /* have to use the microsoft-never-gets-it-right macro */
2304 array_free (rfeed, EMPTY);
2305 array_free (fdchange, EMPTY);
2306 array_free (timer, EMPTY);
2307#if EV_PERIODIC_ENABLE
2308 array_free (periodic, EMPTY);
2309#endif
2310#if EV_FORK_ENABLE
2311 array_free (fork, EMPTY);
2312#endif
2313#if EV_CLEANUP_ENABLE
2314 array_free (cleanup, EMPTY);
2315#endif
2316 array_free (prepare, EMPTY);
2317 array_free (check, EMPTY);
2318#if EV_ASYNC_ENABLE
2319 array_free (async, EMPTY);
2320#endif
2321
2322 backend = 0;
2323
2324#if EV_MULTIPLICITY
2325 if (ev_is_default_loop (EV_A))
2326#endif
2327 ev_default_loop_ptr = 0;
2328#if EV_MULTIPLICITY
2329 else
2330 ev_free (EV_A);
2331#endif
2332}
2333
2334#if EV_USE_INOTIFY
2335inline_size void infy_fork (EV_P);
2336#endif
2337
2338inline_size void
2339loop_fork (EV_P)
2340{
2341#if EV_USE_PORT
2342 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2343#endif
2344#if EV_USE_KQUEUE
2345 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2346#endif
2347#if EV_USE_EPOLL
2348 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2349#endif
2350#if EV_USE_INOTIFY
2351 infy_fork (EV_A);
2352#endif
2353
2354 if (ev_is_active (&pipe_w))
2355 {
2356 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2357
2358 ev_ref (EV_A);
2359 ev_io_stop (EV_A_ &pipe_w);
2360
2361#if EV_USE_EVENTFD
2362 if (evfd >= 0)
2363 close (evfd);
2364#endif
2365
2366 if (evpipe [0] >= 0)
2367 {
2368 EV_WIN32_CLOSE_FD (evpipe [0]);
2369 EV_WIN32_CLOSE_FD (evpipe [1]);
2370 }
2371
2372#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2373 evpipe_init (EV_A);
2374 /* now iterate over everything, in case we missed something */
2375 pipecb (EV_A_ &pipe_w, EV_READ);
2376#endif
2377 }
2378
2379 postfork = 0;
2380}
2381
2382#if EV_MULTIPLICITY
2383
2384struct ev_loop * ecb_cold
2385ev_loop_new (unsigned int flags)
2386{
2387 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2388
2389 memset (EV_A, 0, sizeof (struct ev_loop));
2390 loop_init (EV_A_ flags);
2391
2392 if (ev_backend (EV_A))
2393 return EV_A;
2394
2395 ev_free (EV_A);
2396 return 0;
2397}
2398
2399#endif /* multiplicity */
2400
2401#if EV_VERIFY
2402static void noinline ecb_cold
2403verify_watcher (EV_P_ W w)
2404{
2405 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2406
2407 if (w->pending)
2408 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2409}
2410
2411static void noinline ecb_cold
2412verify_heap (EV_P_ ANHE *heap, int N)
2413{
2414 int i;
2415
2416 for (i = HEAP0; i < N + HEAP0; ++i)
2417 {
2418 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2419 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2420 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2421
2422 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2423 }
2424}
2425
2426static void noinline ecb_cold
2427array_verify (EV_P_ W *ws, int cnt)
2428{
2429 while (cnt--)
2430 {
2431 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2432 verify_watcher (EV_A_ ws [cnt]);
2433 }
2434}
2435#endif
2436
2437#if EV_FEATURE_API
2438void ecb_cold
2439ev_verify (EV_P)
2440{
2441#if EV_VERIFY
2442 int i;
2443 WL w;
2444
2445 assert (activecnt >= -1);
2446
2447 assert (fdchangemax >= fdchangecnt);
2448 for (i = 0; i < fdchangecnt; ++i)
2449 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2450
2451 assert (anfdmax >= 0);
2452 for (i = 0; i < anfdmax; ++i)
2453 for (w = anfds [i].head; w; w = w->next)
2454 {
2455 verify_watcher (EV_A_ (W)w);
2456 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2457 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2458 }
2459
2460 assert (timermax >= timercnt);
2461 verify_heap (EV_A_ timers, timercnt);
2462
2463#if EV_PERIODIC_ENABLE
2464 assert (periodicmax >= periodiccnt);
2465 verify_heap (EV_A_ periodics, periodiccnt);
2466#endif
2467
2468 for (i = NUMPRI; i--; )
2469 {
2470 assert (pendingmax [i] >= pendingcnt [i]);
2471#if EV_IDLE_ENABLE
2472 assert (idleall >= 0);
2473 assert (idlemax [i] >= idlecnt [i]);
2474 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2475#endif
2476 }
2477
2478#if EV_FORK_ENABLE
2479 assert (forkmax >= forkcnt);
2480 array_verify (EV_A_ (W *)forks, forkcnt);
2481#endif
2482
2483#if EV_CLEANUP_ENABLE
2484 assert (cleanupmax >= cleanupcnt);
2485 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2486#endif
2487
2488#if EV_ASYNC_ENABLE
2489 assert (asyncmax >= asynccnt);
2490 array_verify (EV_A_ (W *)asyncs, asynccnt);
2491#endif
2492
2493#if EV_PREPARE_ENABLE
2494 assert (preparemax >= preparecnt);
2495 array_verify (EV_A_ (W *)prepares, preparecnt);
2496#endif
2497
2498#if EV_CHECK_ENABLE
2499 assert (checkmax >= checkcnt);
2500 array_verify (EV_A_ (W *)checks, checkcnt);
2501#endif
2502
2503# if 0
2504#if EV_CHILD_ENABLE
2505 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2506 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2507#endif
2508# endif
2509#endif
2510}
2511#endif
2512
2513#if EV_MULTIPLICITY
2514struct ev_loop * ecb_cold
2515#else
607int 2516int
608ev_method (EV_P) 2517#endif
2518ev_default_loop (unsigned int flags)
609{ 2519{
610 return method; 2520 if (!ev_default_loop_ptr)
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
616 if (!method)
617 {
618#if EV_USE_MONOTONIC
619 { 2521 {
620 struct timespec ts;
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1;
623 }
624#endif
625
626 rt_now = ev_time ();
627 mn_now = get_clock ();
628 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now;
630
631 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS"));
634 else
635 methods = EVMETHOD_ANY;
636
637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
644#if EV_USE_EPOLL
645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646#endif
647#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif
650#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif
653 }
654}
655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY 2522#if EV_MULTIPLICITY
704struct ev_loop * 2523 EV_P = ev_default_loop_ptr = &default_loop_struct;
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else 2524#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1; 2525 ev_default_loop_ptr = 1;
754#endif 2526#endif
755 2527
756 loop_init (EV_A_ methods); 2528 loop_init (EV_A_ flags);
757 2529
758 if (ev_method (EV_A)) 2530 if (ev_backend (EV_A))
759 { 2531 {
760 ev_watcher_init (&sigev, sigcb); 2532#if EV_CHILD_ENABLE
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A);
763
764#ifndef WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 2533 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 2534 ev_set_priority (&childev, EV_MAXPRI);
767 ev_signal_start (EV_A_ &childev); 2535 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2536 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif 2537#endif
770 } 2538 }
771 else 2539 else
772 default_loop = 0; 2540 ev_default_loop_ptr = 0;
773 } 2541 }
774 2542
775 return default_loop; 2543 return ev_default_loop_ptr;
776} 2544}
777 2545
778void 2546void
779ev_default_destroy (void) 2547ev_loop_fork (EV_P)
780{ 2548{
781#if EV_MULTIPLICITY 2549 postfork = 1; /* must be in line with ev_default_fork */
782 struct ev_loop *loop = default_loop;
783#endif
784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795} 2550}
2551
2552/*****************************************************************************/
796 2553
797void 2554void
798ev_default_fork (void) 2555ev_invoke (EV_P_ void *w, int revents)
799{ 2556{
800#if EV_MULTIPLICITY 2557 EV_CB_INVOKE ((W)w, revents);
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 2558}
814 2559
815/*****************************************************************************/ 2560unsigned int
2561ev_pending_count (EV_P)
2562{
2563 int pri;
2564 unsigned int count = 0;
816 2565
817static void 2566 for (pri = NUMPRI; pri--; )
818call_pending (EV_P) 2567 count += pendingcnt [pri];
2568
2569 return count;
2570}
2571
2572void noinline
2573ev_invoke_pending (EV_P)
819{ 2574{
820 int pri; 2575 int pri;
821 2576
822 for (pri = NUMPRI; pri--; ) 2577 for (pri = NUMPRI; pri--; )
823 while (pendingcnt [pri]) 2578 while (pendingcnt [pri])
824 { 2579 {
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2580 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 2581
827 if (p->w)
828 {
829 p->w->pending = 0; 2582 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 2583 EV_CB_INVOKE (p->w, p->events);
831 } 2584 EV_FREQUENT_CHECK;
832 } 2585 }
833} 2586}
834 2587
835static void 2588#if EV_IDLE_ENABLE
2589/* make idle watchers pending. this handles the "call-idle */
2590/* only when higher priorities are idle" logic */
2591inline_size void
836timers_reify (EV_P) 2592idle_reify (EV_P)
837{ 2593{
838 while (timercnt && ((WT)timers [0])->at <= mn_now) 2594 if (expect_false (idleall))
839 { 2595 {
840 struct ev_timer *w = timers [0]; 2596 int pri;
841 2597
842 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2598 for (pri = NUMPRI; pri--; )
843
844 /* first reschedule or stop timer */
845 if (w->repeat)
846 { 2599 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2600 if (pendingcnt [pri])
848 ((WT)w)->at = mn_now + w->repeat; 2601 break;
849 downheap ((WT *)timers, timercnt, 0);
850 }
851 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 2602
854 event (EV_A_ (W)w, EV_TIMEOUT); 2603 if (idlecnt [pri])
855 }
856}
857
858static void
859periodics_reify (EV_P)
860{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
862 {
863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866
867 /* first reschedule or stop timer */
868 if (w->interval)
869 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0);
873 }
874 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876
877 event (EV_A_ (W)w, EV_PERIODIC);
878 }
879}
880
881static void
882periodics_reschedule (EV_P)
883{
884 int i;
885
886 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i)
888 {
889 struct ev_periodic *w = periodics [i];
890
891 if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 { 2604 {
897 ev_periodic_stop (EV_A_ w); 2605 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
898 ev_periodic_start (EV_A_ w); 2606 break;
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 } 2607 }
902 } 2608 }
903 } 2609 }
904} 2610}
2611#endif
905 2612
906inline int 2613/* make timers pending */
907time_update_monotonic (EV_P) 2614inline_size void
2615timers_reify (EV_P)
908{ 2616{
909 mn_now = get_clock (); 2617 EV_FREQUENT_CHECK;
910 2618
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2619 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
912 {
913 rt_now = rtmn_diff + mn_now;
914 return 0;
915 } 2620 {
916 else 2621 do
2622 {
2623 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2624
2625 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2626
2627 /* first reschedule or stop timer */
2628 if (w->repeat)
2629 {
2630 ev_at (w) += w->repeat;
2631 if (ev_at (w) < mn_now)
2632 ev_at (w) = mn_now;
2633
2634 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2635
2636 ANHE_at_cache (timers [HEAP0]);
2637 downheap (timers, timercnt, HEAP0);
2638 }
2639 else
2640 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2641
2642 EV_FREQUENT_CHECK;
2643 feed_reverse (EV_A_ (W)w);
2644 }
2645 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2646
2647 feed_reverse_done (EV_A_ EV_TIMER);
917 { 2648 }
918 now_floor = mn_now; 2649}
919 rt_now = ev_time (); 2650
920 return 1; 2651#if EV_PERIODIC_ENABLE
2652
2653static void noinline
2654periodic_recalc (EV_P_ ev_periodic *w)
2655{
2656 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2657 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2658
2659 /* the above almost always errs on the low side */
2660 while (at <= ev_rt_now)
921 } 2661 {
922} 2662 ev_tstamp nat = at + w->interval;
923 2663
924static void 2664 /* when resolution fails us, we use ev_rt_now */
925time_update (EV_P) 2665 if (expect_false (nat == at))
2666 {
2667 at = ev_rt_now;
2668 break;
2669 }
2670
2671 at = nat;
2672 }
2673
2674 ev_at (w) = at;
2675}
2676
2677/* make periodics pending */
2678inline_size void
2679periodics_reify (EV_P)
2680{
2681 EV_FREQUENT_CHECK;
2682
2683 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2684 {
2685 int feed_count = 0;
2686
2687 do
2688 {
2689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2690
2691 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2692
2693 /* first reschedule or stop timer */
2694 if (w->reschedule_cb)
2695 {
2696 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2697
2698 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2699
2700 ANHE_at_cache (periodics [HEAP0]);
2701 downheap (periodics, periodiccnt, HEAP0);
2702 }
2703 else if (w->interval)
2704 {
2705 periodic_recalc (EV_A_ w);
2706 ANHE_at_cache (periodics [HEAP0]);
2707 downheap (periodics, periodiccnt, HEAP0);
2708 }
2709 else
2710 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2711
2712 EV_FREQUENT_CHECK;
2713 feed_reverse (EV_A_ (W)w);
2714 }
2715 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2716
2717 feed_reverse_done (EV_A_ EV_PERIODIC);
2718 }
2719}
2720
2721/* simply recalculate all periodics */
2722/* TODO: maybe ensure that at least one event happens when jumping forward? */
2723static void noinline ecb_cold
2724periodics_reschedule (EV_P)
926{ 2725{
927 int i; 2726 int i;
928 2727
2728 /* adjust periodics after time jump */
2729 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2730 {
2731 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2732
2733 if (w->reschedule_cb)
2734 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2735 else if (w->interval)
2736 periodic_recalc (EV_A_ w);
2737
2738 ANHE_at_cache (periodics [i]);
2739 }
2740
2741 reheap (periodics, periodiccnt);
2742}
2743#endif
2744
2745/* adjust all timers by a given offset */
2746static void noinline ecb_cold
2747timers_reschedule (EV_P_ ev_tstamp adjust)
2748{
2749 int i;
2750
2751 for (i = 0; i < timercnt; ++i)
2752 {
2753 ANHE *he = timers + i + HEAP0;
2754 ANHE_w (*he)->at += adjust;
2755 ANHE_at_cache (*he);
2756 }
2757}
2758
2759/* fetch new monotonic and realtime times from the kernel */
2760/* also detect if there was a timejump, and act accordingly */
2761inline_speed void
2762time_update (EV_P_ ev_tstamp max_block)
2763{
929#if EV_USE_MONOTONIC 2764#if EV_USE_MONOTONIC
930 if (expect_true (have_monotonic)) 2765 if (expect_true (have_monotonic))
931 { 2766 {
932 if (time_update_monotonic (EV_A)) 2767 int i;
2768 ev_tstamp odiff = rtmn_diff;
2769
2770 mn_now = get_clock ();
2771
2772 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2773 /* interpolate in the meantime */
2774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
933 { 2775 {
934 ev_tstamp odiff = rtmn_diff; 2776 ev_rt_now = rtmn_diff + mn_now;
2777 return;
2778 }
935 2779
2780 now_floor = mn_now;
2781 ev_rt_now = ev_time ();
2782
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2783 /* loop a few times, before making important decisions.
2784 * on the choice of "4": one iteration isn't enough,
2785 * in case we get preempted during the calls to
2786 * ev_time and get_clock. a second call is almost guaranteed
2787 * to succeed in that case, though. and looping a few more times
2788 * doesn't hurt either as we only do this on time-jumps or
2789 * in the unlikely event of having been preempted here.
2790 */
2791 for (i = 4; --i; )
937 { 2792 {
2793 ev_tstamp diff;
938 rtmn_diff = rt_now - mn_now; 2794 rtmn_diff = ev_rt_now - mn_now;
939 2795
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2796 diff = odiff - rtmn_diff;
2797
2798 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
941 return; /* all is well */ 2799 return; /* all is well */
942 2800
943 rt_now = ev_time (); 2801 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 2802 mn_now = get_clock ();
945 now_floor = mn_now; 2803 now_floor = mn_now;
946 } 2804 }
947 2805
2806 /* no timer adjustment, as the monotonic clock doesn't jump */
2807 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2808# if EV_PERIODIC_ENABLE
2809 periodics_reschedule (EV_A);
2810# endif
2811 }
2812 else
2813#endif
2814 {
2815 ev_rt_now = ev_time ();
2816
2817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2818 {
2819 /* adjust timers. this is easy, as the offset is the same for all of them */
2820 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2821#if EV_PERIODIC_ENABLE
948 periodics_reschedule (EV_A); 2822 periodics_reschedule (EV_A);
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 2823#endif
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 2824 }
952 }
953 else
954#endif
955 {
956 rt_now = ev_time ();
957 2825
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 {
960 periodics_reschedule (EV_A);
961
962 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now;
965 }
966
967 mn_now = rt_now; 2826 mn_now = ev_rt_now;
968 } 2827 }
969} 2828}
970 2829
971void 2830void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
986ev_loop (EV_P_ int flags) 2831ev_run (EV_P_ int flags)
987{ 2832{
988 double block; 2833#if EV_FEATURE_API
989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2834 ++loop_depth;
2835#endif
2836
2837 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2838
2839 loop_done = EVBREAK_CANCEL;
2840
2841 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
990 2842
991 do 2843 do
992 { 2844 {
2845#if EV_VERIFY >= 2
2846 ev_verify (EV_A);
2847#endif
2848
2849#ifndef _WIN32
2850 if (expect_false (curpid)) /* penalise the forking check even more */
2851 if (expect_false (getpid () != curpid))
2852 {
2853 curpid = getpid ();
2854 postfork = 1;
2855 }
2856#endif
2857
2858#if EV_FORK_ENABLE
2859 /* we might have forked, so queue fork handlers */
2860 if (expect_false (postfork))
2861 if (forkcnt)
2862 {
2863 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2864 EV_INVOKE_PENDING;
2865 }
2866#endif
2867
2868#if EV_PREPARE_ENABLE
993 /* queue check watchers (and execute them) */ 2869 /* queue prepare watchers (and execute them) */
994 if (expect_false (preparecnt)) 2870 if (expect_false (preparecnt))
995 { 2871 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2872 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 2873 EV_INVOKE_PENDING;
998 } 2874 }
2875#endif
2876
2877 if (expect_false (loop_done))
2878 break;
2879
2880 /* we might have forked, so reify kernel state if necessary */
2881 if (expect_false (postfork))
2882 loop_fork (EV_A);
999 2883
1000 /* update fd-related kernel structures */ 2884 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 2885 fd_reify (EV_A);
1002 2886
1003 /* calculate blocking time */ 2887 /* calculate blocking time */
2888 {
2889 ev_tstamp waittime = 0.;
2890 ev_tstamp sleeptime = 0.;
1004 2891
1005 /* we only need this for !monotonic clockor timers, but as we basically 2892 /* remember old timestamp for io_blocktime calculation */
1006 always have timers, we just calculate it always */ 2893 ev_tstamp prev_mn_now = mn_now;
1007#if EV_USE_MONOTONIC 2894
1008 if (expect_true (have_monotonic)) 2895 /* update time to cancel out callback processing overhead */
1009 time_update_monotonic (EV_A); 2896 time_update (EV_A_ 1e100);
1010 else 2897
1011#endif 2898 /* from now on, we want a pipe-wake-up */
2899 pipe_write_wanted = 1;
2900
2901 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2902
2903 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1012 { 2904 {
1013 rt_now = ev_time ();
1014 mn_now = rt_now;
1015 }
1016
1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.;
1019 else
1020 {
1021 block = MAX_BLOCKTIME; 2905 waittime = MAX_BLOCKTIME;
1022 2906
1023 if (timercnt) 2907 if (timercnt)
1024 { 2908 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2909 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1026 if (block > to) block = to; 2910 if (waittime > to) waittime = to;
1027 } 2911 }
1028 2912
2913#if EV_PERIODIC_ENABLE
1029 if (periodiccnt) 2914 if (periodiccnt)
1030 { 2915 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2916 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1032 if (block > to) block = to; 2917 if (waittime > to) waittime = to;
1033 } 2918 }
2919#endif
1034 2920
1035 if (block < 0.) block = 0.; 2921 /* don't let timeouts decrease the waittime below timeout_blocktime */
2922 if (expect_false (waittime < timeout_blocktime))
2923 waittime = timeout_blocktime;
2924
2925 /* at this point, we NEED to wait, so we have to ensure */
2926 /* to pass a minimum nonzero value to the backend */
2927 if (expect_false (waittime < backend_mintime))
2928 waittime = backend_mintime;
2929
2930 /* extra check because io_blocktime is commonly 0 */
2931 if (expect_false (io_blocktime))
2932 {
2933 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2934
2935 if (sleeptime > waittime - backend_mintime)
2936 sleeptime = waittime - backend_mintime;
2937
2938 if (expect_true (sleeptime > 0.))
2939 {
2940 ev_sleep (sleeptime);
2941 waittime -= sleeptime;
2942 }
2943 }
1036 } 2944 }
1037 2945
1038 method_poll (EV_A_ block); 2946#if EV_FEATURE_API
2947 ++loop_count;
2948#endif
2949 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2950 backend_poll (EV_A_ waittime);
2951 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1039 2952
2953 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2954
2955 if (pipe_write_skipped)
2956 {
2957 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2958 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2959 }
2960
2961
1040 /* update rt_now, do magic */ 2962 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 2963 time_update (EV_A_ waittime + sleeptime);
2964 }
1042 2965
1043 /* queue pending timers and reschedule them */ 2966 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 2967 timers_reify (EV_A); /* relative timers called last */
2968#if EV_PERIODIC_ENABLE
1045 periodics_reify (EV_A); /* absolute timers called first */ 2969 periodics_reify (EV_A); /* absolute timers called first */
2970#endif
1046 2971
2972#if EV_IDLE_ENABLE
1047 /* queue idle watchers unless io or timers are pending */ 2973 /* queue idle watchers unless other events are pending */
1048 if (!pendingcnt) 2974 idle_reify (EV_A);
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2975#endif
1050 2976
2977#if EV_CHECK_ENABLE
1051 /* queue check watchers, to be executed first */ 2978 /* queue check watchers, to be executed first */
1052 if (checkcnt) 2979 if (expect_false (checkcnt))
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2981#endif
1054 2982
1055 call_pending (EV_A); 2983 EV_INVOKE_PENDING;
1056 } 2984 }
1057 while (activecnt && !loop_done); 2985 while (expect_true (
2986 activecnt
2987 && !loop_done
2988 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2989 ));
1058 2990
1059 if (loop_done != 2) 2991 if (loop_done == EVBREAK_ONE)
1060 loop_done = 0; 2992 loop_done = EVBREAK_CANCEL;
2993
2994#if EV_FEATURE_API
2995 --loop_depth;
2996#endif
1061} 2997}
1062 2998
1063void 2999void
1064ev_unloop (EV_P_ int how) 3000ev_break (EV_P_ int how)
1065{ 3001{
1066 loop_done = how; 3002 loop_done = how;
1067} 3003}
1068 3004
3005void
3006ev_ref (EV_P)
3007{
3008 ++activecnt;
3009}
3010
3011void
3012ev_unref (EV_P)
3013{
3014 --activecnt;
3015}
3016
3017void
3018ev_now_update (EV_P)
3019{
3020 time_update (EV_A_ 1e100);
3021}
3022
3023void
3024ev_suspend (EV_P)
3025{
3026 ev_now_update (EV_A);
3027}
3028
3029void
3030ev_resume (EV_P)
3031{
3032 ev_tstamp mn_prev = mn_now;
3033
3034 ev_now_update (EV_A);
3035 timers_reschedule (EV_A_ mn_now - mn_prev);
3036#if EV_PERIODIC_ENABLE
3037 /* TODO: really do this? */
3038 periodics_reschedule (EV_A);
3039#endif
3040}
3041
1069/*****************************************************************************/ 3042/*****************************************************************************/
3043/* singly-linked list management, used when the expected list length is short */
1070 3044
1071inline void 3045inline_size void
1072wlist_add (WL *head, WL elem) 3046wlist_add (WL *head, WL elem)
1073{ 3047{
1074 elem->next = *head; 3048 elem->next = *head;
1075 *head = elem; 3049 *head = elem;
1076} 3050}
1077 3051
1078inline void 3052inline_size void
1079wlist_del (WL *head, WL elem) 3053wlist_del (WL *head, WL elem)
1080{ 3054{
1081 while (*head) 3055 while (*head)
1082 { 3056 {
1083 if (*head == elem) 3057 if (expect_true (*head == elem))
1084 { 3058 {
1085 *head = elem->next; 3059 *head = elem->next;
1086 return; 3060 break;
1087 } 3061 }
1088 3062
1089 head = &(*head)->next; 3063 head = &(*head)->next;
1090 } 3064 }
1091} 3065}
1092 3066
3067/* internal, faster, version of ev_clear_pending */
1093inline void 3068inline_speed void
1094ev_clear_pending (EV_P_ W w) 3069clear_pending (EV_P_ W w)
1095{ 3070{
1096 if (w->pending) 3071 if (w->pending)
1097 { 3072 {
1098 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3073 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1099 w->pending = 0; 3074 w->pending = 0;
1100 } 3075 }
1101} 3076}
1102 3077
3078int
3079ev_clear_pending (EV_P_ void *w)
3080{
3081 W w_ = (W)w;
3082 int pending = w_->pending;
3083
3084 if (expect_true (pending))
3085 {
3086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3087 p->w = (W)&pending_w;
3088 w_->pending = 0;
3089 return p->events;
3090 }
3091 else
3092 return 0;
3093}
3094
1103inline void 3095inline_size void
3096pri_adjust (EV_P_ W w)
3097{
3098 int pri = ev_priority (w);
3099 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3101 ev_set_priority (w, pri);
3102}
3103
3104inline_speed void
1104ev_start (EV_P_ W w, int active) 3105ev_start (EV_P_ W w, int active)
1105{ 3106{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3107 pri_adjust (EV_A_ w);
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
1109 w->active = active; 3108 w->active = active;
1110 ev_ref (EV_A); 3109 ev_ref (EV_A);
1111} 3110}
1112 3111
1113inline void 3112inline_size void
1114ev_stop (EV_P_ W w) 3113ev_stop (EV_P_ W w)
1115{ 3114{
1116 ev_unref (EV_A); 3115 ev_unref (EV_A);
1117 w->active = 0; 3116 w->active = 0;
1118} 3117}
1119 3118
1120/*****************************************************************************/ 3119/*****************************************************************************/
1121 3120
1122void 3121void noinline
1123ev_io_start (EV_P_ struct ev_io *w) 3122ev_io_start (EV_P_ ev_io *w)
1124{ 3123{
1125 int fd = w->fd; 3124 int fd = w->fd;
1126 3125
1127 if (ev_is_active (w)) 3126 if (expect_false (ev_is_active (w)))
1128 return; 3127 return;
1129 3128
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 3129 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3130 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3131
3132 EV_FREQUENT_CHECK;
1131 3133
1132 ev_start (EV_A_ (W)w, 1); 3134 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3136 wlist_add (&anfds[fd].head, (WL)w);
1135 3137
1136 fd_change (EV_A_ fd); 3138 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1137} 3139 w->events &= ~EV__IOFDSET;
1138 3140
1139void 3141 EV_FREQUENT_CHECK;
3142}
3143
3144void noinline
1140ev_io_stop (EV_P_ struct ev_io *w) 3145ev_io_stop (EV_P_ ev_io *w)
1141{ 3146{
1142 ev_clear_pending (EV_A_ (W)w); 3147 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 3148 if (expect_false (!ev_is_active (w)))
1144 return; 3149 return;
1145 3150
3151 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3152
3153 EV_FREQUENT_CHECK;
3154
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3155 wlist_del (&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 3156 ev_stop (EV_A_ (W)w);
1148 3157
1149 fd_change (EV_A_ w->fd); 3158 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1150}
1151 3159
1152void 3160 EV_FREQUENT_CHECK;
3161}
3162
3163void noinline
1153ev_timer_start (EV_P_ struct ev_timer *w) 3164ev_timer_start (EV_P_ ev_timer *w)
1154{ 3165{
1155 if (ev_is_active (w)) 3166 if (expect_false (ev_is_active (w)))
1156 return; 3167 return;
1157 3168
1158 ((WT)w)->at += mn_now; 3169 ev_at (w) += mn_now;
1159 3170
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3171 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 3172
3173 EV_FREQUENT_CHECK;
3174
3175 ++timercnt;
1162 ev_start (EV_A_ (W)w, ++timercnt); 3176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1163 array_needsize (timers, timermax, timercnt, ); 3177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1164 timers [timercnt - 1] = w; 3178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1165 upheap ((WT *)timers, timercnt - 1); 3179 ANHE_at_cache (timers [ev_active (w)]);
3180 upheap (timers, ev_active (w));
1166 3181
3182 EV_FREQUENT_CHECK;
3183
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3184 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1168} 3185}
1169 3186
1170void 3187void noinline
1171ev_timer_stop (EV_P_ struct ev_timer *w) 3188ev_timer_stop (EV_P_ ev_timer *w)
1172{ 3189{
1173 ev_clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
1174 if (!ev_is_active (w)) 3191 if (expect_false (!ev_is_active (w)))
1175 return; 3192 return;
1176 3193
3194 EV_FREQUENT_CHECK;
3195
3196 {
3197 int active = ev_active (w);
3198
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3199 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1178 3200
1179 if (((W)w)->active < timercnt--) 3201 --timercnt;
3202
3203 if (expect_true (active < timercnt + HEAP0))
1180 { 3204 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 3205 timers [active] = timers [timercnt + HEAP0];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3206 adjustheap (timers, timercnt, active);
1183 } 3207 }
3208 }
1184 3209
1185 ((WT)w)->at = w->repeat; 3210 ev_at (w) -= mn_now;
1186 3211
1187 ev_stop (EV_A_ (W)w); 3212 ev_stop (EV_A_ (W)w);
1188}
1189 3213
1190void 3214 EV_FREQUENT_CHECK;
3215}
3216
3217void noinline
1191ev_timer_again (EV_P_ struct ev_timer *w) 3218ev_timer_again (EV_P_ ev_timer *w)
1192{ 3219{
3220 EV_FREQUENT_CHECK;
3221
1193 if (ev_is_active (w)) 3222 if (ev_is_active (w))
1194 { 3223 {
1195 if (w->repeat) 3224 if (w->repeat)
1196 { 3225 {
1197 ((WT)w)->at = mn_now + w->repeat; 3226 ev_at (w) = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3227 ANHE_at_cache (timers [ev_active (w)]);
3228 adjustheap (timers, timercnt, ev_active (w));
1199 } 3229 }
1200 else 3230 else
1201 ev_timer_stop (EV_A_ w); 3231 ev_timer_stop (EV_A_ w);
1202 } 3232 }
1203 else if (w->repeat) 3233 else if (w->repeat)
3234 {
3235 ev_at (w) = w->repeat;
1204 ev_timer_start (EV_A_ w); 3236 ev_timer_start (EV_A_ w);
1205} 3237 }
1206 3238
1207void 3239 EV_FREQUENT_CHECK;
3240}
3241
3242ev_tstamp
3243ev_timer_remaining (EV_P_ ev_timer *w)
3244{
3245 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3246}
3247
3248#if EV_PERIODIC_ENABLE
3249void noinline
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 3250ev_periodic_start (EV_P_ ev_periodic *w)
1209{ 3251{
1210 if (ev_is_active (w)) 3252 if (expect_false (ev_is_active (w)))
1211 return; 3253 return;
1212 3254
3255 if (w->reschedule_cb)
3256 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3257 else if (w->interval)
3258 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3259 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3260 periodic_recalc (EV_A_ w);
3261 }
3262 else
3263 ev_at (w) = w->offset;
1214 3264
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 3265 EV_FREQUENT_CHECK;
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1218 3266
3267 ++periodiccnt;
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 3268 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 3269 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1221 periodics [periodiccnt - 1] = w; 3270 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 3271 ANHE_at_cache (periodics [ev_active (w)]);
3272 upheap (periodics, ev_active (w));
1223 3273
3274 EV_FREQUENT_CHECK;
3275
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3276 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1225} 3277}
1226 3278
1227void 3279void noinline
1228ev_periodic_stop (EV_P_ struct ev_periodic *w) 3280ev_periodic_stop (EV_P_ ev_periodic *w)
1229{ 3281{
1230 ev_clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
1231 if (!ev_is_active (w)) 3283 if (expect_false (!ev_is_active (w)))
1232 return; 3284 return;
1233 3285
3286 EV_FREQUENT_CHECK;
3287
3288 {
3289 int active = ev_active (w);
3290
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3291 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1235 3292
1236 if (((W)w)->active < periodiccnt--) 3293 --periodiccnt;
3294
3295 if (expect_true (active < periodiccnt + HEAP0))
1237 { 3296 {
1238 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3297 periodics [active] = periodics [periodiccnt + HEAP0];
1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3298 adjustheap (periodics, periodiccnt, active);
1240 } 3299 }
3300 }
1241 3301
1242 ev_stop (EV_A_ (W)w); 3302 ev_stop (EV_A_ (W)w);
1243}
1244 3303
1245void 3304 EV_FREQUENT_CHECK;
1246ev_idle_start (EV_P_ struct ev_idle *w)
1247{
1248 if (ev_is_active (w))
1249 return;
1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254} 3305}
1255 3306
1256void 3307void noinline
1257ev_idle_stop (EV_P_ struct ev_idle *w) 3308ev_periodic_again (EV_P_ ev_periodic *w)
1258{ 3309{
1259 ev_clear_pending (EV_A_ (W)w); 3310 /* TODO: use adjustheap and recalculation */
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w); 3311 ev_periodic_stop (EV_A_ w);
3312 ev_periodic_start (EV_A_ w);
1265} 3313}
1266 3314#endif
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310 3315
1311#ifndef SA_RESTART 3316#ifndef SA_RESTART
1312# define SA_RESTART 0 3317# define SA_RESTART 0
1313#endif 3318#endif
1314 3319
3320#if EV_SIGNAL_ENABLE
3321
3322void noinline
3323ev_signal_start (EV_P_ ev_signal *w)
3324{
3325 if (expect_false (ev_is_active (w)))
3326 return;
3327
3328 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3329
3330#if EV_MULTIPLICITY
3331 assert (("libev: a signal must not be attached to two different loops",
3332 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3333
3334 signals [w->signum - 1].loop = EV_A;
3335#endif
3336
3337 EV_FREQUENT_CHECK;
3338
3339#if EV_USE_SIGNALFD
3340 if (sigfd == -2)
3341 {
3342 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3343 if (sigfd < 0 && errno == EINVAL)
3344 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3345
3346 if (sigfd >= 0)
3347 {
3348 fd_intern (sigfd); /* doing it twice will not hurt */
3349
3350 sigemptyset (&sigfd_set);
3351
3352 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3353 ev_set_priority (&sigfd_w, EV_MAXPRI);
3354 ev_io_start (EV_A_ &sigfd_w);
3355 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3356 }
3357 }
3358
3359 if (sigfd >= 0)
3360 {
3361 /* TODO: check .head */
3362 sigaddset (&sigfd_set, w->signum);
3363 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3364
3365 signalfd (sigfd, &sigfd_set, 0);
3366 }
3367#endif
3368
3369 ev_start (EV_A_ (W)w, 1);
3370 wlist_add (&signals [w->signum - 1].head, (WL)w);
3371
3372 if (!((WL)w)->next)
3373# if EV_USE_SIGNALFD
3374 if (sigfd < 0) /*TODO*/
3375# endif
3376 {
3377# ifdef _WIN32
3378 evpipe_init (EV_A);
3379
3380 signal (w->signum, ev_sighandler);
3381# else
3382 struct sigaction sa;
3383
3384 evpipe_init (EV_A);
3385
3386 sa.sa_handler = ev_sighandler;
3387 sigfillset (&sa.sa_mask);
3388 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3389 sigaction (w->signum, &sa, 0);
3390
3391 if (origflags & EVFLAG_NOSIGMASK)
3392 {
3393 sigemptyset (&sa.sa_mask);
3394 sigaddset (&sa.sa_mask, w->signum);
3395 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3396 }
3397#endif
3398 }
3399
3400 EV_FREQUENT_CHECK;
3401}
3402
3403void noinline
3404ev_signal_stop (EV_P_ ev_signal *w)
3405{
3406 clear_pending (EV_A_ (W)w);
3407 if (expect_false (!ev_is_active (w)))
3408 return;
3409
3410 EV_FREQUENT_CHECK;
3411
3412 wlist_del (&signals [w->signum - 1].head, (WL)w);
3413 ev_stop (EV_A_ (W)w);
3414
3415 if (!signals [w->signum - 1].head)
3416 {
3417#if EV_MULTIPLICITY
3418 signals [w->signum - 1].loop = 0; /* unattach from signal */
3419#endif
3420#if EV_USE_SIGNALFD
3421 if (sigfd >= 0)
3422 {
3423 sigset_t ss;
3424
3425 sigemptyset (&ss);
3426 sigaddset (&ss, w->signum);
3427 sigdelset (&sigfd_set, w->signum);
3428
3429 signalfd (sigfd, &sigfd_set, 0);
3430 sigprocmask (SIG_UNBLOCK, &ss, 0);
3431 }
3432 else
3433#endif
3434 signal (w->signum, SIG_DFL);
3435 }
3436
3437 EV_FREQUENT_CHECK;
3438}
3439
3440#endif
3441
3442#if EV_CHILD_ENABLE
3443
1315void 3444void
1316ev_signal_start (EV_P_ struct ev_signal *w) 3445ev_child_start (EV_P_ ev_child *w)
1317{ 3446{
1318#if EV_MULTIPLICITY 3447#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3448 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1320#endif 3449#endif
1321 if (ev_is_active (w)) 3450 if (expect_false (ev_is_active (w)))
1322 return; 3451 return;
1323 3452
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3453 EV_FREQUENT_CHECK;
1325 3454
1326 ev_start (EV_A_ (W)w, 1); 3455 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 3456 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 3457
1330 if (!((WL)w)->next) 3458 EV_FREQUENT_CHECK;
3459}
3460
3461void
3462ev_child_stop (EV_P_ ev_child *w)
3463{
3464 clear_pending (EV_A_ (W)w);
3465 if (expect_false (!ev_is_active (w)))
3466 return;
3467
3468 EV_FREQUENT_CHECK;
3469
3470 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3471 ev_stop (EV_A_ (W)w);
3472
3473 EV_FREQUENT_CHECK;
3474}
3475
3476#endif
3477
3478#if EV_STAT_ENABLE
3479
3480# ifdef _WIN32
3481# undef lstat
3482# define lstat(a,b) _stati64 (a,b)
3483# endif
3484
3485#define DEF_STAT_INTERVAL 5.0074891
3486#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3487#define MIN_STAT_INTERVAL 0.1074891
3488
3489static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3490
3491#if EV_USE_INOTIFY
3492
3493/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3494# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3495
3496static void noinline
3497infy_add (EV_P_ ev_stat *w)
3498{
3499 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3500
3501 if (w->wd >= 0)
3502 {
3503 struct statfs sfs;
3504
3505 /* now local changes will be tracked by inotify, but remote changes won't */
3506 /* unless the filesystem is known to be local, we therefore still poll */
3507 /* also do poll on <2.6.25, but with normal frequency */
3508
3509 if (!fs_2625)
3510 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3511 else if (!statfs (w->path, &sfs)
3512 && (sfs.f_type == 0x1373 /* devfs */
3513 || sfs.f_type == 0xEF53 /* ext2/3 */
3514 || sfs.f_type == 0x3153464a /* jfs */
3515 || sfs.f_type == 0x52654973 /* reiser3 */
3516 || sfs.f_type == 0x01021994 /* tempfs */
3517 || sfs.f_type == 0x58465342 /* xfs */))
3518 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3519 else
3520 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1331 { 3521 }
1332#if WIN32 3522 else
1333 signal (w->signum, sighandler); 3523 {
3524 /* can't use inotify, continue to stat */
3525 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3526
3527 /* if path is not there, monitor some parent directory for speedup hints */
3528 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3529 /* but an efficiency issue only */
3530 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3531 {
3532 char path [4096];
3533 strcpy (path, w->path);
3534
3535 do
3536 {
3537 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3538 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3539
3540 char *pend = strrchr (path, '/');
3541
3542 if (!pend || pend == path)
3543 break;
3544
3545 *pend = 0;
3546 w->wd = inotify_add_watch (fs_fd, path, mask);
3547 }
3548 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3549 }
3550 }
3551
3552 if (w->wd >= 0)
3553 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3554
3555 /* now re-arm timer, if required */
3556 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3557 ev_timer_again (EV_A_ &w->timer);
3558 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3559}
3560
3561static void noinline
3562infy_del (EV_P_ ev_stat *w)
3563{
3564 int slot;
3565 int wd = w->wd;
3566
3567 if (wd < 0)
3568 return;
3569
3570 w->wd = -2;
3571 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3572 wlist_del (&fs_hash [slot].head, (WL)w);
3573
3574 /* remove this watcher, if others are watching it, they will rearm */
3575 inotify_rm_watch (fs_fd, wd);
3576}
3577
3578static void noinline
3579infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3580{
3581 if (slot < 0)
3582 /* overflow, need to check for all hash slots */
3583 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3584 infy_wd (EV_A_ slot, wd, ev);
3585 else
3586 {
3587 WL w_;
3588
3589 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3590 {
3591 ev_stat *w = (ev_stat *)w_;
3592 w_ = w_->next; /* lets us remove this watcher and all before it */
3593
3594 if (w->wd == wd || wd == -1)
3595 {
3596 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3597 {
3598 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3599 w->wd = -1;
3600 infy_add (EV_A_ w); /* re-add, no matter what */
3601 }
3602
3603 stat_timer_cb (EV_A_ &w->timer, 0);
3604 }
3605 }
3606 }
3607}
3608
3609static void
3610infy_cb (EV_P_ ev_io *w, int revents)
3611{
3612 char buf [EV_INOTIFY_BUFSIZE];
3613 int ofs;
3614 int len = read (fs_fd, buf, sizeof (buf));
3615
3616 for (ofs = 0; ofs < len; )
3617 {
3618 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3619 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3620 ofs += sizeof (struct inotify_event) + ev->len;
3621 }
3622}
3623
3624inline_size void ecb_cold
3625ev_check_2625 (EV_P)
3626{
3627 /* kernels < 2.6.25 are borked
3628 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3629 */
3630 if (ev_linux_version () < 0x020619)
3631 return;
3632
3633 fs_2625 = 1;
3634}
3635
3636inline_size int
3637infy_newfd (void)
3638{
3639#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3640 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3641 if (fd >= 0)
3642 return fd;
3643#endif
3644 return inotify_init ();
3645}
3646
3647inline_size void
3648infy_init (EV_P)
3649{
3650 if (fs_fd != -2)
3651 return;
3652
3653 fs_fd = -1;
3654
3655 ev_check_2625 (EV_A);
3656
3657 fs_fd = infy_newfd ();
3658
3659 if (fs_fd >= 0)
3660 {
3661 fd_intern (fs_fd);
3662 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3663 ev_set_priority (&fs_w, EV_MAXPRI);
3664 ev_io_start (EV_A_ &fs_w);
3665 ev_unref (EV_A);
3666 }
3667}
3668
3669inline_size void
3670infy_fork (EV_P)
3671{
3672 int slot;
3673
3674 if (fs_fd < 0)
3675 return;
3676
3677 ev_ref (EV_A);
3678 ev_io_stop (EV_A_ &fs_w);
3679 close (fs_fd);
3680 fs_fd = infy_newfd ();
3681
3682 if (fs_fd >= 0)
3683 {
3684 fd_intern (fs_fd);
3685 ev_io_set (&fs_w, fs_fd, EV_READ);
3686 ev_io_start (EV_A_ &fs_w);
3687 ev_unref (EV_A);
3688 }
3689
3690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3691 {
3692 WL w_ = fs_hash [slot].head;
3693 fs_hash [slot].head = 0;
3694
3695 while (w_)
3696 {
3697 ev_stat *w = (ev_stat *)w_;
3698 w_ = w_->next; /* lets us add this watcher */
3699
3700 w->wd = -1;
3701
3702 if (fs_fd >= 0)
3703 infy_add (EV_A_ w); /* re-add, no matter what */
3704 else
3705 {
3706 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3707 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3708 ev_timer_again (EV_A_ &w->timer);
3709 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3710 }
3711 }
3712 }
3713}
3714
3715#endif
3716
3717#ifdef _WIN32
3718# define EV_LSTAT(p,b) _stati64 (p, b)
1334#else 3719#else
1335 struct sigaction sa; 3720# define EV_LSTAT(p,b) lstat (p, b)
1336 sa.sa_handler = sighandler;
1337 sigfillset (&sa.sa_mask);
1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1339 sigaction (w->signum, &sa, 0);
1340#endif 3721#endif
1341 }
1342}
1343 3722
1344void 3723void
1345ev_signal_stop (EV_P_ struct ev_signal *w) 3724ev_stat_stat (EV_P_ ev_stat *w)
1346{ 3725{
1347 ev_clear_pending (EV_A_ (W)w); 3726 if (lstat (w->path, &w->attr) < 0)
1348 if (!ev_is_active (w)) 3727 w->attr.st_nlink = 0;
3728 else if (!w->attr.st_nlink)
3729 w->attr.st_nlink = 1;
3730}
3731
3732static void noinline
3733stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3734{
3735 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3736
3737 ev_statdata prev = w->attr;
3738 ev_stat_stat (EV_A_ w);
3739
3740 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3741 if (
3742 prev.st_dev != w->attr.st_dev
3743 || prev.st_ino != w->attr.st_ino
3744 || prev.st_mode != w->attr.st_mode
3745 || prev.st_nlink != w->attr.st_nlink
3746 || prev.st_uid != w->attr.st_uid
3747 || prev.st_gid != w->attr.st_gid
3748 || prev.st_rdev != w->attr.st_rdev
3749 || prev.st_size != w->attr.st_size
3750 || prev.st_atime != w->attr.st_atime
3751 || prev.st_mtime != w->attr.st_mtime
3752 || prev.st_ctime != w->attr.st_ctime
3753 ) {
3754 /* we only update w->prev on actual differences */
3755 /* in case we test more often than invoke the callback, */
3756 /* to ensure that prev is always different to attr */
3757 w->prev = prev;
3758
3759 #if EV_USE_INOTIFY
3760 if (fs_fd >= 0)
3761 {
3762 infy_del (EV_A_ w);
3763 infy_add (EV_A_ w);
3764 ev_stat_stat (EV_A_ w); /* avoid race... */
3765 }
3766 #endif
3767
3768 ev_feed_event (EV_A_ w, EV_STAT);
3769 }
3770}
3771
3772void
3773ev_stat_start (EV_P_ ev_stat *w)
3774{
3775 if (expect_false (ev_is_active (w)))
1349 return; 3776 return;
1350 3777
1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3778 ev_stat_stat (EV_A_ w);
3779
3780 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3781 w->interval = MIN_STAT_INTERVAL;
3782
3783 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3784 ev_set_priority (&w->timer, ev_priority (w));
3785
3786#if EV_USE_INOTIFY
3787 infy_init (EV_A);
3788
3789 if (fs_fd >= 0)
3790 infy_add (EV_A_ w);
3791 else
3792#endif
3793 {
3794 ev_timer_again (EV_A_ &w->timer);
3795 ev_unref (EV_A);
3796 }
3797
3798 ev_start (EV_A_ (W)w, 1);
3799
3800 EV_FREQUENT_CHECK;
3801}
3802
3803void
3804ev_stat_stop (EV_P_ ev_stat *w)
3805{
3806 clear_pending (EV_A_ (W)w);
3807 if (expect_false (!ev_is_active (w)))
3808 return;
3809
3810 EV_FREQUENT_CHECK;
3811
3812#if EV_USE_INOTIFY
3813 infy_del (EV_A_ w);
3814#endif
3815
3816 if (ev_is_active (&w->timer))
3817 {
3818 ev_ref (EV_A);
3819 ev_timer_stop (EV_A_ &w->timer);
3820 }
3821
1352 ev_stop (EV_A_ (W)w); 3822 ev_stop (EV_A_ (W)w);
1353 3823
1354 if (!signals [w->signum - 1].head) 3824 EV_FREQUENT_CHECK;
1355 signal (w->signum, SIG_DFL);
1356} 3825}
3826#endif
1357 3827
3828#if EV_IDLE_ENABLE
1358void 3829void
1359ev_child_start (EV_P_ struct ev_child *w) 3830ev_idle_start (EV_P_ ev_idle *w)
1360{ 3831{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
1364 if (ev_is_active (w)) 3832 if (expect_false (ev_is_active (w)))
1365 return; 3833 return;
1366 3834
3835 pri_adjust (EV_A_ (W)w);
3836
3837 EV_FREQUENT_CHECK;
3838
3839 {
3840 int active = ++idlecnt [ABSPRI (w)];
3841
3842 ++idleall;
3843 ev_start (EV_A_ (W)w, active);
3844
3845 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3846 idles [ABSPRI (w)][active - 1] = w;
3847 }
3848
3849 EV_FREQUENT_CHECK;
3850}
3851
3852void
3853ev_idle_stop (EV_P_ ev_idle *w)
3854{
3855 clear_pending (EV_A_ (W)w);
3856 if (expect_false (!ev_is_active (w)))
3857 return;
3858
3859 EV_FREQUENT_CHECK;
3860
3861 {
3862 int active = ev_active (w);
3863
3864 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3865 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3866
3867 ev_stop (EV_A_ (W)w);
3868 --idleall;
3869 }
3870
3871 EV_FREQUENT_CHECK;
3872}
3873#endif
3874
3875#if EV_PREPARE_ENABLE
3876void
3877ev_prepare_start (EV_P_ ev_prepare *w)
3878{
3879 if (expect_false (ev_is_active (w)))
3880 return;
3881
3882 EV_FREQUENT_CHECK;
3883
3884 ev_start (EV_A_ (W)w, ++preparecnt);
3885 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3886 prepares [preparecnt - 1] = w;
3887
3888 EV_FREQUENT_CHECK;
3889}
3890
3891void
3892ev_prepare_stop (EV_P_ ev_prepare *w)
3893{
3894 clear_pending (EV_A_ (W)w);
3895 if (expect_false (!ev_is_active (w)))
3896 return;
3897
3898 EV_FREQUENT_CHECK;
3899
3900 {
3901 int active = ev_active (w);
3902
3903 prepares [active - 1] = prepares [--preparecnt];
3904 ev_active (prepares [active - 1]) = active;
3905 }
3906
3907 ev_stop (EV_A_ (W)w);
3908
3909 EV_FREQUENT_CHECK;
3910}
3911#endif
3912
3913#if EV_CHECK_ENABLE
3914void
3915ev_check_start (EV_P_ ev_check *w)
3916{
3917 if (expect_false (ev_is_active (w)))
3918 return;
3919
3920 EV_FREQUENT_CHECK;
3921
3922 ev_start (EV_A_ (W)w, ++checkcnt);
3923 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3924 checks [checkcnt - 1] = w;
3925
3926 EV_FREQUENT_CHECK;
3927}
3928
3929void
3930ev_check_stop (EV_P_ ev_check *w)
3931{
3932 clear_pending (EV_A_ (W)w);
3933 if (expect_false (!ev_is_active (w)))
3934 return;
3935
3936 EV_FREQUENT_CHECK;
3937
3938 {
3939 int active = ev_active (w);
3940
3941 checks [active - 1] = checks [--checkcnt];
3942 ev_active (checks [active - 1]) = active;
3943 }
3944
3945 ev_stop (EV_A_ (W)w);
3946
3947 EV_FREQUENT_CHECK;
3948}
3949#endif
3950
3951#if EV_EMBED_ENABLE
3952void noinline
3953ev_embed_sweep (EV_P_ ev_embed *w)
3954{
3955 ev_run (w->other, EVRUN_NOWAIT);
3956}
3957
3958static void
3959embed_io_cb (EV_P_ ev_io *io, int revents)
3960{
3961 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3962
3963 if (ev_cb (w))
3964 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3965 else
3966 ev_run (w->other, EVRUN_NOWAIT);
3967}
3968
3969static void
3970embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3971{
3972 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3973
3974 {
3975 EV_P = w->other;
3976
3977 while (fdchangecnt)
3978 {
3979 fd_reify (EV_A);
3980 ev_run (EV_A_ EVRUN_NOWAIT);
3981 }
3982 }
3983}
3984
3985static void
3986embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3987{
3988 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3989
3990 ev_embed_stop (EV_A_ w);
3991
3992 {
3993 EV_P = w->other;
3994
3995 ev_loop_fork (EV_A);
3996 ev_run (EV_A_ EVRUN_NOWAIT);
3997 }
3998
3999 ev_embed_start (EV_A_ w);
4000}
4001
4002#if 0
4003static void
4004embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4005{
4006 ev_idle_stop (EV_A_ idle);
4007}
4008#endif
4009
4010void
4011ev_embed_start (EV_P_ ev_embed *w)
4012{
4013 if (expect_false (ev_is_active (w)))
4014 return;
4015
4016 {
4017 EV_P = w->other;
4018 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4019 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4020 }
4021
4022 EV_FREQUENT_CHECK;
4023
4024 ev_set_priority (&w->io, ev_priority (w));
4025 ev_io_start (EV_A_ &w->io);
4026
4027 ev_prepare_init (&w->prepare, embed_prepare_cb);
4028 ev_set_priority (&w->prepare, EV_MINPRI);
4029 ev_prepare_start (EV_A_ &w->prepare);
4030
4031 ev_fork_init (&w->fork, embed_fork_cb);
4032 ev_fork_start (EV_A_ &w->fork);
4033
4034 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4035
1367 ev_start (EV_A_ (W)w, 1); 4036 ev_start (EV_A_ (W)w, 1);
1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4037
4038 EV_FREQUENT_CHECK;
1369} 4039}
1370 4040
1371void 4041void
1372ev_child_stop (EV_P_ struct ev_child *w) 4042ev_embed_stop (EV_P_ ev_embed *w)
1373{ 4043{
1374 ev_clear_pending (EV_A_ (W)w); 4044 clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 4045 if (expect_false (!ev_is_active (w)))
1376 return; 4046 return;
1377 4047
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4048 EV_FREQUENT_CHECK;
4049
4050 ev_io_stop (EV_A_ &w->io);
4051 ev_prepare_stop (EV_A_ &w->prepare);
4052 ev_fork_stop (EV_A_ &w->fork);
4053
1379 ev_stop (EV_A_ (W)w); 4054 ev_stop (EV_A_ (W)w);
4055
4056 EV_FREQUENT_CHECK;
1380} 4057}
4058#endif
4059
4060#if EV_FORK_ENABLE
4061void
4062ev_fork_start (EV_P_ ev_fork *w)
4063{
4064 if (expect_false (ev_is_active (w)))
4065 return;
4066
4067 EV_FREQUENT_CHECK;
4068
4069 ev_start (EV_A_ (W)w, ++forkcnt);
4070 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4071 forks [forkcnt - 1] = w;
4072
4073 EV_FREQUENT_CHECK;
4074}
4075
4076void
4077ev_fork_stop (EV_P_ ev_fork *w)
4078{
4079 clear_pending (EV_A_ (W)w);
4080 if (expect_false (!ev_is_active (w)))
4081 return;
4082
4083 EV_FREQUENT_CHECK;
4084
4085 {
4086 int active = ev_active (w);
4087
4088 forks [active - 1] = forks [--forkcnt];
4089 ev_active (forks [active - 1]) = active;
4090 }
4091
4092 ev_stop (EV_A_ (W)w);
4093
4094 EV_FREQUENT_CHECK;
4095}
4096#endif
4097
4098#if EV_CLEANUP_ENABLE
4099void
4100ev_cleanup_start (EV_P_ ev_cleanup *w)
4101{
4102 if (expect_false (ev_is_active (w)))
4103 return;
4104
4105 EV_FREQUENT_CHECK;
4106
4107 ev_start (EV_A_ (W)w, ++cleanupcnt);
4108 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4109 cleanups [cleanupcnt - 1] = w;
4110
4111 /* cleanup watchers should never keep a refcount on the loop */
4112 ev_unref (EV_A);
4113 EV_FREQUENT_CHECK;
4114}
4115
4116void
4117ev_cleanup_stop (EV_P_ ev_cleanup *w)
4118{
4119 clear_pending (EV_A_ (W)w);
4120 if (expect_false (!ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124 ev_ref (EV_A);
4125
4126 {
4127 int active = ev_active (w);
4128
4129 cleanups [active - 1] = cleanups [--cleanupcnt];
4130 ev_active (cleanups [active - 1]) = active;
4131 }
4132
4133 ev_stop (EV_A_ (W)w);
4134
4135 EV_FREQUENT_CHECK;
4136}
4137#endif
4138
4139#if EV_ASYNC_ENABLE
4140void
4141ev_async_start (EV_P_ ev_async *w)
4142{
4143 if (expect_false (ev_is_active (w)))
4144 return;
4145
4146 w->sent = 0;
4147
4148 evpipe_init (EV_A);
4149
4150 EV_FREQUENT_CHECK;
4151
4152 ev_start (EV_A_ (W)w, ++asynccnt);
4153 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4154 asyncs [asynccnt - 1] = w;
4155
4156 EV_FREQUENT_CHECK;
4157}
4158
4159void
4160ev_async_stop (EV_P_ ev_async *w)
4161{
4162 clear_pending (EV_A_ (W)w);
4163 if (expect_false (!ev_is_active (w)))
4164 return;
4165
4166 EV_FREQUENT_CHECK;
4167
4168 {
4169 int active = ev_active (w);
4170
4171 asyncs [active - 1] = asyncs [--asynccnt];
4172 ev_active (asyncs [active - 1]) = active;
4173 }
4174
4175 ev_stop (EV_A_ (W)w);
4176
4177 EV_FREQUENT_CHECK;
4178}
4179
4180void
4181ev_async_send (EV_P_ ev_async *w)
4182{
4183 w->sent = 1;
4184 evpipe_write (EV_A_ &async_pending);
4185}
4186#endif
1381 4187
1382/*****************************************************************************/ 4188/*****************************************************************************/
1383 4189
1384struct ev_once 4190struct ev_once
1385{ 4191{
1386 struct ev_io io; 4192 ev_io io;
1387 struct ev_timer to; 4193 ev_timer to;
1388 void (*cb)(int revents, void *arg); 4194 void (*cb)(int revents, void *arg);
1389 void *arg; 4195 void *arg;
1390}; 4196};
1391 4197
1392static void 4198static void
1393once_cb (EV_P_ struct ev_once *once, int revents) 4199once_cb (EV_P_ struct ev_once *once, int revents)
1394{ 4200{
1395 void (*cb)(int revents, void *arg) = once->cb; 4201 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 4202 void *arg = once->arg;
1397 4203
1398 ev_io_stop (EV_A_ &once->io); 4204 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 4205 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 4206 ev_free (once);
1401 4207
1402 cb (revents, arg); 4208 cb (revents, arg);
1403} 4209}
1404 4210
1405static void 4211static void
1406once_cb_io (EV_P_ struct ev_io *w, int revents) 4212once_cb_io (EV_P_ ev_io *w, int revents)
1407{ 4213{
1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4214 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4215
4216 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1409} 4217}
1410 4218
1411static void 4219static void
1412once_cb_to (EV_P_ struct ev_timer *w, int revents) 4220once_cb_to (EV_P_ ev_timer *w, int revents)
1413{ 4221{
1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4222 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4223
4224 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1415} 4225}
1416 4226
1417void 4227void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4228ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 4229{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 4230 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 4231
1422 if (!once) 4232 if (expect_false (!once))
4233 {
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4234 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1424 else 4235 return;
1425 { 4236 }
4237
1426 once->cb = cb; 4238 once->cb = cb;
1427 once->arg = arg; 4239 once->arg = arg;
1428 4240
1429 ev_watcher_init (&once->io, once_cb_io); 4241 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 4242 if (fd >= 0)
4243 {
4244 ev_io_set (&once->io, fd, events);
4245 ev_io_start (EV_A_ &once->io);
4246 }
4247
4248 ev_init (&once->to, once_cb_to);
4249 if (timeout >= 0.)
4250 {
4251 ev_timer_set (&once->to, timeout, 0.);
4252 ev_timer_start (EV_A_ &once->to);
4253 }
4254}
4255
4256/*****************************************************************************/
4257
4258#if EV_WALK_ENABLE
4259void ecb_cold
4260ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4261{
4262 int i, j;
4263 ev_watcher_list *wl, *wn;
4264
4265 if (types & (EV_IO | EV_EMBED))
4266 for (i = 0; i < anfdmax; ++i)
4267 for (wl = anfds [i].head; wl; )
1431 { 4268 {
1432 ev_io_set (&once->io, fd, events); 4269 wn = wl->next;
1433 ev_io_start (EV_A_ &once->io); 4270
4271#if EV_EMBED_ENABLE
4272 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4273 {
4274 if (types & EV_EMBED)
4275 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4276 }
4277 else
4278#endif
4279#if EV_USE_INOTIFY
4280 if (ev_cb ((ev_io *)wl) == infy_cb)
4281 ;
4282 else
4283#endif
4284 if ((ev_io *)wl != &pipe_w)
4285 if (types & EV_IO)
4286 cb (EV_A_ EV_IO, wl);
4287
4288 wl = wn;
1434 } 4289 }
1435 4290
1436 ev_watcher_init (&once->to, once_cb_to); 4291 if (types & (EV_TIMER | EV_STAT))
1437 if (timeout >= 0.) 4292 for (i = timercnt + HEAP0; i-- > HEAP0; )
4293#if EV_STAT_ENABLE
4294 /*TODO: timer is not always active*/
4295 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1438 { 4296 {
1439 ev_timer_set (&once->to, timeout, 0.); 4297 if (types & EV_STAT)
1440 ev_timer_start (EV_A_ &once->to); 4298 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1441 } 4299 }
1442 } 4300 else
1443} 4301#endif
4302 if (types & EV_TIMER)
4303 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1444 4304
4305#if EV_PERIODIC_ENABLE
4306 if (types & EV_PERIODIC)
4307 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4308 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4309#endif
4310
4311#if EV_IDLE_ENABLE
4312 if (types & EV_IDLE)
4313 for (j = NUMPRI; j--; )
4314 for (i = idlecnt [j]; i--; )
4315 cb (EV_A_ EV_IDLE, idles [j][i]);
4316#endif
4317
4318#if EV_FORK_ENABLE
4319 if (types & EV_FORK)
4320 for (i = forkcnt; i--; )
4321 if (ev_cb (forks [i]) != embed_fork_cb)
4322 cb (EV_A_ EV_FORK, forks [i]);
4323#endif
4324
4325#if EV_ASYNC_ENABLE
4326 if (types & EV_ASYNC)
4327 for (i = asynccnt; i--; )
4328 cb (EV_A_ EV_ASYNC, asyncs [i]);
4329#endif
4330
4331#if EV_PREPARE_ENABLE
4332 if (types & EV_PREPARE)
4333 for (i = preparecnt; i--; )
4334# if EV_EMBED_ENABLE
4335 if (ev_cb (prepares [i]) != embed_prepare_cb)
4336# endif
4337 cb (EV_A_ EV_PREPARE, prepares [i]);
4338#endif
4339
4340#if EV_CHECK_ENABLE
4341 if (types & EV_CHECK)
4342 for (i = checkcnt; i--; )
4343 cb (EV_A_ EV_CHECK, checks [i]);
4344#endif
4345
4346#if EV_SIGNAL_ENABLE
4347 if (types & EV_SIGNAL)
4348 for (i = 0; i < EV_NSIG - 1; ++i)
4349 for (wl = signals [i].head; wl; )
4350 {
4351 wn = wl->next;
4352 cb (EV_A_ EV_SIGNAL, wl);
4353 wl = wn;
4354 }
4355#endif
4356
4357#if EV_CHILD_ENABLE
4358 if (types & EV_CHILD)
4359 for (i = (EV_PID_HASHSIZE); i--; )
4360 for (wl = childs [i]; wl; )
4361 {
4362 wn = wl->next;
4363 cb (EV_A_ EV_CHILD, wl);
4364 wl = wn;
4365 }
4366#endif
4367/* EV_STAT 0x00001000 /* stat data changed */
4368/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4369}
4370#endif
4371
4372#if EV_MULTIPLICITY
4373 #include "ev_wrap.h"
4374#endif
4375
4376EV_CPP(})
4377

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines