ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
63#endif 103#endif
64 104
65#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
67#endif 107#endif
96#endif 136#endif
97 137
98#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
100 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
101typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
102typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
104 147
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
106ev_tstamp ev_now;
107int ev_method;
108 149
109static int have_monotonic; /* runtime */ 150#if WIN32
110 151/* note: the comment below could not be substantiated, but what would I care */
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
112static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
113static void (*method_poll)(ev_tstamp timeout); 154#endif
114 155
115/*****************************************************************************/ 156/*****************************************************************************/
116 157
117ev_tstamp 158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
118ev_time (void) 192ev_time (void)
119{ 193{
120#if EV_USE_REALTIME 194#if EV_USE_REALTIME
121 struct timespec ts; 195 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
126 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 202#endif
129} 203}
130 204
131static ev_tstamp 205inline ev_tstamp
132get_clock (void) 206get_clock (void)
133{ 207{
134#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
136 { 210 {
139 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
140 } 214 }
141#endif 215#endif
142 216
143 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
144} 224}
145 225
146#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
147 227
148#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
158 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
159 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
160 cur = newcnt; \ 240 cur = newcnt; \
161 } 241 }
162 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
163/*****************************************************************************/ 254/*****************************************************************************/
164
165typedef struct
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171
172static ANFD *anfds;
173static int anfdmax;
174 255
175static void 256static void
176anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
177{ 258{
178 while (count--) 259 while (count--)
183 264
184 ++base; 265 ++base;
185 } 266 }
186} 267}
187 268
188typedef struct
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void 269static void
198event (W w, int events) 270event (EV_P_ W w, int events)
199{ 271{
200 if (w->pending) 272 if (w->pending)
201 { 273 {
202 pendings [w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
203 return; 275 return;
204 } 276 }
205 277
206 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
207 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
208 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
209 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
210} 282}
211 283
212static void 284static void
213queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 286{
215 int i; 287 int i;
216 288
217 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 290 event (EV_A_ events [i], type);
219} 291}
220 292
221static void 293static void
222fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
223{ 295{
224 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 297 struct ev_io *w;
226 298
227 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 { 300 {
229 int ev = w->events & events; 301 int ev = w->events & events;
230 302
231 if (ev) 303 if (ev)
232 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
233 } 305 }
234} 306}
235 307
236/*****************************************************************************/ 308/*****************************************************************************/
237 309
238static int *fdchanges;
239static int fdchangemax, fdchangecnt;
240
241static void 310static void
242fd_reify (void) 311fd_reify (EV_P)
243{ 312{
244 int i; 313 int i;
245 314
246 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
247 { 316 {
249 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 319 struct ev_io *w;
251 320
252 int events = 0; 321 int events = 0;
253 322
254 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 events |= w->events; 324 events |= w->events;
256 325
257 anfd->reify = 0; 326 anfd->reify = 0;
258 327
259 if (anfd->events != events)
260 {
261 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
262 anfd->events = events; 329 anfd->events = events;
263 }
264 } 330 }
265 331
266 fdchangecnt = 0; 332 fdchangecnt = 0;
267} 333}
268 334
269static void 335static void
270fd_change (int fd) 336fd_change (EV_P_ int fd)
271{ 337{
272 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
273 return; 339 return;
274 340
275 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
277 ++fdchangecnt; 343 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
279 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
280} 346}
281 347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
358}
359
282/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
283static void 361static void
284fd_recheck (void) 362fd_ebadf (EV_P)
285{ 363{
286 int fd; 364 int fd;
287 365
288 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 367 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
291 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
292 { 380 {
293 ev_io_stop (anfds [fd].head); 381 fd_kill (EV_A_ fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 382 return;
295 } 383 }
384}
385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
296} 399}
297 400
298/*****************************************************************************/ 401/*****************************************************************************/
299 402
300static struct ev_timer **timers;
301static int timermax, timercnt;
302
303static struct ev_periodic **periodics;
304static int periodicmax, periodiccnt;
305
306static void 403static void
307upheap (WT *timers, int k) 404upheap (WT *heap, int k)
308{ 405{
309 WT w = timers [k]; 406 WT w = heap [k];
310 407
311 while (k && timers [k >> 1]->at > w->at) 408 while (k && heap [k >> 1]->at > w->at)
312 { 409 {
313 timers [k] = timers [k >> 1]; 410 heap [k] = heap [k >> 1];
314 timers [k]->active = k + 1; 411 ((W)heap [k])->active = k + 1;
315 k >>= 1; 412 k >>= 1;
316 } 413 }
317 414
318 timers [k] = w; 415 heap [k] = w;
319 timers [k]->active = k + 1; 416 ((W)heap [k])->active = k + 1;
320 417
321} 418}
322 419
323static void 420static void
324downheap (WT *timers, int N, int k) 421downheap (WT *heap, int N, int k)
325{ 422{
326 WT w = timers [k]; 423 WT w = heap [k];
327 424
328 while (k < (N >> 1)) 425 while (k < (N >> 1))
329 { 426 {
330 int j = k << 1; 427 int j = k << 1;
331 428
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
333 ++j; 430 ++j;
334 431
335 if (w->at <= timers [j]->at) 432 if (w->at <= heap [j]->at)
336 break; 433 break;
337 434
338 timers [k] = timers [j]; 435 heap [k] = heap [j];
339 timers [k]->active = k + 1; 436 ((W)heap [k])->active = k + 1;
340 k = j; 437 k = j;
341 } 438 }
342 439
343 timers [k] = w; 440 heap [k] = w;
344 timers [k]->active = k + 1; 441 ((W)heap [k])->active = k + 1;
345} 442}
346 443
347/*****************************************************************************/ 444/*****************************************************************************/
348 445
349typedef struct 446typedef struct
350{ 447{
351 struct ev_signal *head; 448 WL head;
352 sig_atomic_t volatile gotsig; 449 sig_atomic_t volatile gotsig;
353} ANSIG; 450} ANSIG;
354 451
355static ANSIG *signals; 452static ANSIG *signals;
356static int signalmax; 453static int signalmax;
372} 469}
373 470
374static void 471static void
375sighandler (int signum) 472sighandler (int signum)
376{ 473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
377 signals [signum - 1].gotsig = 1; 478 signals [signum - 1].gotsig = 1;
378 479
379 if (!gotsig) 480 if (!gotsig)
380 { 481 {
482 int old_errno = errno;
381 gotsig = 1; 483 gotsig = 1;
382 write (sigpipe [1], &signum, 1); 484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
383 } 486 }
384} 487}
385 488
386static void 489static void
387sigcb (struct ev_io *iow, int revents) 490sigcb (EV_P_ struct ev_io *iow, int revents)
388{ 491{
389 struct ev_signal *w; 492 WL w;
390 int signum; 493 int signum;
391 494
392 read (sigpipe [0], &revents, 1); 495 read (sigpipe [0], &revents, 1);
393 gotsig = 0; 496 gotsig = 0;
394 497
396 if (signals [signum].gotsig) 499 if (signals [signum].gotsig)
397 { 500 {
398 signals [signum].gotsig = 0; 501 signals [signum].gotsig = 0;
399 502
400 for (w = signals [signum].head; w; w = w->next) 503 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 504 event (EV_A_ (W)w, EV_SIGNAL);
402 } 505 }
403} 506}
404 507
405static void 508static void
406siginit (void) 509siginit (EV_P)
407{ 510{
511#ifndef WIN32
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410 514
411 /* rather than sort out wether we really need nb, set it */ 515 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
414 519
415 ev_io_set (&sigev, sigpipe [0], EV_READ); 520 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev); 521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
417} 523}
418 524
419/*****************************************************************************/ 525/*****************************************************************************/
420 526
421static struct ev_idle **idles; 527#ifndef WIN32
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431 528
432static struct ev_child *childs [PID_HASHSIZE]; 529static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev; 530static struct ev_signal childev;
434 531
435#ifndef WCONTINUED 532#ifndef WCONTINUED
436# define WCONTINUED 0 533# define WCONTINUED 0
437#endif 534#endif
438 535
439static void 536static void
440childcb (struct ev_signal *sw, int revents) 537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
441{ 538{
442 struct ev_child *w; 539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents)
553{
443 int pid, status; 554 int pid, status;
444 555
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 557 {
447 if (w->pid == pid || !w->pid) 558 /* make sure we are called again until all childs have been reaped */
448 { 559 event (EV_A_ (W)sw, EV_SIGNAL);
449 w->status = status; 560
450 event ((W)w, EV_CHILD); 561 child_reap (EV_A_ sw, pid, pid, status);
451 } 562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
452} 564}
565
566#endif
453 567
454/*****************************************************************************/ 568/*****************************************************************************/
455 569
570#if EV_USE_KQUEUE
571# include "ev_kqueue.c"
572#endif
456#if EV_USE_EPOLL 573#if EV_USE_EPOLL
457# include "ev_epoll.c" 574# include "ev_epoll.c"
458#endif 575#endif
576#if EV_USE_POLL
577# include "ev_poll.c"
578#endif
459#if EV_USE_SELECT 579#if EV_USE_SELECT
460# include "ev_select.c" 580# include "ev_select.c"
461#endif 581#endif
462 582
463int 583int
470ev_version_minor (void) 590ev_version_minor (void)
471{ 591{
472 return EV_VERSION_MINOR; 592 return EV_VERSION_MINOR;
473} 593}
474 594
475int ev_init (int flags) 595/* return true if we are running with elevated privileges and should ignore env variables */
596static int
597enable_secure (void)
476{ 598{
599#ifdef WIN32
600 return 0;
601#else
602 return getuid () != geteuid ()
603 || getgid () != getegid ();
604#endif
605}
606
607int
608ev_method (EV_P)
609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
477 if (!ev_method) 616 if (!method)
478 { 617 {
479#if EV_USE_MONOTONIC 618#if EV_USE_MONOTONIC
480 { 619 {
481 struct timespec ts; 620 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 622 have_monotonic = 1;
484 } 623 }
485#endif 624#endif
486 625
487 ev_now = ev_time (); 626 rt_now = ev_time ();
488 now = get_clock (); 627 mn_now = get_clock ();
489 now_floor = now; 628 now_floor = mn_now;
490 diff = ev_now - now; 629 rtmn_diff = rt_now - mn_now;
491 630
492 if (pipe (sigpipe)) 631 if (methods == EVMETHOD_AUTO)
493 return 0; 632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
494 633 methods = atoi (getenv ("LIBEV_METHODS"));
634 else
495 ev_method = EVMETHOD_NONE; 635 methods = EVMETHOD_ANY;
636
637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
496#if EV_USE_EPOLL 644#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
646#endif
647#if EV_USE_POLL
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
498#endif 649#endif
499#if EV_USE_SELECT 650#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
501#endif 652#endif
653 }
654}
502 655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
754#endif
755
756 loop_init (EV_A_ methods);
757
503 if (ev_method) 758 if (ev_method (EV_A))
504 { 759 {
505 ev_watcher_init (&sigev, sigcb); 760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
506 siginit (); 762 siginit (EV_A);
507 763
764#ifndef WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif
510 } 770 }
771 else
772 default_loop = 0;
511 } 773 }
512 774
513 return ev_method; 775 return default_loop;
514} 776}
515 777
516/*****************************************************************************/
517
518void 778void
519ev_fork_prepare (void) 779ev_default_destroy (void)
520{ 780{
521 /* nop */ 781#if EV_MULTIPLICITY
522} 782 struct ev_loop *loop = default_loop;
523
524void
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif 783#endif
537 784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
538 ev_io_stop (&sigev); 789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
539 close (sigpipe [0]); 807 close (sigpipe [0]);
540 close (sigpipe [1]); 808 close (sigpipe [1]);
541 pipe (sigpipe); 809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
542 siginit (); 812 siginit (EV_A);
543} 813}
544 814
545/*****************************************************************************/ 815/*****************************************************************************/
546 816
547static void 817static void
548call_pending (void) 818call_pending (EV_P)
549{ 819{
820 int pri;
821
822 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 823 while (pendingcnt [pri])
551 { 824 {
552 ANPENDING *p = pendings + --pendingcnt; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 826
554 if (p->w) 827 if (p->w)
555 { 828 {
556 p->w->pending = 0; 829 p->w->pending = 0;
557 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
558 } 831 }
559 } 832 }
560} 833}
561 834
562static void 835static void
563timers_reify (void) 836timers_reify (EV_P)
564{ 837{
565 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
566 { 839 {
567 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
841
842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
568 843
569 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
570 if (w->repeat) 845 if (w->repeat)
571 { 846 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
575 } 850 }
576 else 851 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 853
579 event ((W)w, EV_TIMEOUT); 854 event (EV_A_ (W)w, EV_TIMEOUT);
580 } 855 }
581} 856}
582 857
583static void 858static void
584periodics_reify (void) 859periodics_reify (EV_P)
585{ 860{
586 while (periodiccnt && periodics [0]->at <= ev_now) 861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
587 { 862 {
588 struct ev_periodic *w = periodics [0]; 863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
589 866
590 /* first reschedule or stop timer */ 867 /* first reschedule or stop timer */
591 if (w->interval) 868 if (w->interval)
592 { 869 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
595 downheap ((WT *)periodics, periodiccnt, 0); 872 downheap ((WT *)periodics, periodiccnt, 0);
596 } 873 }
597 else 874 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 876
600 event ((W)w, EV_PERIODIC); 877 event (EV_A_ (W)w, EV_PERIODIC);
601 } 878 }
602} 879}
603 880
604static void 881static void
605periodics_reschedule (ev_tstamp diff) 882periodics_reschedule (EV_P)
606{ 883{
607 int i; 884 int i;
608 885
609 /* adjust periodics after time jump */ 886 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 887 for (i = 0; i < periodiccnt; ++i)
611 { 888 {
612 struct ev_periodic *w = periodics [i]; 889 struct ev_periodic *w = periodics [i];
613 890
614 if (w->interval) 891 if (w->interval)
615 { 892 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
617 894
618 if (fabs (diff) >= 1e-4) 895 if (fabs (diff) >= 1e-4)
619 { 896 {
620 ev_periodic_stop (w); 897 ev_periodic_stop (EV_A_ w);
621 ev_periodic_start (w); 898 ev_periodic_start (EV_A_ w);
622 899
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 901 }
625 } 902 }
626 } 903 }
627} 904}
628 905
629static int 906inline int
630time_update_monotonic (void) 907time_update_monotonic (EV_P)
631{ 908{
632 now = get_clock (); 909 mn_now = get_clock ();
633 910
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
635 { 912 {
636 ev_now = now + diff; 913 rt_now = rtmn_diff + mn_now;
637 return 0; 914 return 0;
638 } 915 }
639 else 916 else
640 { 917 {
641 now_floor = now; 918 now_floor = mn_now;
642 ev_now = ev_time (); 919 rt_now = ev_time ();
643 return 1; 920 return 1;
644 } 921 }
645} 922}
646 923
647static void 924static void
648time_update (void) 925time_update (EV_P)
649{ 926{
650 int i; 927 int i;
651 928
652#if EV_USE_MONOTONIC 929#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic)) 930 if (expect_true (have_monotonic))
654 { 931 {
655 if (time_update_monotonic ()) 932 if (time_update_monotonic (EV_A))
656 { 933 {
657 ev_tstamp odiff = diff; 934 ev_tstamp odiff = rtmn_diff;
658 935
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 { 937 {
661 diff = ev_now - now; 938 rtmn_diff = rt_now - mn_now;
662 939
663 if (fabs (odiff - diff) < MIN_TIMEJUMP) 940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
664 return; /* all is well */ 941 return; /* all is well */
665 942
666 ev_now = ev_time (); 943 rt_now = ev_time ();
667 now = get_clock (); 944 mn_now = get_clock ();
668 now_floor = now; 945 now_floor = mn_now;
669 } 946 }
670 947
671 periodics_reschedule (diff - odiff); 948 periodics_reschedule (EV_A);
672 /* no timer adjustment, as the monotonic clock doesn't jump */ 949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
673 } 951 }
674 } 952 }
675 else 953 else
676#endif 954#endif
677 { 955 {
678 ev_now = ev_time (); 956 rt_now = ev_time ();
679 957
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 { 959 {
682 periodics_reschedule (ev_now - now); 960 periodics_reschedule (EV_A);
683 961
684 /* adjust timers. this is easy, as the offset is the same for all */ 962 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff; 964 ((WT)timers [i])->at += rt_now - mn_now;
687 } 965 }
688 966
689 now = ev_now; 967 mn_now = rt_now;
690 } 968 }
691} 969}
692 970
693int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
694 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
695void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
696{ 987{
697 double block; 988 double block;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 990
700 do 991 do
701 { 992 {
702 /* queue check watchers (and execute them) */ 993 /* queue check watchers (and execute them) */
703 if (expect_false (preparecnt)) 994 if (expect_false (preparecnt))
704 { 995 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 997 call_pending (EV_A);
707 } 998 }
708 999
709 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
710 fd_reify (); 1001 fd_reify (EV_A);
711 1002
712 /* calculate blocking time */ 1003 /* calculate blocking time */
713 1004
714 /* we only need this for !monotonic clockor timers, but as we basically 1005 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */ 1006 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC 1007#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1008 if (expect_true (have_monotonic))
718 time_update_monotonic (); 1009 time_update_monotonic (EV_A);
719 else 1010 else
720#endif 1011#endif
721 { 1012 {
722 ev_now = ev_time (); 1013 rt_now = ev_time ();
723 now = ev_now; 1014 mn_now = rt_now;
724 } 1015 }
725 1016
726 if (flags & EVLOOP_NONBLOCK || idlecnt) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.; 1018 block = 0.;
728 else 1019 else
729 { 1020 {
730 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
731 1022
732 if (timercnt) 1023 if (timercnt)
733 { 1024 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
735 if (block > to) block = to; 1026 if (block > to) block = to;
736 } 1027 }
737 1028
738 if (periodiccnt) 1029 if (periodiccnt)
739 { 1030 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
741 if (block > to) block = to; 1032 if (block > to) block = to;
742 } 1033 }
743 1034
744 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
745 } 1036 }
746 1037
747 method_poll (block); 1038 method_poll (EV_A_ block);
748 1039
749 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
750 time_update (); 1041 time_update (EV_A);
751 1042
752 /* queue pending timers and reschedule them */ 1043 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 1044 timers_reify (EV_A); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */ 1045 periodics_reify (EV_A); /* absolute timers called first */
755 1046
756 /* queue idle watchers unless io or timers are pending */ 1047 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt) 1048 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
759 1050
760 /* queue check watchers, to be executed first */ 1051 /* queue check watchers, to be executed first */
761 if (checkcnt) 1052 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 1054
764 call_pending (); 1055 call_pending (EV_A);
765 } 1056 }
766 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
767 1058
768 if (ev_loop_done != 2) 1059 if (loop_done != 2)
769 ev_loop_done = 0; 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
770} 1067}
771 1068
772/*****************************************************************************/ 1069/*****************************************************************************/
773 1070
774static void 1071inline void
775wlist_add (WL *head, WL elem) 1072wlist_add (WL *head, WL elem)
776{ 1073{
777 elem->next = *head; 1074 elem->next = *head;
778 *head = elem; 1075 *head = elem;
779} 1076}
780 1077
781static void 1078inline void
782wlist_del (WL *head, WL elem) 1079wlist_del (WL *head, WL elem)
783{ 1080{
784 while (*head) 1081 while (*head)
785 { 1082 {
786 if (*head == elem) 1083 if (*head == elem)
791 1088
792 head = &(*head)->next; 1089 head = &(*head)->next;
793 } 1090 }
794} 1091}
795 1092
796static void 1093inline void
797ev_clear_pending (W w) 1094ev_clear_pending (EV_P_ W w)
798{ 1095{
799 if (w->pending) 1096 if (w->pending)
800 { 1097 {
801 pendings [w->pending - 1].w = 0; 1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1099 w->pending = 0;
803 } 1100 }
804} 1101}
805 1102
806static void 1103inline void
807ev_start (W w, int active) 1104ev_start (EV_P_ W w, int active)
808{ 1105{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
809 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
810} 1111}
811 1112
812static void 1113inline void
813ev_stop (W w) 1114ev_stop (EV_P_ W w)
814{ 1115{
1116 ev_unref (EV_A);
815 w->active = 0; 1117 w->active = 0;
816} 1118}
817 1119
818/*****************************************************************************/ 1120/*****************************************************************************/
819 1121
820void 1122void
821ev_io_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
822{ 1124{
823 int fd = w->fd; 1125 int fd = w->fd;
824 1126
825 if (ev_is_active (w)) 1127 if (ev_is_active (w))
826 return; 1128 return;
827 1129
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1130 assert (("ev_io_start called with negative fd", fd >= 0));
829 1131
830 ev_start ((W)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833 1135
834 fd_change (fd); 1136 fd_change (EV_A_ fd);
835} 1137}
836 1138
837void 1139void
838ev_io_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
839{ 1141{
840 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
842 return; 1144 return;
843 1145
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
846 1148
847 fd_change (w->fd); 1149 fd_change (EV_A_ w->fd);
848} 1150}
849 1151
850void 1152void
851ev_timer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
852{ 1154{
853 if (ev_is_active (w)) 1155 if (ev_is_active (w))
854 return; 1156 return;
855 1157
856 w->at += now; 1158 ((WT)w)->at += mn_now;
857 1159
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 1161
860 ev_start ((W)w, ++timercnt); 1162 ev_start (EV_A_ (W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, ); 1163 array_needsize (timers, timermax, timercnt, );
862 timers [timercnt - 1] = w; 1164 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1); 1165 upheap ((WT *)timers, timercnt - 1);
864}
865 1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
866void 1170void
867ev_timer_stop (struct ev_timer *w) 1171ev_timer_stop (EV_P_ struct ev_timer *w)
868{ 1172{
869 ev_clear_pending ((W)w); 1173 ev_clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 1174 if (!ev_is_active (w))
871 return; 1175 return;
872 1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
873 if (w->active < timercnt--) 1179 if (((W)w)->active < timercnt--)
874 { 1180 {
875 timers [w->active - 1] = timers [timercnt]; 1181 timers [((W)w)->active - 1] = timers [timercnt];
876 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
877 } 1183 }
878 1184
879 w->at = w->repeat; 1185 ((WT)w)->at = w->repeat;
880 1186
881 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
882} 1188}
883 1189
884void 1190void
885ev_timer_again (struct ev_timer *w) 1191ev_timer_again (EV_P_ struct ev_timer *w)
886{ 1192{
887 if (ev_is_active (w)) 1193 if (ev_is_active (w))
888 { 1194 {
889 if (w->repeat) 1195 if (w->repeat)
890 { 1196 {
891 w->at = now + w->repeat; 1197 ((WT)w)->at = mn_now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1); 1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
893 } 1199 }
894 else 1200 else
895 ev_timer_stop (w); 1201 ev_timer_stop (EV_A_ w);
896 } 1202 }
897 else if (w->repeat) 1203 else if (w->repeat)
898 ev_timer_start (w); 1204 ev_timer_start (EV_A_ w);
899} 1205}
900 1206
901void 1207void
902ev_periodic_start (struct ev_periodic *w) 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
903{ 1209{
904 if (ev_is_active (w)) 1210 if (ev_is_active (w))
905 return; 1211 return;
906 1212
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908 1214
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 1215 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval) 1216 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
912 1218
913 ev_start ((W)w, ++periodiccnt); 1219 ev_start (EV_A_ (W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 1220 array_needsize (periodics, periodicmax, periodiccnt, );
915 periodics [periodiccnt - 1] = w; 1221 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1); 1222 upheap ((WT *)periodics, periodiccnt - 1);
917}
918 1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
919void 1227void
920ev_periodic_stop (struct ev_periodic *w) 1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
921{ 1229{
922 ev_clear_pending ((W)w); 1230 ev_clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 1231 if (!ev_is_active (w))
924 return; 1232 return;
925 1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
926 if (w->active < periodiccnt--) 1236 if (((W)w)->active < periodiccnt--)
927 { 1237 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
930 } 1240 }
931 1241
932 ev_stop ((W)w); 1242 ev_stop (EV_A_ (W)w);
933} 1243}
934 1244
935void 1245void
936ev_signal_start (struct ev_signal *w) 1246ev_idle_start (EV_P_ struct ev_idle *w)
937{ 1247{
938 if (ev_is_active (w)) 1248 if (ev_is_active (w))
939 return; 1249 return;
940 1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310
1311#ifndef SA_RESTART
1312# define SA_RESTART 0
1313#endif
1314
1315void
1316ev_signal_start (EV_P_ struct ev_signal *w)
1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1321 if (ev_is_active (w))
1322 return;
1323
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 1325
943 ev_start ((W)w, 1); 1326 ev_start (EV_A_ (W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init); 1327 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946 1329
947 if (!w->next) 1330 if (!((WL)w)->next)
948 { 1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
949 struct sigaction sa; 1335 struct sigaction sa;
950 sa.sa_handler = sighandler; 1336 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask); 1337 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 1339 sigaction (w->signum, &sa, 0);
1340#endif
954 } 1341 }
955} 1342}
956 1343
957void 1344void
958ev_signal_stop (struct ev_signal *w) 1345ev_signal_stop (EV_P_ struct ev_signal *w)
959{ 1346{
960 ev_clear_pending ((W)w); 1347 ev_clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
962 return; 1349 return;
963 1350
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 1352 ev_stop (EV_A_ (W)w);
966 1353
967 if (!signals [w->signum - 1].head) 1354 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 1355 signal (w->signum, SIG_DFL);
969} 1356}
970 1357
971void 1358void
972ev_idle_start (struct ev_idle *w) 1359ev_child_start (EV_P_ struct ev_child *w)
973{ 1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
974 if (ev_is_active (w)) 1364 if (ev_is_active (w))
975 return; 1365 return;
976 1366
977 ev_start ((W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 1369}
981 1370
982void 1371void
983ev_idle_stop (struct ev_idle *w) 1372ev_child_stop (EV_P_ struct ev_child *w)
984{ 1373{
985 ev_clear_pending ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 1375 if (ev_is_active (w))
987 return; 1376 return;
988 1377
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w); 1379 ev_stop (EV_A_ (W)w);
1056} 1380}
1057 1381
1058/*****************************************************************************/ 1382/*****************************************************************************/
1059 1383
1060struct ev_once 1384struct ev_once
1064 void (*cb)(int revents, void *arg); 1388 void (*cb)(int revents, void *arg);
1065 void *arg; 1389 void *arg;
1066}; 1390};
1067 1391
1068static void 1392static void
1069once_cb (struct ev_once *once, int revents) 1393once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 1394{
1071 void (*cb)(int revents, void *arg) = once->cb; 1395 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 1396 void *arg = once->arg;
1073 1397
1074 ev_io_stop (&once->io); 1398 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 1399 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 1400 free (once);
1077 1401
1078 cb (revents, arg); 1402 cb (revents, arg);
1079} 1403}
1080 1404
1081static void 1405static void
1082once_cb_io (struct ev_io *w, int revents) 1406once_cb_io (EV_P_ struct ev_io *w, int revents)
1083{ 1407{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 1409}
1086 1410
1087static void 1411static void
1088once_cb_to (struct ev_timer *w, int revents) 1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
1089{ 1413{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 1415}
1092 1416
1093void 1417void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 1419{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1097 1421
1098 if (!once) 1422 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1104 1428
1105 ev_watcher_init (&once->io, once_cb_io); 1429 ev_watcher_init (&once->io, once_cb_io);
1106 if (fd >= 0) 1430 if (fd >= 0)
1107 { 1431 {
1108 ev_io_set (&once->io, fd, events); 1432 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 1433 ev_io_start (EV_A_ &once->io);
1110 } 1434 }
1111 1435
1112 ev_watcher_init (&once->to, once_cb_to); 1436 ev_watcher_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 1437 if (timeout >= 0.)
1114 { 1438 {
1115 ev_timer_set (&once->to, timeout, 0.); 1439 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 1440 ev_timer_start (EV_A_ &once->to);
1117 } 1441 }
1118 } 1442 }
1119} 1443}
1120 1444
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif
1200
1201
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines