ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.41 by root, Fri Nov 2 16:54:34 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
100#endif 136#endif
101 137
102#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
104 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
105typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
106typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
107typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
108 147
109static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
110ev_tstamp ev_now;
111int ev_method;
112 149
113static int have_monotonic; /* runtime */ 150#if WIN32
114 151/* note: the comment below could not be substantiated, but what would I care */
115static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
116static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
117static void (*method_poll)(ev_tstamp timeout); 154#endif
118 155
119/*****************************************************************************/ 156/*****************************************************************************/
120 157
121ev_tstamp 158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
122ev_time (void) 192ev_time (void)
123{ 193{
124#if EV_USE_REALTIME 194#if EV_USE_REALTIME
125 struct timespec ts; 195 struct timespec ts;
126 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
130 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
131 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
132#endif 202#endif
133} 203}
134 204
135static ev_tstamp 205inline ev_tstamp
136get_clock (void) 206get_clock (void)
137{ 207{
138#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
139 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
140 { 210 {
143 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
144 } 214 }
145#endif 215#endif
146 216
147 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
148} 224}
149 225
150#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
151 227
152#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
162 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
163 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
164 cur = newcnt; \ 240 cur = newcnt; \
165 } 241 }
166 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
167/*****************************************************************************/ 254/*****************************************************************************/
168
169typedef struct
170{
171 struct ev_io *head;
172 unsigned char events;
173 unsigned char reify;
174} ANFD;
175
176static ANFD *anfds;
177static int anfdmax;
178 255
179static void 256static void
180anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
181{ 258{
182 while (count--) 259 while (count--)
187 264
188 ++base; 265 ++base;
189 } 266 }
190} 267}
191 268
192typedef struct
193{
194 W w;
195 int events;
196} ANPENDING;
197
198static ANPENDING *pendings;
199static int pendingmax, pendingcnt;
200
201static void 269static void
202event (W w, int events) 270event (EV_P_ W w, int events)
203{ 271{
204 if (w->pending) 272 if (w->pending)
205 { 273 {
206 pendings [w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
207 return; 275 return;
208 } 276 }
209 277
210 w->pending = ++pendingcnt; 278 w->pending = ++pendingcnt [ABSPRI (w)];
211 array_needsize (pendings, pendingmax, pendingcnt, ); 279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
212 pendings [pendingcnt - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
213 pendings [pendingcnt - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
214} 282}
215 283
216static void 284static void
217queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
218{ 286{
219 int i; 287 int i;
220 288
221 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
222 event (events [i], type); 290 event (EV_A_ events [i], type);
223} 291}
224 292
225static void 293static void
226fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
227{ 295{
228 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
229 struct ev_io *w; 297 struct ev_io *w;
230 298
231 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
232 { 300 {
233 int ev = w->events & events; 301 int ev = w->events & events;
234 302
235 if (ev) 303 if (ev)
236 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
237 } 305 }
238} 306}
239 307
240/*****************************************************************************/ 308/*****************************************************************************/
241 309
242static int *fdchanges;
243static int fdchangemax, fdchangecnt;
244
245static void 310static void
246fd_reify (void) 311fd_reify (EV_P)
247{ 312{
248 int i; 313 int i;
249 314
250 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
251 { 316 {
253 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
254 struct ev_io *w; 319 struct ev_io *w;
255 320
256 int events = 0; 321 int events = 0;
257 322
258 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
259 events |= w->events; 324 events |= w->events;
260 325
261 anfd->reify = 0; 326 anfd->reify = 0;
262 327
263 if (anfd->events != events)
264 {
265 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
266 anfd->events = events; 329 anfd->events = events;
267 }
268 } 330 }
269 331
270 fdchangecnt = 0; 332 fdchangecnt = 0;
271} 333}
272 334
273static void 335static void
274fd_change (int fd) 336fd_change (EV_P_ int fd)
275{ 337{
276 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
277 return; 339 return;
278 340
279 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
282 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
283 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
284} 346}
285 347
286static void 348static void
287fd_kill (int fd) 349fd_kill (EV_P_ int fd)
288{ 350{
289 struct ev_io *w; 351 struct ev_io *w;
290 352
291 printf ("killing fd %d\n", fd);//D
292 while ((w = anfds [fd].head)) 353 while ((w = (struct ev_io *)anfds [fd].head))
293 { 354 {
294 ev_io_stop (w); 355 ev_io_stop (EV_A_ w);
295 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
296 } 357 }
297} 358}
298 359
299/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
300static void 361static void
301fd_ebadf (void) 362fd_ebadf (EV_P)
302{ 363{
303 int fd; 364 int fd;
304 365
305 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
306 if (anfds [fd].events) 367 if (anfds [fd].events)
307 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
308 fd_kill (fd); 369 fd_kill (EV_A_ fd);
309} 370}
310 371
311/* called on ENOMEM in select/poll to kill some fds and retry */ 372/* called on ENOMEM in select/poll to kill some fds and retry */
312static void 373static void
313fd_enomem (void) 374fd_enomem (EV_P)
314{ 375{
315 int fd = anfdmax; 376 int fd;
316 377
317 while (fd--) 378 for (fd = anfdmax; fd--; )
318 if (anfds [fd].events) 379 if (anfds [fd].events)
319 { 380 {
320 close (fd);
321 fd_kill (fd); 381 fd_kill (EV_A_ fd);
322 return; 382 return;
323 } 383 }
324} 384}
325 385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
399}
400
326/*****************************************************************************/ 401/*****************************************************************************/
327 402
328static struct ev_timer **timers;
329static int timermax, timercnt;
330
331static struct ev_periodic **periodics;
332static int periodicmax, periodiccnt;
333
334static void 403static void
335upheap (WT *timers, int k) 404upheap (WT *heap, int k)
336{ 405{
337 WT w = timers [k]; 406 WT w = heap [k];
338 407
339 while (k && timers [k >> 1]->at > w->at) 408 while (k && heap [k >> 1]->at > w->at)
340 { 409 {
341 timers [k] = timers [k >> 1]; 410 heap [k] = heap [k >> 1];
342 timers [k]->active = k + 1; 411 ((W)heap [k])->active = k + 1;
343 k >>= 1; 412 k >>= 1;
344 } 413 }
345 414
346 timers [k] = w; 415 heap [k] = w;
347 timers [k]->active = k + 1; 416 ((W)heap [k])->active = k + 1;
348 417
349} 418}
350 419
351static void 420static void
352downheap (WT *timers, int N, int k) 421downheap (WT *heap, int N, int k)
353{ 422{
354 WT w = timers [k]; 423 WT w = heap [k];
355 424
356 while (k < (N >> 1)) 425 while (k < (N >> 1))
357 { 426 {
358 int j = k << 1; 427 int j = k << 1;
359 428
360 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
361 ++j; 430 ++j;
362 431
363 if (w->at <= timers [j]->at) 432 if (w->at <= heap [j]->at)
364 break; 433 break;
365 434
366 timers [k] = timers [j]; 435 heap [k] = heap [j];
367 timers [k]->active = k + 1; 436 ((W)heap [k])->active = k + 1;
368 k = j; 437 k = j;
369 } 438 }
370 439
371 timers [k] = w; 440 heap [k] = w;
372 timers [k]->active = k + 1; 441 ((W)heap [k])->active = k + 1;
373} 442}
374 443
375/*****************************************************************************/ 444/*****************************************************************************/
376 445
377typedef struct 446typedef struct
378{ 447{
379 struct ev_signal *head; 448 WL head;
380 sig_atomic_t volatile gotsig; 449 sig_atomic_t volatile gotsig;
381} ANSIG; 450} ANSIG;
382 451
383static ANSIG *signals; 452static ANSIG *signals;
384static int signalmax; 453static int signalmax;
400} 469}
401 470
402static void 471static void
403sighandler (int signum) 472sighandler (int signum)
404{ 473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
405 signals [signum - 1].gotsig = 1; 478 signals [signum - 1].gotsig = 1;
406 479
407 if (!gotsig) 480 if (!gotsig)
408 { 481 {
482 int old_errno = errno;
409 gotsig = 1; 483 gotsig = 1;
410 write (sigpipe [1], &signum, 1); 484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
411 } 486 }
412} 487}
413 488
414static void 489static void
415sigcb (struct ev_io *iow, int revents) 490sigcb (EV_P_ struct ev_io *iow, int revents)
416{ 491{
417 struct ev_signal *w; 492 WL w;
418 int signum; 493 int signum;
419 494
420 read (sigpipe [0], &revents, 1); 495 read (sigpipe [0], &revents, 1);
421 gotsig = 0; 496 gotsig = 0;
422 497
424 if (signals [signum].gotsig) 499 if (signals [signum].gotsig)
425 { 500 {
426 signals [signum].gotsig = 0; 501 signals [signum].gotsig = 0;
427 502
428 for (w = signals [signum].head; w; w = w->next) 503 for (w = signals [signum].head; w; w = w->next)
429 event ((W)w, EV_SIGNAL); 504 event (EV_A_ (W)w, EV_SIGNAL);
430 } 505 }
431} 506}
432 507
433static void 508static void
434siginit (void) 509siginit (EV_P)
435{ 510{
511#ifndef WIN32
436 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
437 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
438 514
439 /* rather than sort out wether we really need nb, set it */ 515 /* rather than sort out wether we really need nb, set it */
440 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
441 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
442 519
443 ev_io_set (&sigev, sigpipe [0], EV_READ); 520 ev_io_set (&sigev, sigpipe [0], EV_READ);
444 ev_io_start (&sigev); 521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
445} 523}
446 524
447/*****************************************************************************/ 525/*****************************************************************************/
448 526
449static struct ev_idle **idles; 527#ifndef WIN32
450static int idlemax, idlecnt;
451
452static struct ev_prepare **prepares;
453static int preparemax, preparecnt;
454
455static struct ev_check **checks;
456static int checkmax, checkcnt;
457
458/*****************************************************************************/
459 528
460static struct ev_child *childs [PID_HASHSIZE]; 529static struct ev_child *childs [PID_HASHSIZE];
461static struct ev_signal childev; 530static struct ev_signal childev;
462 531
463#ifndef WCONTINUED 532#ifndef WCONTINUED
464# define WCONTINUED 0 533# define WCONTINUED 0
465#endif 534#endif
466 535
467static void 536static void
468childcb (struct ev_signal *sw, int revents) 537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
469{ 538{
470 struct ev_child *w; 539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents)
553{
471 int pid, status; 554 int pid, status;
472 555
473 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
474 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 557 {
475 if (w->pid == pid || !w->pid) 558 /* make sure we are called again until all childs have been reaped */
476 { 559 event (EV_A_ (W)sw, EV_SIGNAL);
477 w->status = status; 560
478 event ((W)w, EV_CHILD); 561 child_reap (EV_A_ sw, pid, pid, status);
479 } 562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
480} 564}
565
566#endif
481 567
482/*****************************************************************************/ 568/*****************************************************************************/
483 569
570#if EV_USE_KQUEUE
571# include "ev_kqueue.c"
572#endif
484#if EV_USE_EPOLL 573#if EV_USE_EPOLL
485# include "ev_epoll.c" 574# include "ev_epoll.c"
486#endif 575#endif
487#if EV_USE_POLL 576#if EV_USE_POLL
488# include "ev_poll.c" 577# include "ev_poll.c"
501ev_version_minor (void) 590ev_version_minor (void)
502{ 591{
503 return EV_VERSION_MINOR; 592 return EV_VERSION_MINOR;
504} 593}
505 594
506/* return true if we are running with elevated privileges and ignore env variables */ 595/* return true if we are running with elevated privileges and should ignore env variables */
507static int 596static int
508enable_secure () 597enable_secure (void)
509{ 598{
599#ifdef WIN32
600 return 0;
601#else
510 return getuid () != geteuid () 602 return getuid () != geteuid ()
511 || getgid () != getegid (); 603 || getgid () != getegid ();
604#endif
512} 605}
513 606
514int ev_init (int methods) 607int
608ev_method (EV_P)
515{ 609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
516 if (!ev_method) 616 if (!method)
517 { 617 {
518#if EV_USE_MONOTONIC 618#if EV_USE_MONOTONIC
519 { 619 {
520 struct timespec ts; 620 struct timespec ts;
521 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
522 have_monotonic = 1; 622 have_monotonic = 1;
523 } 623 }
524#endif 624#endif
525 625
526 ev_now = ev_time (); 626 rt_now = ev_time ();
527 now = get_clock (); 627 mn_now = get_clock ();
528 now_floor = now; 628 now_floor = mn_now;
529 diff = ev_now - now; 629 rtmn_diff = rt_now - mn_now;
530
531 if (pipe (sigpipe))
532 return 0;
533 630
534 if (methods == EVMETHOD_AUTO) 631 if (methods == EVMETHOD_AUTO)
535 if (!enable_secure () && getenv ("LIBEV_METHODS")) 632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
536 methods = atoi (getenv ("LIBEV_METHODS")); 633 methods = atoi (getenv ("LIBEV_METHODS"));
537 else 634 else
538 methods = EVMETHOD_ANY; 635 methods = EVMETHOD_ANY;
539 636
540 ev_method = 0; 637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
641#if EV_USE_KQUEUE
642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
643#endif
541#if EV_USE_EPOLL 644#if EV_USE_EPOLL
542 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
543#endif 646#endif
544#if EV_USE_POLL 647#if EV_USE_POLL
545 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
546#endif 649#endif
547#if EV_USE_SELECT 650#if EV_USE_SELECT
548 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
549#endif 652#endif
653 }
654}
550 655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
754#endif
755
756 loop_init (EV_A_ methods);
757
551 if (ev_method) 758 if (ev_method (EV_A))
552 { 759 {
553 ev_watcher_init (&sigev, sigcb); 760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
554 siginit (); 762 siginit (EV_A);
555 763
764#ifndef WIN32
556 ev_signal_init (&childev, childcb, SIGCHLD); 765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
557 ev_signal_start (&childev); 767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif
558 } 770 }
771 else
772 default_loop = 0;
559 } 773 }
560 774
561 return ev_method; 775 return default_loop;
562} 776}
563 777
564/*****************************************************************************/
565
566void 778void
567ev_fork_prepare (void) 779ev_default_destroy (void)
568{ 780{
569 /* nop */ 781#if EV_MULTIPLICITY
570} 782 struct ev_loop *loop = default_loop;
571
572void
573ev_fork_parent (void)
574{
575 /* nop */
576}
577
578void
579ev_fork_child (void)
580{
581#if EV_USE_EPOLL
582 if (ev_method == EVMETHOD_EPOLL)
583 epoll_postfork_child ();
584#endif 783#endif
585 784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
586 ev_io_stop (&sigev); 789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
587 close (sigpipe [0]); 807 close (sigpipe [0]);
588 close (sigpipe [1]); 808 close (sigpipe [1]);
589 pipe (sigpipe); 809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
590 siginit (); 812 siginit (EV_A);
591} 813}
592 814
593/*****************************************************************************/ 815/*****************************************************************************/
594 816
595static void 817static void
596call_pending (void) 818call_pending (EV_P)
597{ 819{
820 int pri;
821
822 for (pri = NUMPRI; pri--; )
598 while (pendingcnt) 823 while (pendingcnt [pri])
599 { 824 {
600 ANPENDING *p = pendings + --pendingcnt; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
601 826
602 if (p->w) 827 if (p->w)
603 { 828 {
604 p->w->pending = 0; 829 p->w->pending = 0;
605 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
606 } 831 }
607 } 832 }
608} 833}
609 834
610static void 835static void
611timers_reify (void) 836timers_reify (EV_P)
612{ 837{
613 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
614 { 839 {
615 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
841
842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
616 843
617 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
618 if (w->repeat) 845 if (w->repeat)
619 { 846 {
620 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
621 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
622 downheap ((WT *)timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
623 } 850 }
624 else 851 else
625 ev_timer_stop (w); /* nonrepeating: stop timer */ 852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
626 853
627 event ((W)w, EV_TIMEOUT); 854 event (EV_A_ (W)w, EV_TIMEOUT);
628 } 855 }
629} 856}
630 857
631static void 858static void
632periodics_reify (void) 859periodics_reify (EV_P)
633{ 860{
634 while (periodiccnt && periodics [0]->at <= ev_now) 861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
635 { 862 {
636 struct ev_periodic *w = periodics [0]; 863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
637 866
638 /* first reschedule or stop timer */ 867 /* first reschedule or stop timer */
639 if (w->interval) 868 if (w->interval)
640 { 869 {
641 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
642 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
643 downheap ((WT *)periodics, periodiccnt, 0); 872 downheap ((WT *)periodics, periodiccnt, 0);
644 } 873 }
645 else 874 else
646 ev_periodic_stop (w); /* nonrepeating: stop timer */ 875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
647 876
648 event ((W)w, EV_PERIODIC); 877 event (EV_A_ (W)w, EV_PERIODIC);
649 } 878 }
650} 879}
651 880
652static void 881static void
653periodics_reschedule (ev_tstamp diff) 882periodics_reschedule (EV_P)
654{ 883{
655 int i; 884 int i;
656 885
657 /* adjust periodics after time jump */ 886 /* adjust periodics after time jump */
658 for (i = 0; i < periodiccnt; ++i) 887 for (i = 0; i < periodiccnt; ++i)
659 { 888 {
660 struct ev_periodic *w = periodics [i]; 889 struct ev_periodic *w = periodics [i];
661 890
662 if (w->interval) 891 if (w->interval)
663 { 892 {
664 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
665 894
666 if (fabs (diff) >= 1e-4) 895 if (fabs (diff) >= 1e-4)
667 { 896 {
668 ev_periodic_stop (w); 897 ev_periodic_stop (EV_A_ w);
669 ev_periodic_start (w); 898 ev_periodic_start (EV_A_ w);
670 899
671 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
672 } 901 }
673 } 902 }
674 } 903 }
675} 904}
676 905
677static int 906inline int
678time_update_monotonic (void) 907time_update_monotonic (EV_P)
679{ 908{
680 now = get_clock (); 909 mn_now = get_clock ();
681 910
682 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
683 { 912 {
684 ev_now = now + diff; 913 rt_now = rtmn_diff + mn_now;
685 return 0; 914 return 0;
686 } 915 }
687 else 916 else
688 { 917 {
689 now_floor = now; 918 now_floor = mn_now;
690 ev_now = ev_time (); 919 rt_now = ev_time ();
691 return 1; 920 return 1;
692 } 921 }
693} 922}
694 923
695static void 924static void
696time_update (void) 925time_update (EV_P)
697{ 926{
698 int i; 927 int i;
699 928
700#if EV_USE_MONOTONIC 929#if EV_USE_MONOTONIC
701 if (expect_true (have_monotonic)) 930 if (expect_true (have_monotonic))
702 { 931 {
703 if (time_update_monotonic ()) 932 if (time_update_monotonic (EV_A))
704 { 933 {
705 ev_tstamp odiff = diff; 934 ev_tstamp odiff = rtmn_diff;
706 935
707 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
708 { 937 {
709 diff = ev_now - now; 938 rtmn_diff = rt_now - mn_now;
710 939
711 if (fabs (odiff - diff) < MIN_TIMEJUMP) 940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
712 return; /* all is well */ 941 return; /* all is well */
713 942
714 ev_now = ev_time (); 943 rt_now = ev_time ();
715 now = get_clock (); 944 mn_now = get_clock ();
716 now_floor = now; 945 now_floor = mn_now;
717 } 946 }
718 947
719 periodics_reschedule (diff - odiff); 948 periodics_reschedule (EV_A);
720 /* no timer adjustment, as the monotonic clock doesn't jump */ 949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
721 } 951 }
722 } 952 }
723 else 953 else
724#endif 954#endif
725 { 955 {
726 ev_now = ev_time (); 956 rt_now = ev_time ();
727 957
728 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
729 { 959 {
730 periodics_reschedule (ev_now - now); 960 periodics_reschedule (EV_A);
731 961
732 /* adjust timers. this is easy, as the offset is the same for all */ 962 /* adjust timers. this is easy, as the offset is the same for all */
733 for (i = 0; i < timercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
734 timers [i]->at += diff; 964 ((WT)timers [i])->at += rt_now - mn_now;
735 } 965 }
736 966
737 now = ev_now; 967 mn_now = rt_now;
738 } 968 }
739} 969}
740 970
741int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
742 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
743void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
744{ 987{
745 double block; 988 double block;
746 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
747 990
748 do 991 do
749 { 992 {
750 /* queue check watchers (and execute them) */ 993 /* queue check watchers (and execute them) */
751 if (expect_false (preparecnt)) 994 if (expect_false (preparecnt))
752 { 995 {
753 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
754 call_pending (); 997 call_pending (EV_A);
755 } 998 }
756 999
757 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
758 fd_reify (); 1001 fd_reify (EV_A);
759 1002
760 /* calculate blocking time */ 1003 /* calculate blocking time */
761 1004
762 /* we only need this for !monotonic clockor timers, but as we basically 1005 /* we only need this for !monotonic clockor timers, but as we basically
763 always have timers, we just calculate it always */ 1006 always have timers, we just calculate it always */
764#if EV_USE_MONOTONIC 1007#if EV_USE_MONOTONIC
765 if (expect_true (have_monotonic)) 1008 if (expect_true (have_monotonic))
766 time_update_monotonic (); 1009 time_update_monotonic (EV_A);
767 else 1010 else
768#endif 1011#endif
769 { 1012 {
770 ev_now = ev_time (); 1013 rt_now = ev_time ();
771 now = ev_now; 1014 mn_now = rt_now;
772 } 1015 }
773 1016
774 if (flags & EVLOOP_NONBLOCK || idlecnt) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
775 block = 0.; 1018 block = 0.;
776 else 1019 else
777 { 1020 {
778 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
779 1022
780 if (timercnt) 1023 if (timercnt)
781 { 1024 {
782 ev_tstamp to = timers [0]->at - now + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
783 if (block > to) block = to; 1026 if (block > to) block = to;
784 } 1027 }
785 1028
786 if (periodiccnt) 1029 if (periodiccnt)
787 { 1030 {
788 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
789 if (block > to) block = to; 1032 if (block > to) block = to;
790 } 1033 }
791 1034
792 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
793 } 1036 }
794 1037
795 method_poll (block); 1038 method_poll (EV_A_ block);
796 1039
797 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
798 time_update (); 1041 time_update (EV_A);
799 1042
800 /* queue pending timers and reschedule them */ 1043 /* queue pending timers and reschedule them */
801 timers_reify (); /* relative timers called last */ 1044 timers_reify (EV_A); /* relative timers called last */
802 periodics_reify (); /* absolute timers called first */ 1045 periodics_reify (EV_A); /* absolute timers called first */
803 1046
804 /* queue idle watchers unless io or timers are pending */ 1047 /* queue idle watchers unless io or timers are pending */
805 if (!pendingcnt) 1048 if (!pendingcnt)
806 queue_events ((W *)idles, idlecnt, EV_IDLE); 1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
807 1050
808 /* queue check watchers, to be executed first */ 1051 /* queue check watchers, to be executed first */
809 if (checkcnt) 1052 if (checkcnt)
810 queue_events ((W *)checks, checkcnt, EV_CHECK); 1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
811 1054
812 call_pending (); 1055 call_pending (EV_A);
813 } 1056 }
814 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
815 1058
816 if (ev_loop_done != 2) 1059 if (loop_done != 2)
817 ev_loop_done = 0; 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
818} 1067}
819 1068
820/*****************************************************************************/ 1069/*****************************************************************************/
821 1070
822static void 1071inline void
823wlist_add (WL *head, WL elem) 1072wlist_add (WL *head, WL elem)
824{ 1073{
825 elem->next = *head; 1074 elem->next = *head;
826 *head = elem; 1075 *head = elem;
827} 1076}
828 1077
829static void 1078inline void
830wlist_del (WL *head, WL elem) 1079wlist_del (WL *head, WL elem)
831{ 1080{
832 while (*head) 1081 while (*head)
833 { 1082 {
834 if (*head == elem) 1083 if (*head == elem)
839 1088
840 head = &(*head)->next; 1089 head = &(*head)->next;
841 } 1090 }
842} 1091}
843 1092
844static void 1093inline void
845ev_clear_pending (W w) 1094ev_clear_pending (EV_P_ W w)
846{ 1095{
847 if (w->pending) 1096 if (w->pending)
848 { 1097 {
849 pendings [w->pending - 1].w = 0; 1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
850 w->pending = 0; 1099 w->pending = 0;
851 } 1100 }
852} 1101}
853 1102
854static void 1103inline void
855ev_start (W w, int active) 1104ev_start (EV_P_ W w, int active)
856{ 1105{
1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1108
857 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
858} 1111}
859 1112
860static void 1113inline void
861ev_stop (W w) 1114ev_stop (EV_P_ W w)
862{ 1115{
1116 ev_unref (EV_A);
863 w->active = 0; 1117 w->active = 0;
864} 1118}
865 1119
866/*****************************************************************************/ 1120/*****************************************************************************/
867 1121
868void 1122void
869ev_io_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
870{ 1124{
871 int fd = w->fd; 1125 int fd = w->fd;
872 1126
873 if (ev_is_active (w)) 1127 if (ev_is_active (w))
874 return; 1128 return;
875 1129
876 assert (("ev_io_start called with negative fd", fd >= 0)); 1130 assert (("ev_io_start called with negative fd", fd >= 0));
877 1131
878 ev_start ((W)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
879 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
880 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
881 1135
882 fd_change (fd); 1136 fd_change (EV_A_ fd);
883} 1137}
884 1138
885void 1139void
886ev_io_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
887{ 1141{
888 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
889 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
890 return; 1144 return;
891 1145
892 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
893 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
894 1148
895 fd_change (w->fd); 1149 fd_change (EV_A_ w->fd);
896} 1150}
897 1151
898void 1152void
899ev_timer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
900{ 1154{
901 if (ev_is_active (w)) 1155 if (ev_is_active (w))
902 return; 1156 return;
903 1157
904 w->at += now; 1158 ((WT)w)->at += mn_now;
905 1159
906 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
907 1161
908 ev_start ((W)w, ++timercnt); 1162 ev_start (EV_A_ (W)w, ++timercnt);
909 array_needsize (timers, timermax, timercnt, ); 1163 array_needsize (timers, timermax, timercnt, );
910 timers [timercnt - 1] = w; 1164 timers [timercnt - 1] = w;
911 upheap ((WT *)timers, timercnt - 1); 1165 upheap ((WT *)timers, timercnt - 1);
912}
913 1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
914void 1170void
915ev_timer_stop (struct ev_timer *w) 1171ev_timer_stop (EV_P_ struct ev_timer *w)
916{ 1172{
917 ev_clear_pending ((W)w); 1173 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1174 if (!ev_is_active (w))
919 return; 1175 return;
920 1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
921 if (w->active < timercnt--) 1179 if (((W)w)->active < timercnt--)
922 { 1180 {
923 timers [w->active - 1] = timers [timercnt]; 1181 timers [((W)w)->active - 1] = timers [timercnt];
924 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
925 } 1183 }
926 1184
927 w->at = w->repeat; 1185 ((WT)w)->at = w->repeat;
928 1186
929 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
930} 1188}
931 1189
932void 1190void
933ev_timer_again (struct ev_timer *w) 1191ev_timer_again (EV_P_ struct ev_timer *w)
934{ 1192{
935 if (ev_is_active (w)) 1193 if (ev_is_active (w))
936 { 1194 {
937 if (w->repeat) 1195 if (w->repeat)
938 { 1196 {
939 w->at = now + w->repeat; 1197 ((WT)w)->at = mn_now + w->repeat;
940 downheap ((WT *)timers, timercnt, w->active - 1); 1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
941 } 1199 }
942 else 1200 else
943 ev_timer_stop (w); 1201 ev_timer_stop (EV_A_ w);
944 } 1202 }
945 else if (w->repeat) 1203 else if (w->repeat)
946 ev_timer_start (w); 1204 ev_timer_start (EV_A_ w);
947} 1205}
948 1206
949void 1207void
950ev_periodic_start (struct ev_periodic *w) 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
951{ 1209{
952 if (ev_is_active (w)) 1210 if (ev_is_active (w))
953 return; 1211 return;
954 1212
955 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
956 1214
957 /* this formula differs from the one in periodic_reify because we do not always round up */ 1215 /* this formula differs from the one in periodic_reify because we do not always round up */
958 if (w->interval) 1216 if (w->interval)
959 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
960 1218
961 ev_start ((W)w, ++periodiccnt); 1219 ev_start (EV_A_ (W)w, ++periodiccnt);
962 array_needsize (periodics, periodicmax, periodiccnt, ); 1220 array_needsize (periodics, periodicmax, periodiccnt, );
963 periodics [periodiccnt - 1] = w; 1221 periodics [periodiccnt - 1] = w;
964 upheap ((WT *)periodics, periodiccnt - 1); 1222 upheap ((WT *)periodics, periodiccnt - 1);
965}
966 1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
967void 1227void
968ev_periodic_stop (struct ev_periodic *w) 1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
969{ 1229{
970 ev_clear_pending ((W)w); 1230 ev_clear_pending (EV_A_ (W)w);
971 if (!ev_is_active (w)) 1231 if (!ev_is_active (w))
972 return; 1232 return;
973 1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
974 if (w->active < periodiccnt--) 1236 if (((W)w)->active < periodiccnt--)
975 { 1237 {
976 periodics [w->active - 1] = periodics [periodiccnt]; 1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
977 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
978 } 1240 }
979 1241
980 ev_stop ((W)w); 1242 ev_stop (EV_A_ (W)w);
981} 1243}
982 1244
983void 1245void
984ev_signal_start (struct ev_signal *w) 1246ev_idle_start (EV_P_ struct ev_idle *w)
985{ 1247{
986 if (ev_is_active (w)) 1248 if (ev_is_active (w))
987 return; 1249 return;
988 1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310
1311#ifndef SA_RESTART
1312# define SA_RESTART 0
1313#endif
1314
1315void
1316ev_signal_start (EV_P_ struct ev_signal *w)
1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1321 if (ev_is_active (w))
1322 return;
1323
989 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
990 1325
991 ev_start ((W)w, 1); 1326 ev_start (EV_A_ (W)w, 1);
992 array_needsize (signals, signalmax, w->signum, signals_init); 1327 array_needsize (signals, signalmax, w->signum, signals_init);
993 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
994 1329
995 if (!w->next) 1330 if (!((WL)w)->next)
996 { 1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
997 struct sigaction sa; 1335 struct sigaction sa;
998 sa.sa_handler = sighandler; 1336 sa.sa_handler = sighandler;
999 sigfillset (&sa.sa_mask); 1337 sigfillset (&sa.sa_mask);
1000 sa.sa_flags = 0; 1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1001 sigaction (w->signum, &sa, 0); 1339 sigaction (w->signum, &sa, 0);
1340#endif
1002 } 1341 }
1003} 1342}
1004 1343
1005void 1344void
1006ev_signal_stop (struct ev_signal *w) 1345ev_signal_stop (EV_P_ struct ev_signal *w)
1007{ 1346{
1008 ev_clear_pending ((W)w); 1347 ev_clear_pending (EV_A_ (W)w);
1009 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
1010 return; 1349 return;
1011 1350
1012 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 ev_stop ((W)w); 1352 ev_stop (EV_A_ (W)w);
1014 1353
1015 if (!signals [w->signum - 1].head) 1354 if (!signals [w->signum - 1].head)
1016 signal (w->signum, SIG_DFL); 1355 signal (w->signum, SIG_DFL);
1017} 1356}
1018 1357
1019void 1358void
1020ev_idle_start (struct ev_idle *w) 1359ev_child_start (EV_P_ struct ev_child *w)
1021{ 1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
1022 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1023 return; 1365 return;
1024 1366
1025 ev_start ((W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, 1);
1026 array_needsize (idles, idlemax, idlecnt, ); 1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1027 idles [idlecnt - 1] = w;
1028} 1369}
1029 1370
1030void 1371void
1031ev_idle_stop (struct ev_idle *w) 1372ev_child_stop (EV_P_ struct ev_child *w)
1032{ 1373{
1033 ev_clear_pending ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
1034 if (ev_is_active (w)) 1375 if (ev_is_active (w))
1035 return; 1376 return;
1036 1377
1037 idles [w->active - 1] = idles [--idlecnt];
1038 ev_stop ((W)w);
1039}
1040
1041void
1042ev_prepare_start (struct ev_prepare *w)
1043{
1044 if (ev_is_active (w))
1045 return;
1046
1047 ev_start ((W)w, ++preparecnt);
1048 array_needsize (prepares, preparemax, preparecnt, );
1049 prepares [preparecnt - 1] = w;
1050}
1051
1052void
1053ev_prepare_stop (struct ev_prepare *w)
1054{
1055 ev_clear_pending ((W)w);
1056 if (ev_is_active (w))
1057 return;
1058
1059 prepares [w->active - 1] = prepares [--preparecnt];
1060 ev_stop ((W)w);
1061}
1062
1063void
1064ev_check_start (struct ev_check *w)
1065{
1066 if (ev_is_active (w))
1067 return;
1068
1069 ev_start ((W)w, ++checkcnt);
1070 array_needsize (checks, checkmax, checkcnt, );
1071 checks [checkcnt - 1] = w;
1072}
1073
1074void
1075ev_check_stop (struct ev_check *w)
1076{
1077 ev_clear_pending ((W)w);
1078 if (ev_is_active (w))
1079 return;
1080
1081 checks [w->active - 1] = checks [--checkcnt];
1082 ev_stop ((W)w);
1083}
1084
1085void
1086ev_child_start (struct ev_child *w)
1087{
1088 if (ev_is_active (w))
1089 return;
1090
1091 ev_start ((W)w, 1);
1092 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1093}
1094
1095void
1096ev_child_stop (struct ev_child *w)
1097{
1098 ev_clear_pending ((W)w);
1099 if (ev_is_active (w))
1100 return;
1101
1102 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1103 ev_stop ((W)w); 1379 ev_stop (EV_A_ (W)w);
1104} 1380}
1105 1381
1106/*****************************************************************************/ 1382/*****************************************************************************/
1107 1383
1108struct ev_once 1384struct ev_once
1112 void (*cb)(int revents, void *arg); 1388 void (*cb)(int revents, void *arg);
1113 void *arg; 1389 void *arg;
1114}; 1390};
1115 1391
1116static void 1392static void
1117once_cb (struct ev_once *once, int revents) 1393once_cb (EV_P_ struct ev_once *once, int revents)
1118{ 1394{
1119 void (*cb)(int revents, void *arg) = once->cb; 1395 void (*cb)(int revents, void *arg) = once->cb;
1120 void *arg = once->arg; 1396 void *arg = once->arg;
1121 1397
1122 ev_io_stop (&once->io); 1398 ev_io_stop (EV_A_ &once->io);
1123 ev_timer_stop (&once->to); 1399 ev_timer_stop (EV_A_ &once->to);
1124 free (once); 1400 free (once);
1125 1401
1126 cb (revents, arg); 1402 cb (revents, arg);
1127} 1403}
1128 1404
1129static void 1405static void
1130once_cb_io (struct ev_io *w, int revents) 1406once_cb_io (EV_P_ struct ev_io *w, int revents)
1131{ 1407{
1132 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1133} 1409}
1134 1410
1135static void 1411static void
1136once_cb_to (struct ev_timer *w, int revents) 1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
1137{ 1413{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1139} 1415}
1140 1416
1141void 1417void
1142ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1143{ 1419{
1144 struct ev_once *once = malloc (sizeof (struct ev_once)); 1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1145 1421
1146 if (!once) 1422 if (!once)
1147 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1152 1428
1153 ev_watcher_init (&once->io, once_cb_io); 1429 ev_watcher_init (&once->io, once_cb_io);
1154 if (fd >= 0) 1430 if (fd >= 0)
1155 { 1431 {
1156 ev_io_set (&once->io, fd, events); 1432 ev_io_set (&once->io, fd, events);
1157 ev_io_start (&once->io); 1433 ev_io_start (EV_A_ &once->io);
1158 } 1434 }
1159 1435
1160 ev_watcher_init (&once->to, once_cb_to); 1436 ev_watcher_init (&once->to, once_cb_to);
1161 if (timeout >= 0.) 1437 if (timeout >= 0.)
1162 { 1438 {
1163 ev_timer_set (&once->to, timeout, 0.); 1439 ev_timer_set (&once->to, timeout, 0.);
1164 ev_timer_start (&once->to); 1440 ev_timer_start (EV_A_ &once->to);
1165 } 1441 }
1166 } 1442 }
1167} 1443}
1168 1444
1169/*****************************************************************************/
1170
1171#if 0
1172
1173struct ev_io wio;
1174
1175static void
1176sin_cb (struct ev_io *w, int revents)
1177{
1178 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1179}
1180
1181static void
1182ocb (struct ev_timer *w, int revents)
1183{
1184 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1185 ev_timer_stop (w);
1186 ev_timer_start (w);
1187}
1188
1189static void
1190scb (struct ev_signal *w, int revents)
1191{
1192 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1193 ev_io_stop (&wio);
1194 ev_io_start (&wio);
1195}
1196
1197static void
1198gcb (struct ev_signal *w, int revents)
1199{
1200 fprintf (stderr, "generic %x\n", revents);
1201
1202}
1203
1204int main (void)
1205{
1206 ev_init (0);
1207
1208 ev_io_init (&wio, sin_cb, 0, EV_READ);
1209 ev_io_start (&wio);
1210
1211 struct ev_timer t[10000];
1212
1213#if 0
1214 int i;
1215 for (i = 0; i < 10000; ++i)
1216 {
1217 struct ev_timer *w = t + i;
1218 ev_watcher_init (w, ocb, i);
1219 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1220 ev_timer_start (w);
1221 if (drand48 () < 0.5)
1222 ev_timer_stop (w);
1223 }
1224#endif
1225
1226 struct ev_timer t1;
1227 ev_timer_init (&t1, ocb, 5, 10);
1228 ev_timer_start (&t1);
1229
1230 struct ev_signal sig;
1231 ev_signal_init (&sig, scb, SIGQUIT);
1232 ev_signal_start (&sig);
1233
1234 struct ev_check cw;
1235 ev_check_init (&cw, gcb);
1236 ev_check_start (&cw);
1237
1238 struct ev_idle iw;
1239 ev_idle_init (&iw, gcb);
1240 ev_idle_start (&iw);
1241
1242 ev_loop (0);
1243
1244 return 0;
1245}
1246
1247#endif
1248
1249
1250
1251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines