ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.44 by root, Fri Nov 2 20:59:14 2007 UTC vs.
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
67#endif 91#endif
68 92
69#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
70# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
71#endif 103#endif
72 104
73#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
75#endif 107#endif
111 143
112typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
113typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
114typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
115 147
116static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
117ev_tstamp ev_now;
118int ev_method;
119 149
120static int have_monotonic; /* runtime */ 150#if WIN32
121 151/* note: the comment below could not be substantiated, but what would I care */
122static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
123static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
124static void (*method_poll)(ev_tstamp timeout); 154#endif
125 155
126/*****************************************************************************/ 156/*****************************************************************************/
127 157
128ev_tstamp 158typedef struct
159{
160 WL head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
129ev_time (void) 192ev_time (void)
130{ 193{
131#if EV_USE_REALTIME 194#if EV_USE_REALTIME
132 struct timespec ts; 195 struct timespec ts;
133 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
137 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
138 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
139#endif 202#endif
140} 203}
141 204
142static ev_tstamp 205inline ev_tstamp
143get_clock (void) 206get_clock (void)
144{ 207{
145#if EV_USE_MONOTONIC 208#if EV_USE_MONOTONIC
146 if (expect_true (have_monotonic)) 209 if (expect_true (have_monotonic))
147 { 210 {
150 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
151 } 214 }
152#endif 215#endif
153 216
154 return ev_time (); 217 return ev_time ();
218}
219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
155} 224}
156 225
157#define array_roundsize(base,n) ((n) | 4 & ~3) 226#define array_roundsize(base,n) ((n) | 4 & ~3)
158 227
159#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
169 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
170 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
171 cur = newcnt; \ 240 cur = newcnt; \
172 } 241 }
173 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
174/*****************************************************************************/ 254/*****************************************************************************/
175
176typedef struct
177{
178 struct ev_io *head;
179 unsigned char events;
180 unsigned char reify;
181} ANFD;
182
183static ANFD *anfds;
184static int anfdmax;
185 255
186static void 256static void
187anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
188{ 258{
189 while (count--) 259 while (count--)
194 264
195 ++base; 265 ++base;
196 } 266 }
197} 267}
198 268
199typedef struct
200{
201 W w;
202 int events;
203} ANPENDING;
204
205static ANPENDING *pendings [NUMPRI];
206static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208static void 269static void
209event (W w, int events) 270event (EV_P_ W w, int events)
210{ 271{
211 if (w->pending) 272 if (w->pending)
212 { 273 {
213 pendings [ABSPRI (w)][w->pending - 1].events |= events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
214 return; 275 return;
219 pendings [ABSPRI (w)][w->pending - 1].w = w; 280 pendings [ABSPRI (w)][w->pending - 1].w = w;
220 pendings [ABSPRI (w)][w->pending - 1].events = events; 281 pendings [ABSPRI (w)][w->pending - 1].events = events;
221} 282}
222 283
223static void 284static void
224queue_events (W *events, int eventcnt, int type) 285queue_events (EV_P_ W *events, int eventcnt, int type)
225{ 286{
226 int i; 287 int i;
227 288
228 for (i = 0; i < eventcnt; ++i) 289 for (i = 0; i < eventcnt; ++i)
229 event (events [i], type); 290 event (EV_A_ events [i], type);
230} 291}
231 292
232static void 293static void
233fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
234{ 295{
235 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
236 struct ev_io *w; 297 struct ev_io *w;
237 298
238 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
239 { 300 {
240 int ev = w->events & events; 301 int ev = w->events & events;
241 302
242 if (ev) 303 if (ev)
243 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
244 } 305 }
245} 306}
246 307
247/*****************************************************************************/ 308/*****************************************************************************/
248 309
249static int *fdchanges;
250static int fdchangemax, fdchangecnt;
251
252static void 310static void
253fd_reify (void) 311fd_reify (EV_P)
254{ 312{
255 int i; 313 int i;
256 314
257 for (i = 0; i < fdchangecnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
258 { 316 {
260 ANFD *anfd = anfds + fd; 318 ANFD *anfd = anfds + fd;
261 struct ev_io *w; 319 struct ev_io *w;
262 320
263 int events = 0; 321 int events = 0;
264 322
265 for (w = anfd->head; w; w = w->next) 323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
266 events |= w->events; 324 events |= w->events;
267 325
268 anfd->reify = 0; 326 anfd->reify = 0;
269 327
270 if (anfd->events != events)
271 {
272 method_modify (fd, anfd->events, events); 328 method_modify (EV_A_ fd, anfd->events, events);
273 anfd->events = events; 329 anfd->events = events;
274 }
275 } 330 }
276 331
277 fdchangecnt = 0; 332 fdchangecnt = 0;
278} 333}
279 334
280static void 335static void
281fd_change (int fd) 336fd_change (EV_P_ int fd)
282{ 337{
283 if (anfds [fd].reify || fdchangecnt < 0) 338 if (anfds [fd].reify || fdchangecnt < 0)
284 return; 339 return;
285 340
286 anfds [fd].reify = 1; 341 anfds [fd].reify = 1;
289 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
290 fdchanges [fdchangecnt - 1] = fd; 345 fdchanges [fdchangecnt - 1] = fd;
291} 346}
292 347
293static void 348static void
294fd_kill (int fd) 349fd_kill (EV_P_ int fd)
295{ 350{
296 struct ev_io *w; 351 struct ev_io *w;
297 352
298 printf ("killing fd %d\n", fd);//D
299 while ((w = anfds [fd].head)) 353 while ((w = (struct ev_io *)anfds [fd].head))
300 { 354 {
301 ev_io_stop (w); 355 ev_io_stop (EV_A_ w);
302 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
303 } 357 }
304} 358}
305 359
306/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
307static void 361static void
308fd_ebadf (void) 362fd_ebadf (EV_P)
309{ 363{
310 int fd; 364 int fd;
311 365
312 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
313 if (anfds [fd].events) 367 if (anfds [fd].events)
314 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
315 fd_kill (fd); 369 fd_kill (EV_A_ fd);
316} 370}
317 371
318/* called on ENOMEM in select/poll to kill some fds and retry */ 372/* called on ENOMEM in select/poll to kill some fds and retry */
319static void 373static void
320fd_enomem (void) 374fd_enomem (EV_P)
321{ 375{
322 int fd = anfdmax; 376 int fd;
323 377
324 while (fd--) 378 for (fd = anfdmax; fd--; )
325 if (anfds [fd].events) 379 if (anfds [fd].events)
326 { 380 {
327 close (fd);
328 fd_kill (fd); 381 fd_kill (EV_A_ fd);
329 return; 382 return;
330 } 383 }
331} 384}
332 385
386/* susually called after fork if method needs to re-arm all fds from scratch */
387static void
388fd_rearm_all (EV_P)
389{
390 int fd;
391
392 /* this should be highly optimised to not do anything but set a flag */
393 for (fd = 0; fd < anfdmax; ++fd)
394 if (anfds [fd].events)
395 {
396 anfds [fd].events = 0;
397 fd_change (EV_A_ fd);
398 }
399}
400
333/*****************************************************************************/ 401/*****************************************************************************/
334 402
335static struct ev_timer **timers;
336static int timermax, timercnt;
337
338static struct ev_periodic **periodics;
339static int periodicmax, periodiccnt;
340
341static void 403static void
342upheap (WT *timers, int k) 404upheap (WT *heap, int k)
343{ 405{
344 WT w = timers [k]; 406 WT w = heap [k];
345 407
346 while (k && timers [k >> 1]->at > w->at) 408 while (k && heap [k >> 1]->at > w->at)
347 { 409 {
348 timers [k] = timers [k >> 1]; 410 heap [k] = heap [k >> 1];
349 timers [k]->active = k + 1; 411 ((W)heap [k])->active = k + 1;
350 k >>= 1; 412 k >>= 1;
351 } 413 }
352 414
353 timers [k] = w; 415 heap [k] = w;
354 timers [k]->active = k + 1; 416 ((W)heap [k])->active = k + 1;
355 417
356} 418}
357 419
358static void 420static void
359downheap (WT *timers, int N, int k) 421downheap (WT *heap, int N, int k)
360{ 422{
361 WT w = timers [k]; 423 WT w = heap [k];
362 424
363 while (k < (N >> 1)) 425 while (k < (N >> 1))
364 { 426 {
365 int j = k << 1; 427 int j = k << 1;
366 428
367 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 429 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
368 ++j; 430 ++j;
369 431
370 if (w->at <= timers [j]->at) 432 if (w->at <= heap [j]->at)
371 break; 433 break;
372 434
373 timers [k] = timers [j]; 435 heap [k] = heap [j];
374 timers [k]->active = k + 1; 436 ((W)heap [k])->active = k + 1;
375 k = j; 437 k = j;
376 } 438 }
377 439
378 timers [k] = w; 440 heap [k] = w;
379 timers [k]->active = k + 1; 441 ((W)heap [k])->active = k + 1;
380} 442}
381 443
382/*****************************************************************************/ 444/*****************************************************************************/
383 445
384typedef struct 446typedef struct
385{ 447{
386 struct ev_signal *head; 448 WL head;
387 sig_atomic_t volatile gotsig; 449 sig_atomic_t volatile gotsig;
388} ANSIG; 450} ANSIG;
389 451
390static ANSIG *signals; 452static ANSIG *signals;
391static int signalmax; 453static int signalmax;
407} 469}
408 470
409static void 471static void
410sighandler (int signum) 472sighandler (int signum)
411{ 473{
474#if WIN32
475 signal (signum, sighandler);
476#endif
477
412 signals [signum - 1].gotsig = 1; 478 signals [signum - 1].gotsig = 1;
413 479
414 if (!gotsig) 480 if (!gotsig)
415 { 481 {
482 int old_errno = errno;
416 gotsig = 1; 483 gotsig = 1;
417 write (sigpipe [1], &signum, 1); 484 write (sigpipe [1], &signum, 1);
485 errno = old_errno;
418 } 486 }
419} 487}
420 488
421static void 489static void
422sigcb (struct ev_io *iow, int revents) 490sigcb (EV_P_ struct ev_io *iow, int revents)
423{ 491{
424 struct ev_signal *w; 492 WL w;
425 int signum; 493 int signum;
426 494
427 read (sigpipe [0], &revents, 1); 495 read (sigpipe [0], &revents, 1);
428 gotsig = 0; 496 gotsig = 0;
429 497
431 if (signals [signum].gotsig) 499 if (signals [signum].gotsig)
432 { 500 {
433 signals [signum].gotsig = 0; 501 signals [signum].gotsig = 0;
434 502
435 for (w = signals [signum].head; w; w = w->next) 503 for (w = signals [signum].head; w; w = w->next)
436 event ((W)w, EV_SIGNAL); 504 event (EV_A_ (W)w, EV_SIGNAL);
437 } 505 }
438} 506}
439 507
440static void 508static void
441siginit (void) 509siginit (EV_P)
442{ 510{
511#ifndef WIN32
443 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 512 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445 514
446 /* rather than sort out wether we really need nb, set it */ 515 /* rather than sort out wether we really need nb, set it */
447 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 516 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
518#endif
449 519
450 ev_io_set (&sigev, sigpipe [0], EV_READ); 520 ev_io_set (&sigev, sigpipe [0], EV_READ);
451 ev_io_start (&sigev); 521 ev_io_start (EV_A_ &sigev);
522 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 523}
453 524
454/*****************************************************************************/ 525/*****************************************************************************/
455 526
456static struct ev_idle **idles; 527#ifndef WIN32
457static int idlemax, idlecnt;
458
459static struct ev_prepare **prepares;
460static int preparemax, preparecnt;
461
462static struct ev_check **checks;
463static int checkmax, checkcnt;
464
465/*****************************************************************************/
466 528
467static struct ev_child *childs [PID_HASHSIZE]; 529static struct ev_child *childs [PID_HASHSIZE];
468static struct ev_signal childev; 530static struct ev_signal childev;
469 531
470#ifndef WCONTINUED 532#ifndef WCONTINUED
471# define WCONTINUED 0 533# define WCONTINUED 0
472#endif 534#endif
473 535
474static void 536static void
475childcb (struct ev_signal *sw, int revents) 537child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
476{ 538{
477 struct ev_child *w; 539 struct ev_child *w;
540
541 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
542 if (w->pid == pid || !w->pid)
543 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid;
546 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD);
548 }
549}
550
551static void
552childcb (EV_P_ struct ev_signal *sw, int revents)
553{
478 int pid, status; 554 int pid, status;
479 555
480 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
481 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 557 {
482 if (w->pid == pid || !w->pid) 558 /* make sure we are called again until all childs have been reaped */
483 { 559 event (EV_A_ (W)sw, EV_SIGNAL);
484 w->status = status; 560
485 event ((W)w, EV_CHILD); 561 child_reap (EV_A_ sw, pid, pid, status);
486 } 562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 }
487} 564}
565
566#endif
488 567
489/*****************************************************************************/ 568/*****************************************************************************/
490 569
491#if EV_USE_KQUEUE 570#if EV_USE_KQUEUE
492# include "ev_kqueue.c" 571# include "ev_kqueue.c"
511ev_version_minor (void) 590ev_version_minor (void)
512{ 591{
513 return EV_VERSION_MINOR; 592 return EV_VERSION_MINOR;
514} 593}
515 594
516/* return true if we are running with elevated privileges and ignore env variables */ 595/* return true if we are running with elevated privileges and should ignore env variables */
517static int 596static int
518enable_secure () 597enable_secure (void)
519{ 598{
599#ifdef WIN32
600 return 0;
601#else
520 return getuid () != geteuid () 602 return getuid () != geteuid ()
521 || getgid () != getegid (); 603 || getgid () != getegid ();
604#endif
522} 605}
523 606
524int ev_init (int methods) 607int
608ev_method (EV_P)
525{ 609{
610 return method;
611}
612
613static void
614loop_init (EV_P_ int methods)
615{
526 if (!ev_method) 616 if (!method)
527 { 617 {
528#if EV_USE_MONOTONIC 618#if EV_USE_MONOTONIC
529 { 619 {
530 struct timespec ts; 620 struct timespec ts;
531 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532 have_monotonic = 1; 622 have_monotonic = 1;
533 } 623 }
534#endif 624#endif
535 625
536 ev_now = ev_time (); 626 rt_now = ev_time ();
537 now = get_clock (); 627 mn_now = get_clock ();
538 now_floor = now; 628 now_floor = mn_now;
539 diff = ev_now - now; 629 rtmn_diff = rt_now - mn_now;
540
541 if (pipe (sigpipe))
542 return 0;
543 630
544 if (methods == EVMETHOD_AUTO) 631 if (methods == EVMETHOD_AUTO)
545 if (!enable_secure () && getenv ("LIBEV_METHODS")) 632 if (!enable_secure () && getenv ("LIBEV_METHODS"))
546 methods = atoi (getenv ("LIBEV_METHODS")); 633 methods = atoi (getenv ("LIBEV_METHODS"));
547 else 634 else
548 methods = EVMETHOD_ANY; 635 methods = EVMETHOD_ANY;
549 636
550 ev_method = 0; 637 method = 0;
638#if EV_USE_WIN32
639 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
640#endif
551#if EV_USE_KQUEUE 641#if EV_USE_KQUEUE
552 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 642 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
553#endif 643#endif
554#if EV_USE_EPOLL 644#if EV_USE_EPOLL
555 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 645 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
556#endif 646#endif
557#if EV_USE_POLL 647#if EV_USE_POLL
558 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
559#endif 649#endif
560#if EV_USE_SELECT 650#if EV_USE_SELECT
561 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
562#endif 652#endif
653 }
654}
563 655
656void
657loop_destroy (EV_P)
658{
659 int i;
660
661#if EV_USE_WIN32
662 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
663#endif
664#if EV_USE_KQUEUE
665 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
666#endif
667#if EV_USE_EPOLL
668 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
669#endif
670#if EV_USE_POLL
671 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
672#endif
673#if EV_USE_SELECT
674 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
675#endif
676
677 for (i = NUMPRI; i--; )
678 array_free (pending, [i]);
679
680 array_free (fdchange, );
681 array_free (timer, );
682 array_free (periodic, );
683 array_free (idle, );
684 array_free (prepare, );
685 array_free (check, );
686
687 method = 0;
688 /*TODO*/
689}
690
691void
692loop_fork (EV_P)
693{
694 /*TODO*/
695#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif
698#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif
701}
702
703#if EV_MULTIPLICITY
704struct ev_loop *
705ev_loop_new (int methods)
706{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
708
709 loop_init (EV_A_ methods);
710
711 if (ev_method (EV_A))
712 return loop;
713
714 return 0;
715}
716
717void
718ev_loop_destroy (EV_P)
719{
720 loop_destroy (EV_A);
721 free (loop);
722}
723
724void
725ev_loop_fork (EV_P)
726{
727 loop_fork (EV_A);
728}
729
730#endif
731
732#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop *
737#else
738static int default_loop;
739
740int
741#endif
742ev_default_loop (int methods)
743{
744 if (sigpipe [0] == sigpipe [1])
745 if (pipe (sigpipe))
746 return 0;
747
748 if (!default_loop)
749 {
750#if EV_MULTIPLICITY
751 struct ev_loop *loop = default_loop = &default_loop_struct;
752#else
753 default_loop = 1;
754#endif
755
756 loop_init (EV_A_ methods);
757
564 if (ev_method) 758 if (ev_method (EV_A))
565 { 759 {
566 ev_watcher_init (&sigev, sigcb); 760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
567 siginit (); 762 siginit (EV_A);
568 763
764#ifndef WIN32
569 ev_signal_init (&childev, childcb, SIGCHLD); 765 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI);
570 ev_signal_start (&childev); 767 ev_signal_start (EV_A_ &childev);
768 ev_unref (EV_A); /* child watcher should not keep loop alive */
769#endif
571 } 770 }
771 else
772 default_loop = 0;
572 } 773 }
573 774
574 return ev_method; 775 return default_loop;
575} 776}
576 777
577/*****************************************************************************/
578
579void 778void
580ev_fork_prepare (void) 779ev_default_destroy (void)
581{ 780{
582 /* nop */ 781#if EV_MULTIPLICITY
583} 782 struct ev_loop *loop = default_loop;
584
585void
586ev_fork_parent (void)
587{
588 /* nop */
589}
590
591void
592ev_fork_child (void)
593{
594#if EV_USE_EPOLL
595 if (ev_method == EVMETHOD_EPOLL)
596 epoll_postfork_child ();
597#endif 783#endif
598 784
785 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev);
787
788 ev_ref (EV_A); /* signal watcher */
599 ev_io_stop (&sigev); 789 ev_io_stop (EV_A_ &sigev);
790
791 close (sigpipe [0]); sigpipe [0] = 0;
792 close (sigpipe [1]); sigpipe [1] = 0;
793
794 loop_destroy (EV_A);
795}
796
797void
798ev_default_fork (void)
799{
800#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop;
802#endif
803
804 loop_fork (EV_A);
805
806 ev_io_stop (EV_A_ &sigev);
600 close (sigpipe [0]); 807 close (sigpipe [0]);
601 close (sigpipe [1]); 808 close (sigpipe [1]);
602 pipe (sigpipe); 809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
603 siginit (); 812 siginit (EV_A);
604} 813}
605 814
606/*****************************************************************************/ 815/*****************************************************************************/
607 816
608static void 817static void
609call_pending (void) 818call_pending (EV_P)
610{ 819{
611 int pri; 820 int pri;
612 821
613 for (pri = NUMPRI; pri--; ) 822 for (pri = NUMPRI; pri--; )
614 while (pendingcnt [pri]) 823 while (pendingcnt [pri])
616 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 825 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617 826
618 if (p->w) 827 if (p->w)
619 { 828 {
620 p->w->pending = 0; 829 p->w->pending = 0;
621 p->w->cb (p->w, p->events); 830 p->w->cb (EV_A_ p->w, p->events);
622 } 831 }
623 } 832 }
624} 833}
625 834
626static void 835static void
627timers_reify (void) 836timers_reify (EV_P)
628{ 837{
629 while (timercnt && timers [0]->at <= now) 838 while (timercnt && ((WT)timers [0])->at <= mn_now)
630 { 839 {
631 struct ev_timer *w = timers [0]; 840 struct ev_timer *w = timers [0];
841
842 assert (("inactive timer on timer heap detected", ev_is_active (w)));
632 843
633 /* first reschedule or stop timer */ 844 /* first reschedule or stop timer */
634 if (w->repeat) 845 if (w->repeat)
635 { 846 {
636 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637 w->at = now + w->repeat; 848 ((WT)w)->at = mn_now + w->repeat;
638 downheap ((WT *)timers, timercnt, 0); 849 downheap ((WT *)timers, timercnt, 0);
639 } 850 }
640 else 851 else
641 ev_timer_stop (w); /* nonrepeating: stop timer */ 852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
642 853
643 event ((W)w, EV_TIMEOUT); 854 event (EV_A_ (W)w, EV_TIMEOUT);
644 } 855 }
645} 856}
646 857
647static void 858static void
648periodics_reify (void) 859periodics_reify (EV_P)
649{ 860{
650 while (periodiccnt && periodics [0]->at <= ev_now) 861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
651 { 862 {
652 struct ev_periodic *w = periodics [0]; 863 struct ev_periodic *w = periodics [0];
864
865 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
653 866
654 /* first reschedule or stop timer */ 867 /* first reschedule or stop timer */
655 if (w->interval) 868 if (w->interval)
656 { 869 {
657 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
658 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
659 downheap ((WT *)periodics, periodiccnt, 0); 872 downheap ((WT *)periodics, periodiccnt, 0);
660 } 873 }
661 else 874 else
662 ev_periodic_stop (w); /* nonrepeating: stop timer */ 875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
663 876
664 event ((W)w, EV_PERIODIC); 877 event (EV_A_ (W)w, EV_PERIODIC);
665 } 878 }
666} 879}
667 880
668static void 881static void
669periodics_reschedule (ev_tstamp diff) 882periodics_reschedule (EV_P)
670{ 883{
671 int i; 884 int i;
672 885
673 /* adjust periodics after time jump */ 886 /* adjust periodics after time jump */
674 for (i = 0; i < periodiccnt; ++i) 887 for (i = 0; i < periodiccnt; ++i)
675 { 888 {
676 struct ev_periodic *w = periodics [i]; 889 struct ev_periodic *w = periodics [i];
677 890
678 if (w->interval) 891 if (w->interval)
679 { 892 {
680 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
681 894
682 if (fabs (diff) >= 1e-4) 895 if (fabs (diff) >= 1e-4)
683 { 896 {
684 ev_periodic_stop (w); 897 ev_periodic_stop (EV_A_ w);
685 ev_periodic_start (w); 898 ev_periodic_start (EV_A_ w);
686 899
687 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
688 } 901 }
689 } 902 }
690 } 903 }
691} 904}
692 905
693static int 906inline int
694time_update_monotonic (void) 907time_update_monotonic (EV_P)
695{ 908{
696 now = get_clock (); 909 mn_now = get_clock ();
697 910
698 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
699 { 912 {
700 ev_now = now + diff; 913 rt_now = rtmn_diff + mn_now;
701 return 0; 914 return 0;
702 } 915 }
703 else 916 else
704 { 917 {
705 now_floor = now; 918 now_floor = mn_now;
706 ev_now = ev_time (); 919 rt_now = ev_time ();
707 return 1; 920 return 1;
708 } 921 }
709} 922}
710 923
711static void 924static void
712time_update (void) 925time_update (EV_P)
713{ 926{
714 int i; 927 int i;
715 928
716#if EV_USE_MONOTONIC 929#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 930 if (expect_true (have_monotonic))
718 { 931 {
719 if (time_update_monotonic ()) 932 if (time_update_monotonic (EV_A))
720 { 933 {
721 ev_tstamp odiff = diff; 934 ev_tstamp odiff = rtmn_diff;
722 935
723 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 936 for (i = 4; --i; ) /* loop a few times, before making important decisions */
724 { 937 {
725 diff = ev_now - now; 938 rtmn_diff = rt_now - mn_now;
726 939
727 if (fabs (odiff - diff) < MIN_TIMEJUMP) 940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
728 return; /* all is well */ 941 return; /* all is well */
729 942
730 ev_now = ev_time (); 943 rt_now = ev_time ();
731 now = get_clock (); 944 mn_now = get_clock ();
732 now_floor = now; 945 now_floor = mn_now;
733 } 946 }
734 947
735 periodics_reschedule (diff - odiff); 948 periodics_reschedule (EV_A);
736 /* no timer adjustment, as the monotonic clock doesn't jump */ 949 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
737 } 951 }
738 } 952 }
739 else 953 else
740#endif 954#endif
741 { 955 {
742 ev_now = ev_time (); 956 rt_now = ev_time ();
743 957
744 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
745 { 959 {
746 periodics_reschedule (ev_now - now); 960 periodics_reschedule (EV_A);
747 961
748 /* adjust timers. this is easy, as the offset is the same for all */ 962 /* adjust timers. this is easy, as the offset is the same for all */
749 for (i = 0; i < timercnt; ++i) 963 for (i = 0; i < timercnt; ++i)
750 timers [i]->at += diff; 964 ((WT)timers [i])->at += rt_now - mn_now;
751 } 965 }
752 966
753 now = ev_now; 967 mn_now = rt_now;
754 } 968 }
755} 969}
756 970
757int ev_loop_done; 971void
972ev_ref (EV_P)
973{
974 ++activecnt;
975}
758 976
977void
978ev_unref (EV_P)
979{
980 --activecnt;
981}
982
983static int loop_done;
984
985void
759void ev_loop (int flags) 986ev_loop (EV_P_ int flags)
760{ 987{
761 double block; 988 double block;
762 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 989 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
763 990
764 do 991 do
765 { 992 {
766 /* queue check watchers (and execute them) */ 993 /* queue check watchers (and execute them) */
767 if (expect_false (preparecnt)) 994 if (expect_false (preparecnt))
768 { 995 {
769 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
770 call_pending (); 997 call_pending (EV_A);
771 } 998 }
772 999
773 /* update fd-related kernel structures */ 1000 /* update fd-related kernel structures */
774 fd_reify (); 1001 fd_reify (EV_A);
775 1002
776 /* calculate blocking time */ 1003 /* calculate blocking time */
777 1004
778 /* we only need this for !monotonic clockor timers, but as we basically 1005 /* we only need this for !monotonic clockor timers, but as we basically
779 always have timers, we just calculate it always */ 1006 always have timers, we just calculate it always */
780#if EV_USE_MONOTONIC 1007#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic)) 1008 if (expect_true (have_monotonic))
782 time_update_monotonic (); 1009 time_update_monotonic (EV_A);
783 else 1010 else
784#endif 1011#endif
785 { 1012 {
786 ev_now = ev_time (); 1013 rt_now = ev_time ();
787 now = ev_now; 1014 mn_now = rt_now;
788 } 1015 }
789 1016
790 if (flags & EVLOOP_NONBLOCK || idlecnt) 1017 if (flags & EVLOOP_NONBLOCK || idlecnt)
791 block = 0.; 1018 block = 0.;
792 else 1019 else
793 { 1020 {
794 block = MAX_BLOCKTIME; 1021 block = MAX_BLOCKTIME;
795 1022
796 if (timercnt) 1023 if (timercnt)
797 { 1024 {
798 ev_tstamp to = timers [0]->at - now + method_fudge; 1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
799 if (block > to) block = to; 1026 if (block > to) block = to;
800 } 1027 }
801 1028
802 if (periodiccnt) 1029 if (periodiccnt)
803 { 1030 {
804 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
805 if (block > to) block = to; 1032 if (block > to) block = to;
806 } 1033 }
807 1034
808 if (block < 0.) block = 0.; 1035 if (block < 0.) block = 0.;
809 } 1036 }
810 1037
811 method_poll (block); 1038 method_poll (EV_A_ block);
812 1039
813 /* update ev_now, do magic */ 1040 /* update rt_now, do magic */
814 time_update (); 1041 time_update (EV_A);
815 1042
816 /* queue pending timers and reschedule them */ 1043 /* queue pending timers and reschedule them */
817 timers_reify (); /* relative timers called last */ 1044 timers_reify (EV_A); /* relative timers called last */
818 periodics_reify (); /* absolute timers called first */ 1045 periodics_reify (EV_A); /* absolute timers called first */
819 1046
820 /* queue idle watchers unless io or timers are pending */ 1047 /* queue idle watchers unless io or timers are pending */
821 if (!pendingcnt) 1048 if (!pendingcnt)
822 queue_events ((W *)idles, idlecnt, EV_IDLE); 1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
823 1050
824 /* queue check watchers, to be executed first */ 1051 /* queue check watchers, to be executed first */
825 if (checkcnt) 1052 if (checkcnt)
826 queue_events ((W *)checks, checkcnt, EV_CHECK); 1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
827 1054
828 call_pending (); 1055 call_pending (EV_A);
829 } 1056 }
830 while (!ev_loop_done); 1057 while (activecnt && !loop_done);
831 1058
832 if (ev_loop_done != 2) 1059 if (loop_done != 2)
833 ev_loop_done = 0; 1060 loop_done = 0;
1061}
1062
1063void
1064ev_unloop (EV_P_ int how)
1065{
1066 loop_done = how;
834} 1067}
835 1068
836/*****************************************************************************/ 1069/*****************************************************************************/
837 1070
838static void 1071inline void
839wlist_add (WL *head, WL elem) 1072wlist_add (WL *head, WL elem)
840{ 1073{
841 elem->next = *head; 1074 elem->next = *head;
842 *head = elem; 1075 *head = elem;
843} 1076}
844 1077
845static void 1078inline void
846wlist_del (WL *head, WL elem) 1079wlist_del (WL *head, WL elem)
847{ 1080{
848 while (*head) 1081 while (*head)
849 { 1082 {
850 if (*head == elem) 1083 if (*head == elem)
855 1088
856 head = &(*head)->next; 1089 head = &(*head)->next;
857 } 1090 }
858} 1091}
859 1092
860static void 1093inline void
861ev_clear_pending (W w) 1094ev_clear_pending (EV_P_ W w)
862{ 1095{
863 if (w->pending) 1096 if (w->pending)
864 { 1097 {
865 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1098 pendings [ABSPRI (w)][w->pending - 1].w = 0;
866 w->pending = 0; 1099 w->pending = 0;
867 } 1100 }
868} 1101}
869 1102
870static void 1103inline void
871ev_start (W w, int active) 1104ev_start (EV_P_ W w, int active)
872{ 1105{
873 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1106 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
874 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1107 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875 1108
876 w->active = active; 1109 w->active = active;
1110 ev_ref (EV_A);
877} 1111}
878 1112
879static void 1113inline void
880ev_stop (W w) 1114ev_stop (EV_P_ W w)
881{ 1115{
1116 ev_unref (EV_A);
882 w->active = 0; 1117 w->active = 0;
883} 1118}
884 1119
885/*****************************************************************************/ 1120/*****************************************************************************/
886 1121
887void 1122void
888ev_io_start (struct ev_io *w) 1123ev_io_start (EV_P_ struct ev_io *w)
889{ 1124{
890 int fd = w->fd; 1125 int fd = w->fd;
891 1126
892 if (ev_is_active (w)) 1127 if (ev_is_active (w))
893 return; 1128 return;
894 1129
895 assert (("ev_io_start called with negative fd", fd >= 0)); 1130 assert (("ev_io_start called with negative fd", fd >= 0));
896 1131
897 ev_start ((W)w, 1); 1132 ev_start (EV_A_ (W)w, 1);
898 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
899 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1134 wlist_add ((WL *)&anfds[fd].head, (WL)w);
900 1135
901 fd_change (fd); 1136 fd_change (EV_A_ fd);
902} 1137}
903 1138
904void 1139void
905ev_io_stop (struct ev_io *w) 1140ev_io_stop (EV_P_ struct ev_io *w)
906{ 1141{
907 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
908 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
909 return; 1144 return;
910 1145
911 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
912 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
913 1148
914 fd_change (w->fd); 1149 fd_change (EV_A_ w->fd);
915} 1150}
916 1151
917void 1152void
918ev_timer_start (struct ev_timer *w) 1153ev_timer_start (EV_P_ struct ev_timer *w)
919{ 1154{
920 if (ev_is_active (w)) 1155 if (ev_is_active (w))
921 return; 1156 return;
922 1157
923 w->at += now; 1158 ((WT)w)->at += mn_now;
924 1159
925 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926 1161
927 ev_start ((W)w, ++timercnt); 1162 ev_start (EV_A_ (W)w, ++timercnt);
928 array_needsize (timers, timermax, timercnt, ); 1163 array_needsize (timers, timermax, timercnt, );
929 timers [timercnt - 1] = w; 1164 timers [timercnt - 1] = w;
930 upheap ((WT *)timers, timercnt - 1); 1165 upheap ((WT *)timers, timercnt - 1);
931}
932 1166
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168}
1169
933void 1170void
934ev_timer_stop (struct ev_timer *w) 1171ev_timer_stop (EV_P_ struct ev_timer *w)
935{ 1172{
936 ev_clear_pending ((W)w); 1173 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1174 if (!ev_is_active (w))
938 return; 1175 return;
939 1176
1177 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1178
940 if (w->active < timercnt--) 1179 if (((W)w)->active < timercnt--)
941 { 1180 {
942 timers [w->active - 1] = timers [timercnt]; 1181 timers [((W)w)->active - 1] = timers [timercnt];
943 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
944 } 1183 }
945 1184
946 w->at = w->repeat; 1185 ((WT)w)->at = w->repeat;
947 1186
948 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
949} 1188}
950 1189
951void 1190void
952ev_timer_again (struct ev_timer *w) 1191ev_timer_again (EV_P_ struct ev_timer *w)
953{ 1192{
954 if (ev_is_active (w)) 1193 if (ev_is_active (w))
955 { 1194 {
956 if (w->repeat) 1195 if (w->repeat)
957 { 1196 {
958 w->at = now + w->repeat; 1197 ((WT)w)->at = mn_now + w->repeat;
959 downheap ((WT *)timers, timercnt, w->active - 1); 1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
960 } 1199 }
961 else 1200 else
962 ev_timer_stop (w); 1201 ev_timer_stop (EV_A_ w);
963 } 1202 }
964 else if (w->repeat) 1203 else if (w->repeat)
965 ev_timer_start (w); 1204 ev_timer_start (EV_A_ w);
966} 1205}
967 1206
968void 1207void
969ev_periodic_start (struct ev_periodic *w) 1208ev_periodic_start (EV_P_ struct ev_periodic *w)
970{ 1209{
971 if (ev_is_active (w)) 1210 if (ev_is_active (w))
972 return; 1211 return;
973 1212
974 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975 1214
976 /* this formula differs from the one in periodic_reify because we do not always round up */ 1215 /* this formula differs from the one in periodic_reify because we do not always round up */
977 if (w->interval) 1216 if (w->interval)
978 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
979 1218
980 ev_start ((W)w, ++periodiccnt); 1219 ev_start (EV_A_ (W)w, ++periodiccnt);
981 array_needsize (periodics, periodicmax, periodiccnt, ); 1220 array_needsize (periodics, periodicmax, periodiccnt, );
982 periodics [periodiccnt - 1] = w; 1221 periodics [periodiccnt - 1] = w;
983 upheap ((WT *)periodics, periodiccnt - 1); 1222 upheap ((WT *)periodics, periodiccnt - 1);
984}
985 1223
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225}
1226
986void 1227void
987ev_periodic_stop (struct ev_periodic *w) 1228ev_periodic_stop (EV_P_ struct ev_periodic *w)
988{ 1229{
989 ev_clear_pending ((W)w); 1230 ev_clear_pending (EV_A_ (W)w);
990 if (!ev_is_active (w)) 1231 if (!ev_is_active (w))
991 return; 1232 return;
992 1233
1234 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1235
993 if (w->active < periodiccnt--) 1236 if (((W)w)->active < periodiccnt--)
994 { 1237 {
995 periodics [w->active - 1] = periodics [periodiccnt]; 1238 periodics [((W)w)->active - 1] = periodics [periodiccnt];
996 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1239 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
997 } 1240 }
998 1241
999 ev_stop ((W)w); 1242 ev_stop (EV_A_ (W)w);
1000} 1243}
1001 1244
1002void 1245void
1003ev_signal_start (struct ev_signal *w) 1246ev_idle_start (EV_P_ struct ev_idle *w)
1004{ 1247{
1005 if (ev_is_active (w)) 1248 if (ev_is_active (w))
1006 return; 1249 return;
1007 1250
1251 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, );
1253 idles [idlecnt - 1] = w;
1254}
1255
1256void
1257ev_idle_stop (EV_P_ struct ev_idle *w)
1258{
1259 ev_clear_pending (EV_A_ (W)w);
1260 if (ev_is_active (w))
1261 return;
1262
1263 idles [((W)w)->active - 1] = idles [--idlecnt];
1264 ev_stop (EV_A_ (W)w);
1265}
1266
1267void
1268ev_prepare_start (EV_P_ struct ev_prepare *w)
1269{
1270 if (ev_is_active (w))
1271 return;
1272
1273 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, );
1275 prepares [preparecnt - 1] = w;
1276}
1277
1278void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w)
1280{
1281 ev_clear_pending (EV_A_ (W)w);
1282 if (ev_is_active (w))
1283 return;
1284
1285 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1286 ev_stop (EV_A_ (W)w);
1287}
1288
1289void
1290ev_check_start (EV_P_ struct ev_check *w)
1291{
1292 if (ev_is_active (w))
1293 return;
1294
1295 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, );
1297 checks [checkcnt - 1] = w;
1298}
1299
1300void
1301ev_check_stop (EV_P_ struct ev_check *w)
1302{
1303 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w))
1305 return;
1306
1307 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w);
1309}
1310
1311#ifndef SA_RESTART
1312# define SA_RESTART 0
1313#endif
1314
1315void
1316ev_signal_start (EV_P_ struct ev_signal *w)
1317{
1318#if EV_MULTIPLICITY
1319 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1320#endif
1321 if (ev_is_active (w))
1322 return;
1323
1008 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009 1325
1010 ev_start ((W)w, 1); 1326 ev_start (EV_A_ (W)w, 1);
1011 array_needsize (signals, signalmax, w->signum, signals_init); 1327 array_needsize (signals, signalmax, w->signum, signals_init);
1012 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 1329
1014 if (!w->next) 1330 if (!((WL)w)->next)
1015 { 1331 {
1332#if WIN32
1333 signal (w->signum, sighandler);
1334#else
1016 struct sigaction sa; 1335 struct sigaction sa;
1017 sa.sa_handler = sighandler; 1336 sa.sa_handler = sighandler;
1018 sigfillset (&sa.sa_mask); 1337 sigfillset (&sa.sa_mask);
1019 sa.sa_flags = 0; 1338 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1020 sigaction (w->signum, &sa, 0); 1339 sigaction (w->signum, &sa, 0);
1340#endif
1021 } 1341 }
1022} 1342}
1023 1343
1024void 1344void
1025ev_signal_stop (struct ev_signal *w) 1345ev_signal_stop (EV_P_ struct ev_signal *w)
1026{ 1346{
1027 ev_clear_pending ((W)w); 1347 ev_clear_pending (EV_A_ (W)w);
1028 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
1029 return; 1349 return;
1030 1350
1031 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1351 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1032 ev_stop ((W)w); 1352 ev_stop (EV_A_ (W)w);
1033 1353
1034 if (!signals [w->signum - 1].head) 1354 if (!signals [w->signum - 1].head)
1035 signal (w->signum, SIG_DFL); 1355 signal (w->signum, SIG_DFL);
1036} 1356}
1037 1357
1038void 1358void
1039ev_idle_start (struct ev_idle *w) 1359ev_child_start (EV_P_ struct ev_child *w)
1040{ 1360{
1361#if EV_MULTIPLICITY
1362 assert (("child watchers are only supported in the default loop", loop == default_loop));
1363#endif
1041 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1042 return; 1365 return;
1043 1366
1044 ev_start ((W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, 1);
1045 array_needsize (idles, idlemax, idlecnt, ); 1368 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1046 idles [idlecnt - 1] = w;
1047} 1369}
1048 1370
1049void 1371void
1050ev_idle_stop (struct ev_idle *w) 1372ev_child_stop (EV_P_ struct ev_child *w)
1051{ 1373{
1052 ev_clear_pending ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
1053 if (ev_is_active (w)) 1375 if (ev_is_active (w))
1054 return; 1376 return;
1055 1377
1056 idles [w->active - 1] = idles [--idlecnt];
1057 ev_stop ((W)w);
1058}
1059
1060void
1061ev_prepare_start (struct ev_prepare *w)
1062{
1063 if (ev_is_active (w))
1064 return;
1065
1066 ev_start ((W)w, ++preparecnt);
1067 array_needsize (prepares, preparemax, preparecnt, );
1068 prepares [preparecnt - 1] = w;
1069}
1070
1071void
1072ev_prepare_stop (struct ev_prepare *w)
1073{
1074 ev_clear_pending ((W)w);
1075 if (ev_is_active (w))
1076 return;
1077
1078 prepares [w->active - 1] = prepares [--preparecnt];
1079 ev_stop ((W)w);
1080}
1081
1082void
1083ev_check_start (struct ev_check *w)
1084{
1085 if (ev_is_active (w))
1086 return;
1087
1088 ev_start ((W)w, ++checkcnt);
1089 array_needsize (checks, checkmax, checkcnt, );
1090 checks [checkcnt - 1] = w;
1091}
1092
1093void
1094ev_check_stop (struct ev_check *w)
1095{
1096 ev_clear_pending ((W)w);
1097 if (ev_is_active (w))
1098 return;
1099
1100 checks [w->active - 1] = checks [--checkcnt];
1101 ev_stop ((W)w);
1102}
1103
1104void
1105ev_child_start (struct ev_child *w)
1106{
1107 if (ev_is_active (w))
1108 return;
1109
1110 ev_start ((W)w, 1);
1111 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112}
1113
1114void
1115ev_child_stop (struct ev_child *w)
1116{
1117 ev_clear_pending ((W)w);
1118 if (ev_is_active (w))
1119 return;
1120
1121 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122 ev_stop ((W)w); 1379 ev_stop (EV_A_ (W)w);
1123} 1380}
1124 1381
1125/*****************************************************************************/ 1382/*****************************************************************************/
1126 1383
1127struct ev_once 1384struct ev_once
1131 void (*cb)(int revents, void *arg); 1388 void (*cb)(int revents, void *arg);
1132 void *arg; 1389 void *arg;
1133}; 1390};
1134 1391
1135static void 1392static void
1136once_cb (struct ev_once *once, int revents) 1393once_cb (EV_P_ struct ev_once *once, int revents)
1137{ 1394{
1138 void (*cb)(int revents, void *arg) = once->cb; 1395 void (*cb)(int revents, void *arg) = once->cb;
1139 void *arg = once->arg; 1396 void *arg = once->arg;
1140 1397
1141 ev_io_stop (&once->io); 1398 ev_io_stop (EV_A_ &once->io);
1142 ev_timer_stop (&once->to); 1399 ev_timer_stop (EV_A_ &once->to);
1143 free (once); 1400 free (once);
1144 1401
1145 cb (revents, arg); 1402 cb (revents, arg);
1146} 1403}
1147 1404
1148static void 1405static void
1149once_cb_io (struct ev_io *w, int revents) 1406once_cb_io (EV_P_ struct ev_io *w, int revents)
1150{ 1407{
1151 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1408 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152} 1409}
1153 1410
1154static void 1411static void
1155once_cb_to (struct ev_timer *w, int revents) 1412once_cb_to (EV_P_ struct ev_timer *w, int revents)
1156{ 1413{
1157 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1414 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158} 1415}
1159 1416
1160void 1417void
1161ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162{ 1419{
1163 struct ev_once *once = malloc (sizeof (struct ev_once)); 1420 struct ev_once *once = malloc (sizeof (struct ev_once));
1164 1421
1165 if (!once) 1422 if (!once)
1166 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1171 1428
1172 ev_watcher_init (&once->io, once_cb_io); 1429 ev_watcher_init (&once->io, once_cb_io);
1173 if (fd >= 0) 1430 if (fd >= 0)
1174 { 1431 {
1175 ev_io_set (&once->io, fd, events); 1432 ev_io_set (&once->io, fd, events);
1176 ev_io_start (&once->io); 1433 ev_io_start (EV_A_ &once->io);
1177 } 1434 }
1178 1435
1179 ev_watcher_init (&once->to, once_cb_to); 1436 ev_watcher_init (&once->to, once_cb_to);
1180 if (timeout >= 0.) 1437 if (timeout >= 0.)
1181 { 1438 {
1182 ev_timer_set (&once->to, timeout, 0.); 1439 ev_timer_set (&once->to, timeout, 0.);
1183 ev_timer_start (&once->to); 1440 ev_timer_start (EV_A_ &once->to);
1184 } 1441 }
1185 } 1442 }
1186} 1443}
1187 1444
1188/*****************************************************************************/
1189
1190#if 0
1191
1192struct ev_io wio;
1193
1194static void
1195sin_cb (struct ev_io *w, int revents)
1196{
1197 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198}
1199
1200static void
1201ocb (struct ev_timer *w, int revents)
1202{
1203 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204 ev_timer_stop (w);
1205 ev_timer_start (w);
1206}
1207
1208static void
1209scb (struct ev_signal *w, int revents)
1210{
1211 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212 ev_io_stop (&wio);
1213 ev_io_start (&wio);
1214}
1215
1216static void
1217gcb (struct ev_signal *w, int revents)
1218{
1219 fprintf (stderr, "generic %x\n", revents);
1220
1221}
1222
1223int main (void)
1224{
1225 ev_init (0);
1226
1227 ev_io_init (&wio, sin_cb, 0, EV_READ);
1228 ev_io_start (&wio);
1229
1230 struct ev_timer t[10000];
1231
1232#if 0
1233 int i;
1234 for (i = 0; i < 10000; ++i)
1235 {
1236 struct ev_timer *w = t + i;
1237 ev_watcher_init (w, ocb, i);
1238 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239 ev_timer_start (w);
1240 if (drand48 () < 0.5)
1241 ev_timer_stop (w);
1242 }
1243#endif
1244
1245 struct ev_timer t1;
1246 ev_timer_init (&t1, ocb, 5, 10);
1247 ev_timer_start (&t1);
1248
1249 struct ev_signal sig;
1250 ev_signal_init (&sig, scb, SIGQUIT);
1251 ev_signal_start (&sig);
1252
1253 struct ev_check cw;
1254 ev_check_init (&cw, gcb);
1255 ev_check_start (&cw);
1256
1257 struct ev_idle iw;
1258 ev_idle_init (&iw, gcb);
1259 ev_idle_start (&iw);
1260
1261 ev_loop (0);
1262
1263 return 0;
1264}
1265
1266#endif
1267
1268
1269
1270

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines