ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.96 by root, Sun Nov 11 01:50:36 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1 41# define EV_USE_REALTIME 1
37# endif 42# endif
38 43
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 44# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 45# define EV_USE_SELECT 1
41# endif 46# endif
42 47
43# if HAVE_POLL && HAVE_POLL_H 48# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 49# define EV_USE_POLL 1
45# endif 50# endif
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
57#include <math.h> 62#include <math.h>
58#include <stdlib.h> 63#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 64#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 65#include <stddef.h>
63 66
64#include <stdio.h> 67#include <stdio.h>
65 68
66#include <assert.h> 69#include <assert.h>
67#include <errno.h> 70#include <errno.h>
68#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
69#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
70# include <sys/wait.h> 79# include <sys/wait.h>
71#endif 80#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 81/**/
76 82
77#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
79#endif 85#endif
94# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
95#endif 101#endif
96 102
97#ifndef EV_USE_WIN32 103#ifndef EV_USE_WIN32
98# ifdef WIN32 104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 107# define EV_USE_SELECT 1
100# else 108# else
101# define EV_USE_WIN32 0 109# define EV_USE_WIN32 0
102# endif 110# endif
103#endif 111#endif
104 112
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 135
136#ifdef EV_H
137# include EV_H
138#else
128#include "ev.h" 139# include "ev.h"
140#endif
129 141
130#if __GNUC__ >= 3 142#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 144# define inline inline
133#else 145#else
145typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
147 159
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 161
150#if WIN32 162#include "ev_win32.c"
151/* note: the comment below could not be substantiated, but what would I care */ 163
152/* MSDN says this is required to handle SIGFPE */ 164/*****************************************************************************/
153volatile double SIGFPE_REQ = 0.0f; 165
154#endif 166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
155 211
156/*****************************************************************************/ 212/*****************************************************************************/
157 213
158typedef struct 214typedef struct
159{ 215{
168 int events; 224 int events;
169} ANPENDING; 225} ANPENDING;
170 226
171#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
172 228
173struct ev_loop 229 struct ev_loop
174{ 230 {
231 ev_tstamp ev_rt_now;
175# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
176# include "ev_vars.h" 233 #include "ev_vars.h"
177};
178# undef VAR 234 #undef VAR
235 };
179# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
180 240
181#else 241#else
182 242
243 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 245 #include "ev_vars.h"
185# undef VAR 246 #undef VAR
247
248 static int default_loop;
186 249
187#endif 250#endif
188 251
189/*****************************************************************************/ 252/*****************************************************************************/
190 253
191inline ev_tstamp 254ev_tstamp
192ev_time (void) 255ev_time (void)
193{ 256{
194#if EV_USE_REALTIME 257#if EV_USE_REALTIME
195 struct timespec ts; 258 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
215#endif 278#endif
216 279
217 return ev_time (); 280 return ev_time ();
218} 281}
219 282
283#if EV_MULTIPLICITY
220ev_tstamp 284ev_tstamp
221ev_now (EV_P) 285ev_now (EV_P)
222{ 286{
223 return rt_now; 287 return ev_rt_now;
224} 288}
289#endif
225 290
226#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
227 292
228#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
230 { \ 295 { \
231 int newcnt = cur; \ 296 int newcnt = cur; \
232 do \ 297 do \
233 { \ 298 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 300 } \
236 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
237 \ 302 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 305 cur = newcnt; \
241 } 306 }
242 307
243#define array_slim(stem) \ 308#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 310 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 311 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 314 }
250 315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
251#define array_free(stem, idx) \ 321#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 323
254/*****************************************************************************/ 324/*****************************************************************************/
255 325
256static void 326static void
257anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
264 334
265 ++base; 335 ++base;
266 } 336 }
267} 337}
268 338
269static void 339void
270event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
271{ 341{
342 W w_ = (W)w;
343
272 if (w->pending) 344 if (w_->pending)
273 { 345 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 347 return;
276 } 348 }
277 349
278 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 354}
283 355
284static void 356static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 358{
287 int i; 359 int i;
288 360
289 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
291} 363}
292 364
293static void 365inline void
294fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
295{ 367{
296 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 369 struct ev_io *w;
298 370
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 372 {
301 int ev = w->events & events; 373 int ev = w->events & revents;
302 374
303 if (ev) 375 if (ev)
304 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
305 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
306} 384}
307 385
308/*****************************************************************************/ 386/*****************************************************************************/
309 387
310static void 388static void
333} 411}
334 412
335static void 413static void
336fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
337{ 415{
338 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
339 return; 417 return;
340 418
341 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
342 420
343 ++fdchangecnt; 421 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
345 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
346} 424}
347 425
348static void 426static void
349fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
351 struct ev_io *w; 429 struct ev_io *w;
352 430
353 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
354 { 432 {
355 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
358} 446}
359 447
360/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
361static void 449static void
362fd_ebadf (EV_P) 450fd_ebadf (EV_P)
363{ 451{
364 int fd; 452 int fd;
365 453
366 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 455 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
370} 458}
371 459
372/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 461static void
381 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
382 return; 470 return;
383 } 471 }
384} 472}
385 473
386/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
387static void 475static void
388fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
389{ 477{
390 int fd; 478 int fd;
391 479
439 527
440 heap [k] = w; 528 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
442} 530}
443 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
444/*****************************************************************************/ 544/*****************************************************************************/
445 545
446typedef struct 546typedef struct
447{ 547{
448 WL head; 548 WL head;
479 579
480 if (!gotsig) 580 if (!gotsig)
481 { 581 {
482 int old_errno = errno; 582 int old_errno = errno;
483 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
484 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
485 errno = old_errno; 589 errno = old_errno;
486 } 590 }
487} 591}
488 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
489static void 613static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
491{ 615{
492 WL w;
493 int signum; 616 int signum;
494 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
495 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
496 gotsig = 0; 623 gotsig = 0;
497 624
498 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
500 { 627 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506} 628}
507 629
508static void 630static void
509siginit (EV_P) 631siginit (EV_P)
510{ 632{
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 645}
524 646
525/*****************************************************************************/ 647/*****************************************************************************/
526 648
649static struct ev_child *childs [PID_HASHSIZE];
650
527#ifndef WIN32 651#ifndef WIN32
528 652
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 653static struct ev_signal childev;
531 654
532#ifndef WCONTINUED 655#ifndef WCONTINUED
533# define WCONTINUED 0 656# define WCONTINUED 0
534#endif 657#endif
542 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
543 { 666 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid; 668 w->rpid = pid;
546 w->rstatus = status; 669 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
548 } 671 }
549} 672}
550 673
551static void 674static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
554 int pid, status; 677 int pid, status;
555 678
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 680 {
558 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
559 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 683
561 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 } 686 }
564} 687}
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 745 have_monotonic = 1;
623 } 746 }
624#endif 747#endif
625 748
626 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 750 mn_now = get_clock ();
628 now_floor = mn_now; 751 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
630 753
631 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
634 else 757 else
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif 772#endif
650#if EV_USE_SELECT 773#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
653 } 779 }
654} 780}
655 781
656void 782void
657loop_destroy (EV_P) 783loop_destroy (EV_P)
675#endif 801#endif
676 802
677 for (i = NUMPRI; i--; ) 803 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 804 array_free (pending, [i]);
679 805
806 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 807 array_free_microshit (fdchange);
681 array_free (timer, ); 808 array_free_microshit (timer);
809#if EV_PERIODICS
682 array_free (periodic, ); 810 array_free_microshit (periodic);
811#endif
683 array_free (idle, ); 812 array_free_microshit (idle);
684 array_free (prepare, ); 813 array_free_microshit (prepare);
685 array_free (check, ); 814 array_free_microshit (check);
686 815
687 method = 0; 816 method = 0;
688 /*TODO*/
689} 817}
690 818
691void 819static void
692loop_fork (EV_P) 820loop_fork (EV_P)
693{ 821{
694 /*TODO*/
695#if EV_USE_EPOLL 822#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif 824#endif
698#if EV_USE_KQUEUE 825#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif 827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
701} 845}
702 846
703#if EV_MULTIPLICITY 847#if EV_MULTIPLICITY
704struct ev_loop * 848struct ev_loop *
705ev_loop_new (int methods) 849ev_loop_new (int methods)
706{ 850{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
708 854
709 loop_init (EV_A_ methods); 855 loop_init (EV_A_ methods);
710 856
711 if (ev_method (EV_A)) 857 if (ev_method (EV_A))
712 return loop; 858 return loop;
716 862
717void 863void
718ev_loop_destroy (EV_P) 864ev_loop_destroy (EV_P)
719{ 865{
720 loop_destroy (EV_A); 866 loop_destroy (EV_A);
721 free (loop); 867 ev_free (loop);
722} 868}
723 869
724void 870void
725ev_loop_fork (EV_P) 871ev_loop_fork (EV_P)
726{ 872{
727 loop_fork (EV_A); 873 postfork = 1;
728} 874}
729 875
730#endif 876#endif
731 877
732#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 879struct ev_loop *
737#else 880#else
738static int default_loop;
739
740int 881int
741#endif 882#endif
742ev_default_loop (int methods) 883ev_default_loop (int methods)
743{ 884{
744 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
755 896
756 loop_init (EV_A_ methods); 897 loop_init (EV_A_ methods);
757 898
758 if (ev_method (EV_A)) 899 if (ev_method (EV_A))
759 { 900 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 901 siginit (EV_A);
763 902
764#ifndef WIN32 903#ifndef WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 905 ev_set_priority (&childev, EV_MAXPRI);
780{ 919{
781#if EV_MULTIPLICITY 920#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 921 struct ev_loop *loop = default_loop;
783#endif 922#endif
784 923
924#ifndef WIN32
785 ev_ref (EV_A); /* child watcher */ 925 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 926 ev_signal_stop (EV_A_ &childev);
927#endif
787 928
788 ev_ref (EV_A); /* signal watcher */ 929 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 930 ev_io_stop (EV_A_ &sigev);
790 931
791 close (sigpipe [0]); sigpipe [0] = 0; 932 close (sigpipe [0]); sigpipe [0] = 0;
799{ 940{
800#if EV_MULTIPLICITY 941#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 942 struct ev_loop *loop = default_loop;
802#endif 943#endif
803 944
804 loop_fork (EV_A); 945 if (method)
805 946 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 947}
814 948
815/*****************************************************************************/ 949/*****************************************************************************/
950
951static int
952any_pending (EV_P)
953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961}
816 962
817static void 963static void
818call_pending (EV_P) 964call_pending (EV_P)
819{ 965{
820 int pri; 966 int pri;
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 972
827 if (p->w) 973 if (p->w)
828 { 974 {
829 p->w->pending = 0; 975 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
831 } 977 }
832 } 978 }
833} 979}
834 980
835static void 981static void
843 989
844 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
845 if (w->repeat) 991 if (w->repeat)
846 { 992 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
848 ((WT)w)->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
849 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
850 } 1000 }
851 else 1001 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1003
854 event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1005 }
856} 1006}
857 1007
1008#if EV_PERIODICS
858static void 1009static void
859periodics_reify (EV_P) 1010periodics_reify (EV_P)
860{ 1011{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1013 {
863 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
864 1015
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866 1017
867 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
868 if (w->interval) 1019 if (w->reschedule_cb)
869 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
873 } 1031 }
874 else 1032 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1034
877 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1036 }
879} 1037}
880 1038
881static void 1039static void
882periodics_reschedule (EV_P) 1040periodics_reschedule (EV_P)
886 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
888 { 1046 {
889 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
890 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1051 else if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
902 }
903 } 1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
904} 1058}
1059#endif
905 1060
906inline int 1061inline int
907time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
908{ 1063{
909 mn_now = get_clock (); 1064 mn_now = get_clock ();
910 1065
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 { 1067 {
913 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
914 return 0; 1069 return 0;
915 } 1070 }
916 else 1071 else
917 { 1072 {
918 now_floor = mn_now; 1073 now_floor = mn_now;
919 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
920 return 1; 1075 return 1;
921 } 1076 }
922} 1077}
923 1078
924static void 1079static void
933 { 1088 {
934 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
935 1090
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 { 1092 {
938 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
939 1094
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1096 return; /* all is well */
942 1097
943 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1099 mn_now = get_clock ();
945 now_floor = mn_now; 1100 now_floor = mn_now;
946 } 1101 }
947 1102
1103# if EV_PERIODICS
948 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 1108 }
952 } 1109 }
953 else 1110 else
954#endif 1111#endif
955 { 1112 {
956 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
957 1114
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 { 1116 {
1117#if EV_PERIODICS
960 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
961 1120
962 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
965 } 1124 }
966 1125
967 mn_now = rt_now; 1126 mn_now = ev_rt_now;
968 } 1127 }
969} 1128}
970 1129
971void 1130void
972ev_ref (EV_P) 1131ev_ref (EV_P)
995 { 1154 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1156 call_pending (EV_A);
998 } 1157 }
999 1158
1159 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork))
1161 loop_fork (EV_A);
1162
1000 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1164 fd_reify (EV_A);
1002 1165
1003 /* calculate blocking time */ 1166 /* calculate blocking time */
1004 1167
1005 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
1006 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
1010 else 1173 else
1011#endif 1174#endif
1012 { 1175 {
1013 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
1014 mn_now = rt_now; 1177 mn_now = ev_rt_now;
1015 } 1178 }
1016 1179
1017 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.; 1181 block = 0.;
1019 else 1182 else
1024 { 1187 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1026 if (block > to) block = to; 1189 if (block > to) block = to;
1027 } 1190 }
1028 1191
1192#if EV_PERIODICS
1029 if (periodiccnt) 1193 if (periodiccnt)
1030 { 1194 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1032 if (block > to) block = to; 1196 if (block > to) block = to;
1033 } 1197 }
1198#endif
1034 1199
1035 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
1036 } 1201 }
1037 1202
1038 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
1039 1204
1040 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1206 time_update (EV_A);
1042 1207
1043 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
1045 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
1046 1213
1047 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
1048 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050 1217
1051 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1219 if (checkcnt)
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1128 return; 1295 return;
1129 1296
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1297 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1298
1132 ev_start (EV_A_ (W)w, 1); 1299 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135 1302
1136 fd_change (EV_A_ fd); 1303 fd_change (EV_A_ fd);
1137} 1304}
1138 1305
1141{ 1308{
1142 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1144 return; 1311 return;
1145 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1148 1317
1149 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1150} 1319}
1158 ((WT)w)->at += mn_now; 1327 ((WT)w)->at += mn_now;
1159 1328
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1330
1162 ev_start (EV_A_ (W)w, ++timercnt); 1331 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1164 timers [timercnt - 1] = w; 1333 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1); 1334 upheap ((WT *)timers, timercnt - 1);
1166 1335
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168} 1337}
1180 { 1349 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1352 }
1184 1353
1185 ((WT)w)->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1186 1355
1187 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1188} 1357}
1189 1358
1190void 1359void
1191ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1192{ 1361{
1193 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1194 { 1363 {
1195 if (w->repeat) 1364 if (w->repeat)
1196 {
1197 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1199 }
1200 else 1366 else
1201 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1202 } 1368 }
1203 else if (w->repeat) 1369 else if (w->repeat)
1204 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1205} 1371}
1206 1372
1373#if EV_PERIODICS
1207void 1374void
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1209{ 1376{
1210 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1211 return; 1378 return;
1212 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
1218 1388
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1221 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
1223 1393
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225} 1395}
1241 1411
1242 ev_stop (EV_A_ (W)w); 1412 ev_stop (EV_A_ (W)w);
1243} 1413}
1244 1414
1245void 1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1246ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1247{ 1426{
1248 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1249 return; 1428 return;
1250 1429
1251 ev_start (EV_A_ (W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, ); 1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1253 idles [idlecnt - 1] = w; 1432 idles [idlecnt - 1] = w;
1254} 1433}
1255 1434
1256void 1435void
1257ev_idle_stop (EV_P_ struct ev_idle *w) 1436ev_idle_stop (EV_P_ struct ev_idle *w)
1269{ 1448{
1270 if (ev_is_active (w)) 1449 if (ev_is_active (w))
1271 return; 1450 return;
1272 1451
1273 ev_start (EV_A_ (W)w, ++preparecnt); 1452 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, ); 1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1275 prepares [preparecnt - 1] = w; 1454 prepares [preparecnt - 1] = w;
1276} 1455}
1277 1456
1278void 1457void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w) 1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1291{ 1470{
1292 if (ev_is_active (w)) 1471 if (ev_is_active (w))
1293 return; 1472 return;
1294 1473
1295 ev_start (EV_A_ (W)w, ++checkcnt); 1474 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, ); 1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1297 checks [checkcnt - 1] = w; 1476 checks [checkcnt - 1] = w;
1298} 1477}
1299 1478
1300void 1479void
1301ev_check_stop (EV_P_ struct ev_check *w) 1480ev_check_stop (EV_P_ struct ev_check *w)
1302{ 1481{
1303 ev_clear_pending (EV_A_ (W)w); 1482 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w)) 1483 if (!ev_is_active (w))
1305 return; 1484 return;
1306 1485
1307 checks [((W)w)->active - 1] = checks [--checkcnt]; 1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w); 1487 ev_stop (EV_A_ (W)w);
1309} 1488}
1322 return; 1501 return;
1323 1502
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1504
1326 ev_start (EV_A_ (W)w, 1); 1505 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 1508
1330 if (!((WL)w)->next) 1509 if (!((WL)w)->next)
1331 { 1510 {
1332#if WIN32 1511#if WIN32
1370 1549
1371void 1550void
1372ev_child_stop (EV_P_ struct ev_child *w) 1551ev_child_stop (EV_P_ struct ev_child *w)
1373{ 1552{
1374 ev_clear_pending (EV_A_ (W)w); 1553 ev_clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 1554 if (!ev_is_active (w))
1376 return; 1555 return;
1377 1556
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 1558 ev_stop (EV_A_ (W)w);
1380} 1559}
1395 void (*cb)(int revents, void *arg) = once->cb; 1574 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 1575 void *arg = once->arg;
1397 1576
1398 ev_io_stop (EV_A_ &once->io); 1577 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 1578 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 1579 ev_free (once);
1401 1580
1402 cb (revents, arg); 1581 cb (revents, arg);
1403} 1582}
1404 1583
1405static void 1584static void
1415} 1594}
1416 1595
1417void 1596void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 1598{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 1600
1422 if (!once) 1601 if (!once)
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 1603 else
1425 { 1604 {
1426 once->cb = cb; 1605 once->cb = cb;
1427 once->arg = arg; 1606 once->arg = arg;
1428 1607
1429 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 1609 if (fd >= 0)
1431 { 1610 {
1432 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1434 } 1613 }
1435 1614
1436 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 1616 if (timeout >= 0.)
1438 { 1617 {
1439 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1441 } 1620 }
1442 } 1621 }
1443} 1622}
1444 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines