ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.11 by root, Wed Oct 31 07:40:49 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
75/**/
76
14#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
15# ifdef CLOCK_MONOTONIC
16# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
17# endif 102# endif
18#endif 103#endif
19 104
20#ifndef HAVE_SELECT
21# define HAVE_SELECT 1
22#endif
23
24#ifndef HAVE_EPOLL
25# define HAVE_EPOLL 0
26#endif
27
28#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
29# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
30#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
31 122
32#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
33#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
34 127
35#include "ev.h" 128#include "ev.h"
36 129
37struct ev_watcher { 130#if __GNUC__ >= 3
38 EV_WATCHER (ev_watcher); 131# define expect(expr,value) __builtin_expect ((expr),(value))
39}; 132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
40 137
41struct ev_watcher_list { 138#define expect_false(expr) expect ((expr) != 0, 0)
42 EV_WATCHER_LIST (ev_watcher_list); 139#define expect_true(expr) expect ((expr) != 0, 1)
43}; 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
44 143
45typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
46typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
47 147
48static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
49ev_tstamp ev_now;
50int ev_method;
51 149
52static int have_monotonic; /* runtime */ 150#if WIN32
53 151/* note: the comment below could not be substantiated, but what would I care */
54static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
55static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
56static void (*method_poll)(ev_tstamp timeout); 154#endif
57 155
58/*****************************************************************************/ 156/*****************************************************************************/
59 157
60ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
61ev_time (void) 237ev_time (void)
62{ 238{
63#if HAVE_REALTIME 239#if EV_USE_REALTIME
64 struct timespec ts; 240 struct timespec ts;
65 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
66 return ts.tv_sec + ts.tv_nsec * 1e-9; 242 return ts.tv_sec + ts.tv_nsec * 1e-9;
67#else 243#else
68 struct timeval tv; 244 struct timeval tv;
69 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
70 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
71#endif 247#endif
72} 248}
73 249
74static ev_tstamp 250inline ev_tstamp
75get_clock (void) 251get_clock (void)
76{ 252{
77#if HAVE_MONOTONIC 253#if EV_USE_MONOTONIC
78 if (have_monotonic) 254 if (expect_true (have_monotonic))
79 { 255 {
80 struct timespec ts; 256 struct timespec ts;
81 clock_gettime (CLOCK_MONOTONIC, &ts); 257 clock_gettime (CLOCK_MONOTONIC, &ts);
82 return ts.tv_sec + ts.tv_nsec * 1e-9; 258 return ts.tv_sec + ts.tv_nsec * 1e-9;
83 } 259 }
84#endif 260#endif
85 261
86 return ev_time (); 262 return ev_time ();
87} 263}
88 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
271#define array_roundsize(base,n) ((n) | 4 & ~3)
272
89#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
90 if ((cnt) > cur) \ 274 if (expect_false ((cnt) > cur)) \
91 { \ 275 { \
92 int newcnt = cur ? cur << 1 : 16; \ 276 int newcnt = cur; \
93 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 277 do \
278 { \
279 newcnt = array_roundsize (base, newcnt << 1); \
280 } \
281 while ((cnt) > newcnt); \
282 \
94 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
95 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
96 cur = newcnt; \ 285 cur = newcnt; \
97 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
98 298
99/*****************************************************************************/ 299/*****************************************************************************/
100 300
101typedef struct
102{
103 struct ev_io *head;
104 unsigned char wev, rev; /* want, received event set */
105} ANFD;
106
107static ANFD *anfds;
108static int anfdmax;
109
110static int *fdchanges;
111static int fdchangemax, fdchangecnt;
112
113static void 301static void
114anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
115{ 303{
116 while (count--) 304 while (count--)
117 { 305 {
118 base->head = 0; 306 base->head = 0;
119 base->wev = base->rev = EV_NONE; 307 base->events = EV_NONE;
308 base->reify = 0;
309
120 ++base; 310 ++base;
121 } 311 }
122} 312}
123 313
124typedef struct
125{
126 W w;
127 int events;
128} ANPENDING;
129
130static ANPENDING *pendings;
131static int pendingmax, pendingcnt;
132
133static void 314static void
134event (W w, int events) 315event (EV_P_ W w, int events)
135{ 316{
317 if (w->pending)
318 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
320 return;
321 }
322
136 w->pending = ++pendingcnt; 323 w->pending = ++pendingcnt [ABSPRI (w)];
137 array_needsize (pendings, pendingmax, pendingcnt, ); 324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
138 pendings [pendingcnt - 1].w = w; 325 pendings [ABSPRI (w)][w->pending - 1].w = w;
139 pendings [pendingcnt - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events = events;
140} 327}
141 328
142static void 329static void
330queue_events (EV_P_ W *events, int eventcnt, int type)
331{
332 int i;
333
334 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type);
336}
337
338static void
143fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
144{ 340{
145 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
146 struct ev_io *w; 342 struct ev_io *w;
147 343
148 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
149 { 345 {
150 int ev = w->events & events; 346 int ev = w->events & events;
151 347
152 if (ev) 348 if (ev)
153 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
154 } 350 }
155} 351}
156 352
353/*****************************************************************************/
354
157static void 355static void
158queue_events (W *events, int eventcnt, int type) 356fd_reify (EV_P)
159{ 357{
160 int i; 358 int i;
161 359
162 for (i = 0; i < eventcnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
163 event (events [i], type); 361 {
362 int fd = fdchanges [i];
363 ANFD *anfd = anfds + fd;
364 struct ev_io *w;
365
366 int events = 0;
367
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events;
370
371 anfd->reify = 0;
372
373 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events;
375 }
376
377 fdchangecnt = 0;
378}
379
380static void
381fd_change (EV_P_ int fd)
382{
383 if (anfds [fd].reify || fdchangecnt < 0)
384 return;
385
386 anfds [fd].reify = 1;
387
388 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
390 fdchanges [fdchangecnt - 1] = fd;
391}
392
393static void
394fd_kill (EV_P_ int fd)
395{
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
403}
404
405/* called on EBADF to verify fds */
406static void
407fd_ebadf (EV_P)
408{
409 int fd;
410
411 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd);
415}
416
417/* called on ENOMEM in select/poll to kill some fds and retry */
418static void
419fd_enomem (EV_P)
420{
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
425 {
426 fd_kill (EV_A_ fd);
427 return;
428 }
429}
430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
164} 444}
165 445
166/*****************************************************************************/ 446/*****************************************************************************/
167 447
168static struct ev_timer **atimers;
169static int atimermax, atimercnt;
170
171static struct ev_timer **rtimers;
172static int rtimermax, rtimercnt;
173
174static void 448static void
175upheap (struct ev_timer **timers, int k) 449upheap (WT *heap, int k)
176{ 450{
177 struct ev_timer *w = timers [k]; 451 WT w = heap [k];
178 452
179 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
180 { 454 {
181 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
182 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
183 k >>= 1; 457 k >>= 1;
184 } 458 }
185 459
186 timers [k] = w; 460 heap [k] = w;
187 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
188 462
189} 463}
190 464
191static void 465static void
192downheap (struct ev_timer **timers, int N, int k) 466downheap (WT *heap, int N, int k)
193{ 467{
194 struct ev_timer *w = timers [k]; 468 WT w = heap [k];
195 469
196 while (k < (N >> 1)) 470 while (k < (N >> 1))
197 { 471 {
198 int j = k << 1; 472 int j = k << 1;
199 473
200 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
201 ++j; 475 ++j;
202 476
203 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
204 break; 478 break;
205 479
206 timers [k] = timers [j]; 480 heap [k] = heap [j];
207 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
208 k = j; 482 k = j;
209 } 483 }
210 484
211 timers [k] = w; 485 heap [k] = w;
212 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
213} 487}
214 488
215/*****************************************************************************/ 489/*****************************************************************************/
216 490
217typedef struct 491typedef struct
218{ 492{
219 struct ev_signal *head; 493 WL head;
220 sig_atomic_t gotsig; 494 sig_atomic_t volatile gotsig;
221} ANSIG; 495} ANSIG;
222 496
223static ANSIG *signals; 497static ANSIG *signals;
224static int signalmax; 498static int signalmax;
225 499
226static int sigpipe [2]; 500static int sigpipe [2];
227static sig_atomic_t gotsig; 501static sig_atomic_t volatile gotsig;
228static struct ev_io sigev; 502static struct ev_io sigev;
229 503
230static void 504static void
231signals_init (ANSIG *base, int count) 505signals_init (ANSIG *base, int count)
232{ 506{
233 while (count--) 507 while (count--)
234 { 508 {
235 base->head = 0; 509 base->head = 0;
236 base->gotsig = 0; 510 base->gotsig = 0;
511
237 ++base; 512 ++base;
238 } 513 }
239} 514}
240 515
241static void 516static void
242sighandler (int signum) 517sighandler (int signum)
243{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
244 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
245 524
246 if (!gotsig) 525 if (!gotsig)
247 { 526 {
527 int old_errno = errno;
248 gotsig = 1; 528 gotsig = 1;
249 write (sigpipe [1], &gotsig, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
250 } 531 }
251} 532}
252 533
253static void 534static void
254sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
255{ 536{
256 struct ev_signal *w; 537 WL w;
257 int sig; 538 int signum;
258 539
540 read (sigpipe [0], &revents, 1);
259 gotsig = 0; 541 gotsig = 0;
260 read (sigpipe [0], &revents, 1);
261 542
262 for (sig = signalmax; sig--; ) 543 for (signum = signalmax; signum--; )
263 if (signals [sig].gotsig) 544 if (signals [signum].gotsig)
264 { 545 {
265 signals [sig].gotsig = 0; 546 signals [signum].gotsig = 0;
266 547
267 for (w = signals [sig].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
268 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
269 } 550 }
270} 551}
271 552
272static void 553static void
273siginit (void) 554siginit (EV_P)
274{ 555{
556#ifndef WIN32
275 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
276 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
277 559
278 /* rather than sort out wether we really need nb, set it */ 560 /* rather than sort out wether we really need nb, set it */
279 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
280 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
281 564
282 evio_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
283 evio_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
284} 568}
285 569
286/*****************************************************************************/ 570/*****************************************************************************/
287 571
288static struct ev_idle **idles; 572#ifndef WIN32
289static int idlemax, idlecnt;
290 573
291static struct ev_check **checks; 574static struct ev_child *childs [PID_HASHSIZE];
292static int checkmax, checkcnt; 575static struct ev_signal childev;
576
577#ifndef WCONTINUED
578# define WCONTINUED 0
579#endif
580
581static void
582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
583{
584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents)
598{
599 int pid, status;
600
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 {
603 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL);
605
606 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
609}
610
611#endif
293 612
294/*****************************************************************************/ 613/*****************************************************************************/
295 614
615#if EV_USE_KQUEUE
616# include "ev_kqueue.c"
617#endif
296#if HAVE_EPOLL 618#if EV_USE_EPOLL
297# include "ev_epoll.c" 619# include "ev_epoll.c"
298#endif 620#endif
621#if EV_USE_POLL
622# include "ev_poll.c"
623#endif
299#if HAVE_SELECT 624#if EV_USE_SELECT
300# include "ev_select.c" 625# include "ev_select.c"
301#endif 626#endif
302 627
303int ev_init (int flags) 628int
629ev_version_major (void)
304{ 630{
631 return EV_VERSION_MAJOR;
632}
633
634int
635ev_version_minor (void)
636{
637 return EV_VERSION_MINOR;
638}
639
640/* return true if we are running with elevated privileges and should ignore env variables */
641static int
642enable_secure (void)
643{
644#ifdef WIN32
645 return 0;
646#else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649#endif
650}
651
652int
653ev_method (EV_P)
654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
661 if (!method)
662 {
305#if HAVE_MONOTONIC 663#if EV_USE_MONOTONIC
306 { 664 {
307 struct timespec ts; 665 struct timespec ts;
308 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
309 have_monotonic = 1; 667 have_monotonic = 1;
310 } 668 }
311#endif 669#endif
312 670
313 ev_now = ev_time (); 671 rt_now = ev_time ();
314 now = get_clock (); 672 mn_now = get_clock ();
315 diff = ev_now - now; 673 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now;
316 675
676 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
689#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif
695#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif
698 }
699}
700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
317 if (pipe (sigpipe)) 792 if (pipe (sigpipe))
318 return 0; 793 return 0;
319 794
320 ev_method = EVMETHOD_NONE; 795 if (!default_loop)
321#if HAVE_EPOLL
322 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
323#endif
324#if HAVE_SELECT
325 if (ev_method == EVMETHOD_NONE) select_init (flags);
326#endif
327
328 if (ev_method)
329 { 796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 {
330 evw_init (&sigev, sigcb, 0); 807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
331 siginit (); 809 siginit (EV_A);
332 }
333 810
334 return ev_method; 811#ifndef WIN32
335} 812 ev_signal_init (&childev, childcb, SIGCHLD);
336 813 ev_set_priority (&childev, EV_MAXPRI);
337/*****************************************************************************/ 814 ev_signal_start (EV_A_ &childev);
338 815 ev_unref (EV_A); /* child watcher should not keep loop alive */
339void ev_prefork (void)
340{
341 /* nop */
342}
343
344void ev_postfork_parent (void)
345{
346 /* nop */
347}
348
349void ev_postfork_child (void)
350{
351#if HAVE_EPOLL
352 if (ev_method == EVMETHOD_EPOLL)
353 epoll_postfork_child ();
354#endif 816#endif
817 }
818 else
819 default_loop = 0;
820 }
355 821
822 return default_loop;
823}
824
825void
826ev_default_destroy (void)
827{
828#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop;
830#endif
831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
356 evio_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
357 close (sigpipe [0]); 854 close (sigpipe [0]);
358 close (sigpipe [1]); 855 close (sigpipe [1]);
359 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
360 siginit (); 859 siginit (EV_A);
361} 860}
362 861
363/*****************************************************************************/ 862/*****************************************************************************/
364 863
365static void 864static void
366fd_reify (void) 865call_pending (EV_P)
367{ 866{
368 int i; 867 int pri;
369 868
370 for (i = 0; i < fdchangecnt; ++i) 869 for (pri = NUMPRI; pri--; )
371 { 870 while (pendingcnt [pri])
372 int fd = fdchanges [i];
373 ANFD *anfd = anfds + fd;
374 struct ev_io *w;
375
376 int wev = 0;
377
378 for (w = anfd->head; w; w = w->next)
379 wev |= w->events;
380
381 if (anfd->wev != wev)
382 { 871 {
383 method_modify (fd, anfd->wev, wev); 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
384 anfd->wev = wev;
385 }
386 }
387 873
388 fdchangecnt = 0;
389}
390
391static void
392call_pending ()
393{
394 int i;
395
396 for (i = 0; i < pendingcnt; ++i)
397 {
398 ANPENDING *p = pendings + i;
399
400 if (p->w) 874 if (p->w)
401 { 875 {
402 p->w->pending = 0; 876 p->w->pending = 0;
403 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
404 } 878 }
405 } 879 }
406
407 pendingcnt = 0;
408} 880}
409 881
410static void 882static void
411timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 883timers_reify (EV_P)
412{ 884{
413 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
414 { 886 {
415 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
416 890
417 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
418 if (w->repeat) 892 if (w->repeat)
419 { 893 {
420 if (w->is_abs) 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
421 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
422 else
423 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
424
425 assert (w->at > now);
426
427 downheap (timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
428 } 897 }
429 else 898 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900
901 event (EV_A_ (W)w, EV_TIMEOUT);
902 }
903}
904
905static void
906periodics_reify (EV_P)
907{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
909 {
910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913
914 /* first reschedule or stop timer */
915 if (w->interval)
430 { 916 {
431 evtimer_stop (w); /* nonrepeating: stop timer */ 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
432 --timercnt; /* maybe pass by reference instead? */ 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0);
433 } 920 }
921 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
434 923
435 event ((W)w, EV_TIMEOUT); 924 event (EV_A_ (W)w, EV_PERIODIC);
436 } 925 }
437} 926}
438 927
439static void 928static void
440time_update () 929periodics_reschedule (EV_P)
441{ 930{
442 int i; 931 int i;
443 ev_now = ev_time ();
444 932
445 if (have_monotonic) 933 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i)
446 { 935 {
447 ev_tstamp odiff = diff; 936 struct ev_periodic *w = periodics [i];
448 937
449 /* detecting time jumps is much more difficult */ 938 if (w->interval)
450 for (i = 2; --i; ) /* loop a few times, before making important decisions */
451 { 939 {
452 now = get_clock (); 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
453 diff = ev_now - now;
454 941
455 if (fabs (odiff - diff) < MIN_TIMEJUMP) 942 if (fabs (diff) >= 1e-4)
456 return; /* all is well */ 943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
457 946
458 ev_now = ev_time (); 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
459 } 949 }
950 }
951}
460 952
461 /* time jump detected, reschedule atimers */ 953inline int
462 for (i = 0; i < atimercnt; ++i) 954time_update_monotonic (EV_P)
955{
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969}
970
971static void
972time_update (EV_P)
973{
974 int i;
975
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 {
979 if (time_update_monotonic (EV_A))
463 { 980 {
464 struct ev_timer *w = atimers [i]; 981 ev_tstamp odiff = rtmn_diff;
465 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 982
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 {
985 rtmn_diff = rt_now - mn_now;
986
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */
989
990 rt_now = ev_time ();
991 mn_now = get_clock ();
992 now_floor = mn_now;
993 }
994
995 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
466 } 998 }
467 } 999 }
468 else 1000 else
1001#endif
469 { 1002 {
470 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1003 rt_now = ev_time ();
471 /* time jump detected, adjust rtimers */ 1004
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 {
1007 periodics_reschedule (EV_A);
1008
1009 /* adjust timers. this is easy, as the offset is the same for all */
472 for (i = 0; i < rtimercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
473 rtimers [i]->at += ev_now - now; 1011 ((WT)timers [i])->at += rt_now - mn_now;
1012 }
474 1013
475 now = ev_now; 1014 mn_now = rt_now;
476 } 1015 }
477} 1016}
478 1017
479int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
480 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
481void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
482{ 1034{
483 double block; 1035 double block;
484 ev_loop_done = flags & EVLOOP_ONESHOT; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
485
486 if (checkcnt)
487 {
488 queue_events ((W *)checks, checkcnt, EV_CHECK);
489 call_pending ();
490 }
491 1037
492 do 1038 do
493 { 1039 {
1040 /* queue check watchers (and execute them) */
1041 if (expect_false (preparecnt))
1042 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A);
1045 }
1046
494 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
495 fd_reify (); 1048 fd_reify (EV_A);
496 1049
497 /* calculate blocking time */ 1050 /* calculate blocking time */
1051
1052 /* we only need this for !monotonic clockor timers, but as we basically
1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 {
1060 rt_now = ev_time ();
1061 mn_now = rt_now;
1062 }
1063
498 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
499 block = 0.; 1065 block = 0.;
500 else 1066 else
501 { 1067 {
502 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
503 1069
504 if (rtimercnt) 1070 if (timercnt)
505 { 1071 {
506 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
507 if (block > to) block = to; 1073 if (block > to) block = to;
508 } 1074 }
509 1075
510 if (atimercnt) 1076 if (periodiccnt)
511 { 1077 {
512 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
513 if (block > to) block = to; 1079 if (block > to) block = to;
514 } 1080 }
515 1081
516 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
517 } 1083 }
518 1084
519 method_poll (block); 1085 method_poll (EV_A_ block);
520 1086
521 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
522 time_update (); 1088 time_update (EV_A);
523 1089
524 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
525 /* absolute timers first */ 1091 timers_reify (EV_A); /* relative timers called last */
526 timers_reify (atimers, atimercnt, ev_now); 1092 periodics_reify (EV_A); /* absolute timers called first */
527 /* relative timers second */
528 timers_reify (rtimers, rtimercnt, now);
529 1093
530 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
531 if (!pendingcnt) 1095 if (!pendingcnt)
532 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
533 1097
534 /* queue check and possibly idle watchers */ 1098 /* queue check watchers, to be executed first */
1099 if (checkcnt)
535 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
536 1101
537 call_pending (); 1102 call_pending (EV_A);
538 } 1103 }
539 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
1105
1106 if (loop_done != 2)
1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
540} 1114}
541 1115
542/*****************************************************************************/ 1116/*****************************************************************************/
543 1117
544static void 1118inline void
545wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
546{ 1120{
547 elem->next = *head; 1121 elem->next = *head;
548 *head = elem; 1122 *head = elem;
549} 1123}
550 1124
551static void 1125inline void
552wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
553{ 1127{
554 while (*head) 1128 while (*head)
555 { 1129 {
556 if (*head == elem) 1130 if (*head == elem)
561 1135
562 head = &(*head)->next; 1136 head = &(*head)->next;
563 } 1137 }
564} 1138}
565 1139
566static void 1140inline void
1141ev_clear_pending (EV_P_ W w)
1142{
1143 if (w->pending)
1144 {
1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1146 w->pending = 0;
1147 }
1148}
1149
1150inline void
567ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
568{ 1152{
569 w->pending = 0; 1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
570 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
571} 1158}
572 1159
573static void 1160inline void
574ev_stop (W w) 1161ev_stop (EV_P_ W w)
575{ 1162{
576 if (w->pending) 1163 ev_unref (EV_A);
577 pendings [w->pending - 1].w = 0;
578
579 w->active = 0; 1164 w->active = 0;
580} 1165}
581 1166
582/*****************************************************************************/ 1167/*****************************************************************************/
583 1168
584void 1169void
585evio_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
586{ 1171{
1172 int fd = w->fd;
1173
587 if (ev_is_active (w)) 1174 if (ev_is_active (w))
588 return; 1175 return;
589 1176
590 int fd = w->fd; 1177 assert (("ev_io_start called with negative fd", fd >= 0));
591 1178
592 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
593 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
594 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
595 1182
596 ++fdchangecnt; 1183 fd_change (EV_A_ fd);
597 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
598 fdchanges [fdchangecnt - 1] = fd;
599} 1184}
600 1185
601void 1186void
602evio_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
603{ 1188{
1189 ev_clear_pending (EV_A_ (W)w);
604 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
605 return; 1191 return;
606 1192
607 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
608 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
609 1195
610 ++fdchangecnt; 1196 fd_change (EV_A_ w->fd);
611 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
612 fdchanges [fdchangecnt - 1] = w->fd;
613} 1197}
614 1198
615void 1199void
616evtimer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
617{ 1201{
618 if (ev_is_active (w)) 1202 if (ev_is_active (w))
619 return; 1203 return;
620 1204
621 if (w->is_abs) 1205 ((WT)w)->at += mn_now;
1206
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208
1209 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, );
1211 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1);
1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
1217void
1218ev_timer_stop (EV_P_ struct ev_timer *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (!ev_is_active (w))
1222 return;
1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
1226 if (((W)w)->active < timercnt--)
1227 {
1228 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
622 { 1230 }
623 /* this formula differs from the one in timer_reify becuse we do not round up */ 1231
1232 ((WT)w)->at = w->repeat;
1233
1234 ev_stop (EV_A_ (W)w);
1235}
1236
1237void
1238ev_timer_again (EV_P_ struct ev_timer *w)
1239{
1240 if (ev_is_active (w))
1241 {
624 if (w->repeat) 1242 if (w->repeat)
625 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1243 {
626 1244 ((WT)w)->at = mn_now + w->repeat;
627 ev_start ((W)w, ++atimercnt); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
628 array_needsize (atimers, atimermax, atimercnt, ); 1246 }
629 atimers [atimercnt - 1] = w;
630 upheap (atimers, atimercnt - 1);
631 }
632 else 1247 else
1248 ev_timer_stop (EV_A_ w);
633 { 1249 }
634 w->at += now; 1250 else if (w->repeat)
635 1251 ev_timer_start (EV_A_ w);
636 ev_start ((W)w, ++rtimercnt);
637 array_needsize (rtimers, rtimermax, rtimercnt, );
638 rtimers [rtimercnt - 1] = w;
639 upheap (rtimers, rtimercnt - 1);
640 }
641
642} 1252}
643 1253
644void 1254void
645evtimer_stop (struct ev_timer *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
646{ 1256{
1257 if (ev_is_active (w))
1258 return;
1259
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1265
1266 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, );
1268 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1);
1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
1274void
1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
1276{
1277 ev_clear_pending (EV_A_ (W)w);
647 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
648 return; 1279 return;
649 1280
650 if (w->is_abs) 1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
651 { 1282
652 if (w->active < atimercnt--) 1283 if (((W)w)->active < periodiccnt--)
653 {
654 atimers [w->active - 1] = atimers [atimercnt];
655 downheap (atimers, atimercnt, w->active - 1);
656 }
657 } 1284 {
658 else 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
659 { 1287 }
660 if (w->active < rtimercnt--)
661 {
662 rtimers [w->active - 1] = rtimers [rtimercnt];
663 downheap (rtimers, rtimercnt, w->active - 1);
664 }
665 }
666 1288
667 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
668} 1290}
669 1291
670void 1292void
671evsignal_start (struct ev_signal *w) 1293ev_idle_start (EV_P_ struct ev_idle *w)
672{ 1294{
673 if (ev_is_active (w)) 1295 if (ev_is_active (w))
674 return; 1296 return;
675 1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357
1358#ifndef SA_RESTART
1359# define SA_RESTART 0
1360#endif
1361
1362void
1363ev_signal_start (EV_P_ struct ev_signal *w)
1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1368 if (ev_is_active (w))
1369 return;
1370
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372
676 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
677 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
678 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
679 1376
680 if (!w->next) 1377 if (!((WL)w)->next)
681 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
682 struct sigaction sa; 1382 struct sigaction sa;
683 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
684 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
685 sa.sa_flags = 0; 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
686 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
687 } 1388 }
688} 1389}
689 1390
690void 1391void
691evsignal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
692{ 1393{
1394 ev_clear_pending (EV_A_ (W)w);
693 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
694 return; 1396 return;
695 1397
696 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
697 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
698 1400
699 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
700 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
701} 1403}
702 1404
703void evidle_start (struct ev_idle *w) 1405void
1406ev_child_start (EV_P_ struct ev_child *w)
704{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
705 if (ev_is_active (w)) 1411 if (ev_is_active (w))
706 return; 1412 return;
707 1413
708 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
709 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
710 idles [idlecnt - 1] = w;
711} 1416}
712 1417
713void evidle_stop (struct ev_idle *w) 1418void
1419ev_child_stop (EV_P_ struct ev_child *w)
714{ 1420{
715 idles [w->active - 1] = idles [--idlecnt]; 1421 ev_clear_pending (EV_A_ (W)w);
716 ev_stop ((W)w);
717}
718
719void evcheck_start (struct ev_check *w)
720{
721 if (ev_is_active (w)) 1422 if (ev_is_active (w))
722 return; 1423 return;
723 1424
724 ev_start ((W)w, ++checkcnt); 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
725 array_needsize (checks, checkmax, checkcnt, );
726 checks [checkcnt - 1] = w;
727}
728
729void evcheck_stop (struct ev_check *w)
730{
731 checks [w->active - 1] = checks [--checkcnt];
732 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
733} 1427}
734 1428
735/*****************************************************************************/ 1429/*****************************************************************************/
736 1430
737#if 0 1431struct ev_once
738
739static void
740sin_cb (struct ev_io *w, int revents)
741{ 1432{
742 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
743}
744
745static void
746ocb (struct ev_timer *w, int revents)
747{
748 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
749 evtimer_stop (w);
750 evtimer_start (w);
751}
752
753static void
754scb (struct ev_signal *w, int revents)
755{
756 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
757}
758
759static void
760gcb (struct ev_signal *w, int revents)
761{
762 fprintf (stderr, "generic %x\n", revents);
763}
764
765int main (void)
766{
767 struct ev_io sin; 1433 struct ev_io io;
768
769 ev_init (0);
770
771 evw_init (&sin, sin_cb, 55);
772 evio_set (&sin, 0, EV_READ);
773 evio_start (&sin);
774
775 struct ev_timer t[10000];
776
777#if 0
778 int i;
779 for (i = 0; i < 10000; ++i)
780 {
781 struct ev_timer *w = t + i;
782 evw_init (w, ocb, i);
783 evtimer_set_abs (w, drand48 (), 0.99775533);
784 evtimer_start (w);
785 if (drand48 () < 0.5)
786 evtimer_stop (w);
787 }
788#endif
789
790 struct ev_timer t1; 1434 struct ev_timer to;
791 evw_init (&t1, ocb, 0); 1435 void (*cb)(int revents, void *arg);
792 evtimer_set_abs (&t1, 5, 10); 1436 void *arg;
793 evtimer_start (&t1); 1437};
794 1438
795 struct ev_signal sig; 1439static void
796 evw_init (&sig, scb, 65535); 1440once_cb (EV_P_ struct ev_once *once, int revents)
797 evsignal_set (&sig, SIGQUIT); 1441{
798 evsignal_start (&sig); 1442 void (*cb)(int revents, void *arg) = once->cb;
1443 void *arg = once->arg;
799 1444
800 struct ev_check cw; 1445 ev_io_stop (EV_A_ &once->io);
801 evw_init (&cw, gcb, 0); 1446 ev_timer_stop (EV_A_ &once->to);
802 evcheck_start (&cw); 1447 ev_free (once);
803 1448
804 struct ev_idle iw; 1449 cb (revents, arg);
805 evw_init (&iw, gcb, 0);
806 evidle_start (&iw);
807
808 ev_loop (0);
809
810 return 0;
811} 1450}
812 1451
813#endif 1452static void
1453once_cb_io (EV_P_ struct ev_io *w, int revents)
1454{
1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1456}
814 1457
1458static void
1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
1460{
1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1462}
815 1463
1464void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
816 1468
1469 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else
1472 {
1473 once->cb = cb;
1474 once->arg = arg;
817 1475
1476 ev_watcher_init (&once->io, once_cb_io);
1477 if (fd >= 0)
1478 {
1479 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io);
1481 }
1482
1483 ev_watcher_init (&once->to, once_cb_to);
1484 if (timeout >= 0.)
1485 {
1486 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to);
1488 }
1489 }
1490}
1491

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines