ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 56# define EV_USE_SELECT 1
57# else
58# define EV_USE_SELECT 0
41# endif 59# endif
42 60
43# if HAVE_POLL && HAVE_POLL_H 61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 62# define EV_USE_POLL 1
63# else
64# define EV_USE_POLL 0
45# endif 65# endif
46 66
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 68# define EV_USE_EPOLL 1
69# else
70# define EV_USE_EPOLL 0
49# endif 71# endif
50 72
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 74# define EV_USE_KQUEUE 1
75# else
76# define EV_USE_KQUEUE 0
77# endif
78
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
80# define EV_USE_PORT 1
81# else
82# define EV_USE_PORT 0
53# endif 83# endif
54 84
55#endif 85#endif
56 86
57#include <math.h> 87#include <math.h>
58#include <stdlib.h> 88#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 89#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 90#include <stddef.h>
63 91
64#include <stdio.h> 92#include <stdio.h>
65 93
66#include <assert.h> 94#include <assert.h>
67#include <errno.h> 95#include <errno.h>
68#include <sys/types.h> 96#include <sys/types.h>
97#include <time.h>
98
99#include <signal.h>
100
69#ifndef WIN32 101#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h>
70# include <sys/wait.h> 104# include <sys/wait.h>
105#else
106# define WIN32_LEAN_AND_MEAN
107# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1
71#endif 110# endif
72#include <sys/time.h> 111#endif
73#include <time.h>
74 112
75/**/ 113/**/
76 114
77#ifndef EV_USE_MONOTONIC 115#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0
79#endif 121#endif
80 122
81#ifndef EV_USE_SELECT 123#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 124# define EV_USE_SELECT 1
83#endif 125#endif
84 126
85#ifndef EV_USE_POLL 127#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 128# ifdef _WIN32
129# define EV_USE_POLL 0
130# else
131# define EV_USE_POLL 1
132# endif
87#endif 133#endif
88 134
89#ifndef EV_USE_EPOLL 135#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 136# define EV_USE_EPOLL 0
91#endif 137#endif
92 138
93#ifndef EV_USE_KQUEUE 139#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 140# define EV_USE_KQUEUE 0
95#endif 141#endif
96 142
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 143#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 144# define EV_USE_PORT 0
107#endif 145#endif
108 146
109/**/ 147/**/
148
149/* darwin simply cannot be helped */
150#ifdef __APPLE__
151# undef EV_USE_POLL
152# undef EV_USE_KQUEUE
153#endif
110 154
111#ifndef CLOCK_MONOTONIC 155#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 156# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 157# define EV_USE_MONOTONIC 0
114#endif 158#endif
116#ifndef CLOCK_REALTIME 160#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 161# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 162# define EV_USE_REALTIME 0
119#endif 163#endif
120 164
165#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h>
167#endif
168
121/**/ 169/**/
122 170
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 175
176#ifdef EV_H
177# include EV_H
178#else
128#include "ev.h" 179# include "ev.h"
180#endif
129 181
130#if __GNUC__ >= 3 182#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 183# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 184# define inline static inline
133#else 185#else
134# define expect(expr,value) (expr) 186# define expect(expr,value) (expr)
135# define inline static 187# define inline static
136#endif 188#endif
137 189
139#define expect_true(expr) expect ((expr) != 0, 1) 191#define expect_true(expr) expect ((expr) != 0, 1)
140 192
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 194#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 195
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */
198
144typedef struct ev_watcher *W; 199typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 200typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 201typedef struct ev_watcher_time *WT;
147 202
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 204
150#if WIN32 205#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 206# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 207#endif
155 208
156/*****************************************************************************/ 209/*****************************************************************************/
157 210
158static void (*syserr_cb)(void); 211static void (*syserr_cb)(const char *msg);
159 212
160void ev_set_syserr_cb (void (*cb)(void)) 213void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 214{
162 syserr_cb = cb; 215 syserr_cb = cb;
163} 216}
164 217
165static void 218static void
166syserr (void) 219syserr (const char *msg)
167{ 220{
221 if (!msg)
222 msg = "(libev) system error";
223
168 if (syserr_cb) 224 if (syserr_cb)
169 syserr_cb (); 225 syserr_cb (msg);
170 else 226 else
171 { 227 {
172 perror ("libev"); 228 perror (msg);
173 abort (); 229 abort ();
174 } 230 }
175} 231}
176 232
177static void *(*alloc)(void *ptr, long size); 233static void *(*alloc)(void *ptr, long size);
203typedef struct 259typedef struct
204{ 260{
205 WL head; 261 WL head;
206 unsigned char events; 262 unsigned char events;
207 unsigned char reify; 263 unsigned char reify;
264#if EV_SELECT_IS_WINSOCKET
265 SOCKET handle;
266#endif
208} ANFD; 267} ANFD;
209 268
210typedef struct 269typedef struct
211{ 270{
212 W w; 271 W w;
213 int events; 272 int events;
214} ANPENDING; 273} ANPENDING;
215 274
216#if EV_MULTIPLICITY 275#if EV_MULTIPLICITY
217 276
218struct ev_loop 277 struct ev_loop
219{ 278 {
279 ev_tstamp ev_rt_now;
280 #define ev_rt_now ((loop)->ev_rt_now)
220# define VAR(name,decl) decl; 281 #define VAR(name,decl) decl;
221# include "ev_vars.h" 282 #include "ev_vars.h"
222};
223# undef VAR 283 #undef VAR
284 };
224# include "ev_wrap.h" 285 #include "ev_wrap.h"
286
287 static struct ev_loop default_loop_struct;
288 struct ev_loop *ev_default_loop_ptr;
225 289
226#else 290#else
227 291
292 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 293 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 294 #include "ev_vars.h"
230# undef VAR 295 #undef VAR
296
297 static int ev_default_loop_ptr;
231 298
232#endif 299#endif
233 300
234/*****************************************************************************/ 301/*****************************************************************************/
235 302
236inline ev_tstamp 303ev_tstamp
237ev_time (void) 304ev_time (void)
238{ 305{
239#if EV_USE_REALTIME 306#if EV_USE_REALTIME
240 struct timespec ts; 307 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 308 clock_gettime (CLOCK_REALTIME, &ts);
260#endif 327#endif
261 328
262 return ev_time (); 329 return ev_time ();
263} 330}
264 331
332#if EV_MULTIPLICITY
265ev_tstamp 333ev_tstamp
266ev_now (EV_P) 334ev_now (EV_P)
267{ 335{
268 return rt_now; 336 return ev_rt_now;
269} 337}
338#endif
270 339
271#define array_roundsize(base,n) ((n) | 4 & ~3) 340#define array_roundsize(type,n) (((n) | 4) & ~3)
272 341
273#define array_needsize(base,cur,cnt,init) \ 342#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 343 if (expect_false ((cnt) > cur)) \
275 { \ 344 { \
276 int newcnt = cur; \ 345 int newcnt = cur; \
277 do \ 346 do \
278 { \ 347 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 348 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 349 } \
281 while ((cnt) > newcnt); \ 350 while ((cnt) > newcnt); \
282 \ 351 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 353 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 354 cur = newcnt; \
286 } 355 }
287 356
288#define array_slim(stem) \ 357#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 359 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 360 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 363 }
295 364
296#define array_free(stem, idx) \ 365#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
309 378
310 ++base; 379 ++base;
311 } 380 }
312} 381}
313 382
314static void 383void
315event (EV_P_ W w, int events) 384ev_feed_event (EV_P_ void *w, int revents)
316{ 385{
317 if (w->pending) 386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
318 { 389 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 391 return;
321 } 392 }
322 393
323 w->pending = ++pendingcnt [ABSPRI (w)]; 394 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 398}
328 399
329static void 400static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 401queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 402{
332 int i; 403 int i;
333 404
334 for (i = 0; i < eventcnt; ++i) 405 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 406 ev_feed_event (EV_A_ events [i], type);
336} 407}
337 408
338static void 409inline void
339fd_event (EV_P_ int fd, int events) 410fd_event (EV_P_ int fd, int revents)
340{ 411{
341 ANFD *anfd = anfds + fd; 412 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 413 struct ev_io *w;
343 414
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 416 {
346 int ev = w->events & events; 417 int ev = w->events & revents;
347 418
348 if (ev) 419 if (ev)
349 event (EV_A_ (W)w, ev); 420 ev_feed_event (EV_A_ (W)w, ev);
350 } 421 }
422}
423
424void
425ev_feed_fd_event (EV_P_ int fd, int revents)
426{
427 fd_event (EV_A_ fd, revents);
351} 428}
352 429
353/*****************************************************************************/ 430/*****************************************************************************/
354 431
355static void 432inline void
356fd_reify (EV_P) 433fd_reify (EV_P)
357{ 434{
358 int i; 435 int i;
359 436
360 for (i = 0; i < fdchangecnt; ++i) 437 for (i = 0; i < fdchangecnt; ++i)
366 int events = 0; 443 int events = 0;
367 444
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events; 446 events |= w->events;
370 447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 {
451 unsigned long argp;
452 anfd->handle = _get_osfhandle (fd);
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 }
455#endif
456
371 anfd->reify = 0; 457 anfd->reify = 0;
372 458
373 method_modify (EV_A_ fd, anfd->events, events); 459 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events; 460 anfd->events = events;
375 } 461 }
378} 464}
379 465
380static void 466static void
381fd_change (EV_P_ int fd) 467fd_change (EV_P_ int fd)
382{ 468{
383 if (anfds [fd].reify || fdchangecnt < 0) 469 if (expect_false (anfds [fd].reify))
384 return; 470 return;
385 471
386 anfds [fd].reify = 1; 472 anfds [fd].reify = 1;
387 473
388 ++fdchangecnt; 474 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
390 fdchanges [fdchangecnt - 1] = fd; 476 fdchanges [fdchangecnt - 1] = fd;
391} 477}
392 478
393static void 479static void
394fd_kill (EV_P_ int fd) 480fd_kill (EV_P_ int fd)
396 struct ev_io *w; 482 struct ev_io *w;
397 483
398 while ((w = (struct ev_io *)anfds [fd].head)) 484 while ((w = (struct ev_io *)anfds [fd].head))
399 { 485 {
400 ev_io_stop (EV_A_ w); 486 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 488 }
489}
490
491inline int
492fd_valid (int fd)
493{
494#ifdef _WIN32
495 return _get_osfhandle (fd) != -1;
496#else
497 return fcntl (fd, F_GETFD) != -1;
498#endif
403} 499}
404 500
405/* called on EBADF to verify fds */ 501/* called on EBADF to verify fds */
406static void 502static void
407fd_ebadf (EV_P) 503fd_ebadf (EV_P)
408{ 504{
409 int fd; 505 int fd;
410 506
411 for (fd = 0; fd < anfdmax; ++fd) 507 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 508 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 509 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 510 fd_kill (EV_A_ fd);
415} 511}
416 512
417/* called on ENOMEM in select/poll to kill some fds and retry */ 513/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 514static void
426 fd_kill (EV_A_ fd); 522 fd_kill (EV_A_ fd);
427 return; 523 return;
428 } 524 }
429} 525}
430 526
431/* susually called after fork if method needs to re-arm all fds from scratch */ 527/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 528static void
433fd_rearm_all (EV_P) 529fd_rearm_all (EV_P)
434{ 530{
435 int fd; 531 int fd;
436 532
484 580
485 heap [k] = w; 581 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 582 ((W)heap [k])->active = k + 1;
487} 583}
488 584
585inline void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
489/*****************************************************************************/ 592/*****************************************************************************/
490 593
491typedef struct 594typedef struct
492{ 595{
493 WL head; 596 WL head;
514} 617}
515 618
516static void 619static void
517sighandler (int signum) 620sighandler (int signum)
518{ 621{
519#if WIN32 622#if _WIN32
520 signal (signum, sighandler); 623 signal (signum, sighandler);
521#endif 624#endif
522 625
523 signals [signum - 1].gotsig = 1; 626 signals [signum - 1].gotsig = 1;
524 627
529 write (sigpipe [1], &signum, 1); 632 write (sigpipe [1], &signum, 1);
530 errno = old_errno; 633 errno = old_errno;
531 } 634 }
532} 635}
533 636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
534static void 657static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 658sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 659{
537 WL w;
538 int signum; 660 int signum;
539 661
540 read (sigpipe [0], &revents, 1); 662 read (sigpipe [0], &revents, 1);
541 gotsig = 0; 663 gotsig = 0;
542 664
543 for (signum = signalmax; signum--; ) 665 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 666 if (signals [signum].gotsig)
545 { 667 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0; 668}
547 669
548 for (w = signals [signum].head; w; w = w->next) 670static void
549 event (EV_A_ (W)w, EV_SIGNAL); 671fd_intern (int fd)
550 } 672{
673#ifdef _WIN32
674 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
676#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif
551} 680}
552 681
553static void 682static void
554siginit (EV_P) 683siginit (EV_P)
555{ 684{
556#ifndef WIN32 685 fd_intern (sigpipe [0]);
557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 686 fd_intern (sigpipe [1]);
558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559
560 /* rather than sort out wether we really need nb, set it */
561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
564 687
565 ev_io_set (&sigev, sigpipe [0], EV_READ); 688 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 ev_io_start (EV_A_ &sigev); 689 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 690 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 691}
569 692
570/*****************************************************************************/ 693/*****************************************************************************/
571 694
572#ifndef WIN32
573
574static struct ev_child *childs [PID_HASHSIZE]; 695static struct ev_child *childs [PID_HASHSIZE];
696
697#ifndef _WIN32
698
575static struct ev_signal childev; 699static struct ev_signal childev;
576 700
577#ifndef WCONTINUED 701#ifndef WCONTINUED
578# define WCONTINUED 0 702# define WCONTINUED 0
579#endif 703#endif
587 if (w->pid == pid || !w->pid) 711 if (w->pid == pid || !w->pid)
588 { 712 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 714 w->rpid = pid;
591 w->rstatus = status; 715 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 717 }
594} 718}
595 719
596static void 720static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 721childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 723 int pid, status;
600 724
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 726 {
603 /* make sure we are called again until all childs have been reaped */ 727 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 729
606 child_reap (EV_A_ sw, pid, pid, status); 730 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 732 }
609} 733}
610 734
611#endif 735#endif
612 736
613/*****************************************************************************/ 737/*****************************************************************************/
614 738
739#if EV_USE_PORT
740# include "ev_port.c"
741#endif
615#if EV_USE_KQUEUE 742#if EV_USE_KQUEUE
616# include "ev_kqueue.c" 743# include "ev_kqueue.c"
617#endif 744#endif
618#if EV_USE_EPOLL 745#if EV_USE_EPOLL
619# include "ev_epoll.c" 746# include "ev_epoll.c"
639 766
640/* return true if we are running with elevated privileges and should ignore env variables */ 767/* return true if we are running with elevated privileges and should ignore env variables */
641static int 768static int
642enable_secure (void) 769enable_secure (void)
643{ 770{
644#ifdef WIN32 771#ifdef _WIN32
645 return 0; 772 return 0;
646#else 773#else
647 return getuid () != geteuid () 774 return getuid () != geteuid ()
648 || getgid () != getegid (); 775 || getgid () != getegid ();
649#endif 776#endif
650} 777}
651 778
652int 779unsigned int
653ev_method (EV_P) 780ev_method (EV_P)
654{ 781{
655 return method; 782 return method;
656} 783}
657 784
658static void 785static void
659loop_init (EV_P_ int methods) 786loop_init (EV_P_ unsigned int flags)
660{ 787{
661 if (!method) 788 if (!method)
662 { 789 {
663#if EV_USE_MONOTONIC 790#if EV_USE_MONOTONIC
664 { 791 {
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 793 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 794 have_monotonic = 1;
668 } 795 }
669#endif 796#endif
670 797
671 rt_now = ev_time (); 798 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 799 mn_now = get_clock ();
673 now_floor = mn_now; 800 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 801 rtmn_diff = ev_rt_now - mn_now;
675 802
676 if (methods == EVMETHOD_AUTO) 803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 804 flags = atoi (getenv ("LIBEV_FLAGS"));
679 else 805
680 methods = EVMETHOD_ANY; 806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
681 808
682 method = 0; 809 method = 0;
683#if EV_USE_WIN32 810#if EV_USE_PORT
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
685#endif 812#endif
686#if EV_USE_KQUEUE 813#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
688#endif 815#endif
689#if EV_USE_EPOLL 816#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
691#endif 818#endif
692#if EV_USE_POLL 819#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
694#endif 821#endif
695#if EV_USE_SELECT 822#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
697#endif 824#endif
698 }
699}
700 825
701void 826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
702loop_destroy (EV_P) 832loop_destroy (EV_P)
703{ 833{
704 int i; 834 int i;
705 835
706#if EV_USE_WIN32 836#if EV_USE_PORT
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
708#endif 838#endif
709#if EV_USE_KQUEUE 839#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif 841#endif
712#if EV_USE_EPOLL 842#if EV_USE_EPOLL
720#endif 850#endif
721 851
722 for (i = NUMPRI; i--; ) 852 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 853 array_free (pending, [i]);
724 854
855 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 856 array_free (fdchange, EMPTY0);
726 array_free (timer, ); 857 array_free (timer, EMPTY0);
858#if EV_PERIODICS
727 array_free (periodic, ); 859 array_free (periodic, EMPTY0);
860#endif
728 array_free (idle, ); 861 array_free (idle, EMPTY0);
729 array_free (prepare, ); 862 array_free (prepare, EMPTY0);
730 array_free (check, ); 863 array_free (check, EMPTY0);
731 864
732 method = 0; 865 method = 0;
733 /*TODO*/
734} 866}
735 867
736void 868static void
737loop_fork (EV_P) 869loop_fork (EV_P)
738{ 870{
739 /*TODO*/ 871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
740#if EV_USE_EPOLL 877#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 879#endif
743#if EV_USE_KQUEUE 880
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 881 if (ev_is_active (&sigev))
745#endif 882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
746} 897}
747 898
748#if EV_MULTIPLICITY 899#if EV_MULTIPLICITY
749struct ev_loop * 900struct ev_loop *
750ev_loop_new (int methods) 901ev_loop_new (unsigned int flags)
751{ 902{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753 904
754 memset (loop, 0, sizeof (struct ev_loop)); 905 memset (loop, 0, sizeof (struct ev_loop));
755 906
756 loop_init (EV_A_ methods); 907 loop_init (EV_A_ flags);
757 908
758 if (ev_method (EV_A)) 909 if (ev_method (EV_A))
759 return loop; 910 return loop;
760 911
761 return 0; 912 return 0;
769} 920}
770 921
771void 922void
772ev_loop_fork (EV_P) 923ev_loop_fork (EV_P)
773{ 924{
774 loop_fork (EV_A); 925 postfork = 1;
775} 926}
776 927
777#endif 928#endif
778 929
779#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
784#else 933#else
785static int default_loop;
786
787int 934int
935ev_default_loop (unsigned int flags)
788#endif 936#endif
789ev_default_loop (int methods)
790{ 937{
791 if (sigpipe [0] == sigpipe [1]) 938 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe)) 939 if (pipe (sigpipe))
793 return 0; 940 return 0;
794 941
795 if (!default_loop) 942 if (!ev_default_loop_ptr)
796 { 943 {
797#if EV_MULTIPLICITY 944#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct; 945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
799#else 946#else
800 default_loop = 1; 947 ev_default_loop_ptr = 1;
801#endif 948#endif
802 949
803 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
804 951
805 if (ev_method (EV_A)) 952 if (ev_method (EV_A))
806 { 953 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 954 siginit (EV_A);
810 955
811#ifndef WIN32 956#ifndef _WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 957 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 958 ev_set_priority (&childev, EV_MAXPRI);
814 ev_signal_start (EV_A_ &childev); 959 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 960 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif 961#endif
817 } 962 }
818 else 963 else
819 default_loop = 0; 964 ev_default_loop_ptr = 0;
820 } 965 }
821 966
822 return default_loop; 967 return ev_default_loop_ptr;
823} 968}
824 969
825void 970void
826ev_default_destroy (void) 971ev_default_destroy (void)
827{ 972{
828#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 974 struct ev_loop *loop = ev_default_loop_ptr;
830#endif 975#endif
831 976
977#ifndef _WIN32
832 ev_ref (EV_A); /* child watcher */ 978 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 979 ev_signal_stop (EV_A_ &childev);
980#endif
834 981
835 ev_ref (EV_A); /* signal watcher */ 982 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 983 ev_io_stop (EV_A_ &sigev);
837 984
838 close (sigpipe [0]); sigpipe [0] = 0; 985 close (sigpipe [0]); sigpipe [0] = 0;
843 990
844void 991void
845ev_default_fork (void) 992ev_default_fork (void)
846{ 993{
847#if EV_MULTIPLICITY 994#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 995 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 996#endif
850 997
851 loop_fork (EV_A); 998 if (method)
852 999 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 1000}
861 1001
862/*****************************************************************************/ 1002/*****************************************************************************/
863 1003
864static void 1004static int
1005any_pending (EV_P)
1006{
1007 int pri;
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014}
1015
1016inline void
865call_pending (EV_P) 1017call_pending (EV_P)
866{ 1018{
867 int pri; 1019 int pri;
868 1020
869 for (pri = NUMPRI; pri--; ) 1021 for (pri = NUMPRI; pri--; )
870 while (pendingcnt [pri]) 1022 while (pendingcnt [pri])
871 { 1023 {
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 1025
874 if (p->w) 1026 if (expect_true (p->w))
875 { 1027 {
876 p->w->pending = 0; 1028 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 1029 EV_CB_INVOKE (p->w, p->events);
878 } 1030 }
879 } 1031 }
880} 1032}
881 1033
882static void 1034inline void
883timers_reify (EV_P) 1035timers_reify (EV_P)
884{ 1036{
885 while (timercnt && ((WT)timers [0])->at <= mn_now) 1037 while (timercnt && ((WT)timers [0])->at <= mn_now)
886 { 1038 {
887 struct ev_timer *w = timers [0]; 1039 struct ev_timer *w = timers [0];
890 1042
891 /* first reschedule or stop timer */ 1043 /* first reschedule or stop timer */
892 if (w->repeat) 1044 if (w->repeat)
893 { 1045 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047
895 ((WT)w)->at = mn_now + w->repeat; 1048 ((WT)w)->at += w->repeat;
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
896 downheap ((WT *)timers, timercnt, 0); 1052 downheap ((WT *)timers, timercnt, 0);
897 } 1053 }
898 else 1054 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1056
901 event (EV_A_ (W)w, EV_TIMEOUT); 1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 1058 }
903} 1059}
904 1060
905static void 1061#if EV_PERIODICS
1062inline void
906periodics_reify (EV_P) 1063periodics_reify (EV_P)
907{ 1064{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1066 {
910 struct ev_periodic *w = periodics [0]; 1067 struct ev_periodic *w = periodics [0];
911 1068
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1069 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1070
914 /* first reschedule or stop timer */ 1071 /* first reschedule or stop timer */
915 if (w->interval) 1072 if (w->reschedule_cb)
916 { 1073 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 }
1078 else if (w->interval)
1079 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1082 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1083 }
921 else 1084 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1086
924 event (EV_A_ (W)w, EV_PERIODIC); 1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1088 }
926} 1089}
927 1090
928static void 1091static void
929periodics_reschedule (EV_P) 1092periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1096 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1097 for (i = 0; i < periodiccnt; ++i)
935 { 1098 {
936 struct ev_periodic *w = periodics [i]; 1099 struct ev_periodic *w = periodics [i];
937 1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1103 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
951} 1110}
1111#endif
952 1112
953inline int 1113inline int
954time_update_monotonic (EV_P) 1114time_update_monotonic (EV_P)
955{ 1115{
956 mn_now = get_clock (); 1116 mn_now = get_clock ();
957 1117
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1119 {
960 rt_now = rtmn_diff + mn_now; 1120 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1121 return 0;
962 } 1122 }
963 else 1123 else
964 { 1124 {
965 now_floor = mn_now; 1125 now_floor = mn_now;
966 rt_now = ev_time (); 1126 ev_rt_now = ev_time ();
967 return 1; 1127 return 1;
968 } 1128 }
969} 1129}
970 1130
971static void 1131inline void
972time_update (EV_P) 1132time_update (EV_P)
973{ 1133{
974 int i; 1134 int i;
975 1135
976#if EV_USE_MONOTONIC 1136#if EV_USE_MONOTONIC
980 { 1140 {
981 ev_tstamp odiff = rtmn_diff; 1141 ev_tstamp odiff = rtmn_diff;
982 1142
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1144 {
985 rtmn_diff = rt_now - mn_now; 1145 rtmn_diff = ev_rt_now - mn_now;
986 1146
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1148 return; /* all is well */
989 1149
990 rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1151 mn_now = get_clock ();
992 now_floor = mn_now; 1152 now_floor = mn_now;
993 } 1153 }
994 1154
1155# if EV_PERIODICS
995 periodics_reschedule (EV_A); 1156 periodics_reschedule (EV_A);
1157# endif
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 1158 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 } 1160 }
999 } 1161 }
1000 else 1162 else
1001#endif 1163#endif
1002 { 1164 {
1003 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
1004 1166
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1168 {
1169#if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1170 periodics_reschedule (EV_A);
1171#endif
1008 1172
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1173 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1174 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1176 }
1013 1177
1014 mn_now = rt_now; 1178 mn_now = ev_rt_now;
1015 } 1179 }
1016} 1180}
1017 1181
1018void 1182void
1019ev_ref (EV_P) 1183ev_ref (EV_P)
1033ev_loop (EV_P_ int flags) 1197ev_loop (EV_P_ int flags)
1034{ 1198{
1035 double block; 1199 double block;
1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1037 1201
1038 do 1202 while (activecnt)
1039 { 1203 {
1040 /* queue check watchers (and execute them) */ 1204 /* queue check watchers (and execute them) */
1041 if (expect_false (preparecnt)) 1205 if (expect_false (preparecnt))
1042 { 1206 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1208 call_pending (EV_A);
1045 } 1209 }
1046 1210
1211 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork))
1213 loop_fork (EV_A);
1214
1047 /* update fd-related kernel structures */ 1215 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1216 fd_reify (EV_A);
1049 1217
1050 /* calculate blocking time */ 1218 /* calculate blocking time */
1051 1219
1052 /* we only need this for !monotonic clockor timers, but as we basically 1220 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1221 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1224 time_update_monotonic (EV_A);
1057 else 1225 else
1058#endif 1226#endif
1059 { 1227 {
1060 rt_now = ev_time (); 1228 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1229 mn_now = ev_rt_now;
1062 } 1230 }
1063 1231
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1233 block = 0.;
1066 else 1234 else
1071 { 1239 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1073 if (block > to) block = to; 1241 if (block > to) block = to;
1074 } 1242 }
1075 1243
1244#if EV_PERIODICS
1076 if (periodiccnt) 1245 if (periodiccnt)
1077 { 1246 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1079 if (block > to) block = to; 1248 if (block > to) block = to;
1080 } 1249 }
1250#endif
1081 1251
1082 if (block < 0.) block = 0.; 1252 if (expect_false (block < 0.)) block = 0.;
1083 } 1253 }
1084 1254
1085 method_poll (EV_A_ block); 1255 method_poll (EV_A_ block);
1086 1256
1087 /* update rt_now, do magic */ 1257 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1258 time_update (EV_A);
1089 1259
1090 /* queue pending timers and reschedule them */ 1260 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1261 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS
1092 periodics_reify (EV_A); /* absolute timers called first */ 1263 periodics_reify (EV_A); /* absolute timers called first */
1264#endif
1093 1265
1094 /* queue idle watchers unless io or timers are pending */ 1266 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1267 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1269
1098 /* queue check watchers, to be executed first */ 1270 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1271 if (expect_false (checkcnt))
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1101 1273
1102 call_pending (EV_A); 1274 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1103 } 1278 }
1104 while (activecnt && !loop_done);
1105 1279
1106 if (loop_done != 2) 1280 if (loop_done != 2)
1107 loop_done = 0; 1281 loop_done = 0;
1108} 1282}
1109 1283
1169void 1343void
1170ev_io_start (EV_P_ struct ev_io *w) 1344ev_io_start (EV_P_ struct ev_io *w)
1171{ 1345{
1172 int fd = w->fd; 1346 int fd = w->fd;
1173 1347
1174 if (ev_is_active (w)) 1348 if (expect_false (ev_is_active (w)))
1175 return; 1349 return;
1176 1350
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1351 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1352
1179 ev_start (EV_A_ (W)w, 1); 1353 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1355 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1356
1183 fd_change (EV_A_ fd); 1357 fd_change (EV_A_ fd);
1184} 1358}
1185 1359
1186void 1360void
1187ev_io_stop (EV_P_ struct ev_io *w) 1361ev_io_stop (EV_P_ struct ev_io *w)
1188{ 1362{
1189 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 1364 if (expect_false (!ev_is_active (w)))
1191 return; 1365 return;
1366
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1192 1368
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 1370 ev_stop (EV_A_ (W)w);
1195 1371
1196 fd_change (EV_A_ w->fd); 1372 fd_change (EV_A_ w->fd);
1197} 1373}
1198 1374
1199void 1375void
1200ev_timer_start (EV_P_ struct ev_timer *w) 1376ev_timer_start (EV_P_ struct ev_timer *w)
1201{ 1377{
1202 if (ev_is_active (w)) 1378 if (expect_false (ev_is_active (w)))
1203 return; 1379 return;
1204 1380
1205 ((WT)w)->at += mn_now; 1381 ((WT)w)->at += mn_now;
1206 1382
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1384
1209 ev_start (EV_A_ (W)w, ++timercnt); 1385 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1211 timers [timercnt - 1] = w; 1387 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1388 upheap ((WT *)timers, timercnt - 1);
1213 1389
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1391}
1216 1392
1217void 1393void
1218ev_timer_stop (EV_P_ struct ev_timer *w) 1394ev_timer_stop (EV_P_ struct ev_timer *w)
1219{ 1395{
1220 ev_clear_pending (EV_A_ (W)w); 1396 ev_clear_pending (EV_A_ (W)w);
1221 if (!ev_is_active (w)) 1397 if (expect_false (!ev_is_active (w)))
1222 return; 1398 return;
1223 1399
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225 1401
1226 if (((W)w)->active < timercnt--) 1402 if (expect_true (((W)w)->active < timercnt--))
1227 { 1403 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 1404 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 } 1406 }
1231 1407
1232 ((WT)w)->at = w->repeat; 1408 ((WT)w)->at -= mn_now;
1233 1409
1234 ev_stop (EV_A_ (W)w); 1410 ev_stop (EV_A_ (W)w);
1235} 1411}
1236 1412
1237void 1413void
1240 if (ev_is_active (w)) 1416 if (ev_is_active (w))
1241 { 1417 {
1242 if (w->repeat) 1418 if (w->repeat)
1243 { 1419 {
1244 ((WT)w)->at = mn_now + w->repeat; 1420 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1422 }
1247 else 1423 else
1248 ev_timer_stop (EV_A_ w); 1424 ev_timer_stop (EV_A_ w);
1249 } 1425 }
1250 else if (w->repeat) 1426 else if (w->repeat)
1427 {
1428 w->at = w->repeat;
1251 ev_timer_start (EV_A_ w); 1429 ev_timer_start (EV_A_ w);
1430 }
1252} 1431}
1253 1432
1433#if EV_PERIODICS
1254void 1434void
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1435ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1436{
1257 if (ev_is_active (w)) 1437 if (expect_false (ev_is_active (w)))
1258 return; 1438 return;
1259 1439
1440 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval)
1443 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1445 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 }
1265 1448
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1449 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1268 periodics [periodiccnt - 1] = w; 1451 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1452 upheap ((WT *)periodics, periodiccnt - 1);
1270 1453
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1455}
1273 1456
1274void 1457void
1275ev_periodic_stop (EV_P_ struct ev_periodic *w) 1458ev_periodic_stop (EV_P_ struct ev_periodic *w)
1276{ 1459{
1277 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1279 return; 1462 return;
1280 1463
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282 1465
1283 if (((W)w)->active < periodiccnt--) 1466 if (expect_true (((W)w)->active < periodiccnt--))
1284 { 1467 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1468 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1287 } 1470 }
1288 1471
1289 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1290} 1473}
1291 1474
1292void 1475void
1476ev_periodic_again (EV_P_ struct ev_periodic *w)
1477{
1478 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w);
1481}
1482#endif
1483
1484void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1485ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1486{
1295 if (ev_is_active (w)) 1487 if (expect_false (ev_is_active (w)))
1296 return; 1488 return;
1297 1489
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1490 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1300 idles [idlecnt - 1] = w; 1492 idles [idlecnt - 1] = w;
1301} 1493}
1302 1494
1303void 1495void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1496ev_idle_stop (EV_P_ struct ev_idle *w)
1305{ 1497{
1306 ev_clear_pending (EV_A_ (W)w); 1498 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w)) 1499 if (expect_false (!ev_is_active (w)))
1308 return; 1500 return;
1309 1501
1310 idles [((W)w)->active - 1] = idles [--idlecnt]; 1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w); 1503 ev_stop (EV_A_ (W)w);
1312} 1504}
1313 1505
1314void 1506void
1315ev_prepare_start (EV_P_ struct ev_prepare *w) 1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{ 1508{
1317 if (ev_is_active (w)) 1509 if (expect_false (ev_is_active (w)))
1318 return; 1510 return;
1319 1511
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1512 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1322 prepares [preparecnt - 1] = w; 1514 prepares [preparecnt - 1] = w;
1323} 1515}
1324 1516
1325void 1517void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{ 1519{
1328 ev_clear_pending (EV_A_ (W)w); 1520 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w)) 1521 if (expect_false (!ev_is_active (w)))
1330 return; 1522 return;
1331 1523
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w); 1525 ev_stop (EV_A_ (W)w);
1334} 1526}
1335 1527
1336void 1528void
1337ev_check_start (EV_P_ struct ev_check *w) 1529ev_check_start (EV_P_ struct ev_check *w)
1338{ 1530{
1339 if (ev_is_active (w)) 1531 if (expect_false (ev_is_active (w)))
1340 return; 1532 return;
1341 1533
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1534 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1344 checks [checkcnt - 1] = w; 1536 checks [checkcnt - 1] = w;
1345} 1537}
1346 1538
1347void 1539void
1348ev_check_stop (EV_P_ struct ev_check *w) 1540ev_check_stop (EV_P_ struct ev_check *w)
1349{ 1541{
1350 ev_clear_pending (EV_A_ (W)w); 1542 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w)) 1543 if (expect_false (!ev_is_active (w)))
1352 return; 1544 return;
1353 1545
1354 checks [((W)w)->active - 1] = checks [--checkcnt]; 1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1356} 1548}
1361 1553
1362void 1554void
1363ev_signal_start (EV_P_ struct ev_signal *w) 1555ev_signal_start (EV_P_ struct ev_signal *w)
1364{ 1556{
1365#if EV_MULTIPLICITY 1557#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1367#endif 1559#endif
1368 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1369 return; 1561 return;
1370 1562
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1564
1373 ev_start (EV_A_ (W)w, 1); 1565 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1568
1377 if (!((WL)w)->next) 1569 if (!((WL)w)->next)
1378 { 1570 {
1379#if WIN32 1571#if _WIN32
1380 signal (w->signum, sighandler); 1572 signal (w->signum, sighandler);
1381#else 1573#else
1382 struct sigaction sa; 1574 struct sigaction sa;
1383 sa.sa_handler = sighandler; 1575 sa.sa_handler = sighandler;
1384 sigfillset (&sa.sa_mask); 1576 sigfillset (&sa.sa_mask);
1390 1582
1391void 1583void
1392ev_signal_stop (EV_P_ struct ev_signal *w) 1584ev_signal_stop (EV_P_ struct ev_signal *w)
1393{ 1585{
1394 ev_clear_pending (EV_A_ (W)w); 1586 ev_clear_pending (EV_A_ (W)w);
1395 if (!ev_is_active (w)) 1587 if (expect_false (!ev_is_active (w)))
1396 return; 1588 return;
1397 1589
1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1399 ev_stop (EV_A_ (W)w); 1591 ev_stop (EV_A_ (W)w);
1400 1592
1404 1596
1405void 1597void
1406ev_child_start (EV_P_ struct ev_child *w) 1598ev_child_start (EV_P_ struct ev_child *w)
1407{ 1599{
1408#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1410#endif 1602#endif
1411 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1412 return; 1604 return;
1413 1605
1414 ev_start (EV_A_ (W)w, 1); 1606 ev_start (EV_A_ (W)w, 1);
1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1416} 1608}
1417 1609
1418void 1610void
1419ev_child_stop (EV_P_ struct ev_child *w) 1611ev_child_stop (EV_P_ struct ev_child *w)
1420{ 1612{
1421 ev_clear_pending (EV_A_ (W)w); 1613 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 1614 if (expect_false (!ev_is_active (w)))
1423 return; 1615 return;
1424 1616
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1427} 1619}
1462} 1654}
1463 1655
1464void 1656void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1658{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1660
1469 if (!once) 1661 if (expect_false (!once))
1662 {
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1664 return;
1472 { 1665 }
1666
1473 once->cb = cb; 1667 once->cb = cb;
1474 once->arg = arg; 1668 once->arg = arg;
1475 1669
1476 ev_watcher_init (&once->io, once_cb_io); 1670 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1671 if (fd >= 0)
1478 { 1672 {
1479 ev_io_set (&once->io, fd, events); 1673 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1674 ev_io_start (EV_A_ &once->io);
1481 } 1675 }
1482 1676
1483 ev_watcher_init (&once->to, once_cb_to); 1677 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1678 if (timeout >= 0.)
1485 { 1679 {
1486 ev_timer_set (&once->to, timeout, 0.); 1680 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1681 ev_timer_start (EV_A_ &once->to);
1488 }
1489 } 1682 }
1490} 1683}
1491 1684
1685#ifdef __cplusplus
1686}
1687#endif
1688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines