ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
71#endif 163# endif
72#include <sys/time.h> 164#endif
73#include <time.h>
74 165
75/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
76 167
77#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
79#endif 178#endif
80 179
81#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
83#endif 182#endif
84 183
85#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
87#endif 190#endif
88 191
89#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
90# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
91#endif 198#endif
92 199
93#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
95#endif 202#endif
96 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
97#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
98# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 210# define EV_USE_INOTIFY 1
100# else 211# else
101# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
102# endif 213# endif
103#endif 214#endif
104 215
105#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
107#endif 221# endif
222#endif
108 223
109/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 241
111#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
114#endif 245#endif
116#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
119#endif 250#endif
120 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
121/**/ 283/**/
122 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 298
128#include "ev.h"
129
130#if __GNUC__ >= 3 299#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 301# define noinline __attribute__ ((noinline))
133#else 302#else
134# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
135# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L
306# define inline
307# endif
136#endif 308#endif
137 309
138#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
140 319
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
144typedef struct ev_watcher *W; 326typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
147 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
149 335
150#if WIN32 336#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 337# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 338#endif
155 339
156/*****************************************************************************/ 340/*****************************************************************************/
157 341
158static void (*syserr_cb)(void); 342static void (*syserr_cb)(const char *msg);
159 343
160void ev_set_syserr_cb (void (*cb)(void)) 344void
345ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 346{
162 syserr_cb = cb; 347 syserr_cb = cb;
163} 348}
164 349
165static void 350static void noinline
166syserr (void) 351syserr (const char *msg)
167{ 352{
353 if (!msg)
354 msg = "(libev) system error";
355
168 if (syserr_cb) 356 if (syserr_cb)
169 syserr_cb (); 357 syserr_cb (msg);
170 else 358 else
171 { 359 {
172 perror ("libev"); 360 perror (msg);
173 abort (); 361 abort ();
174 } 362 }
175} 363}
176 364
177static void *(*alloc)(void *ptr, long size); 365static void *(*alloc)(void *ptr, long size);
178 366
367void
179void ev_set_allocator (void *(*cb)(void *ptr, long size)) 368ev_set_allocator (void *(*cb)(void *ptr, long size))
180{ 369{
181 alloc = cb; 370 alloc = cb;
182} 371}
183 372
184static void * 373inline_speed void *
185ev_realloc (void *ptr, long size) 374ev_realloc (void *ptr, long size)
186{ 375{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188 377
189 if (!ptr && size) 378 if (!ptr && size)
203typedef struct 392typedef struct
204{ 393{
205 WL head; 394 WL head;
206 unsigned char events; 395 unsigned char events;
207 unsigned char reify; 396 unsigned char reify;
397#if EV_SELECT_IS_WINSOCKET
398 SOCKET handle;
399#endif
208} ANFD; 400} ANFD;
209 401
210typedef struct 402typedef struct
211{ 403{
212 W w; 404 W w;
213 int events; 405 int events;
214} ANPENDING; 406} ANPENDING;
215 407
408#if EV_USE_INOTIFY
409typedef struct
410{
411 WL head;
412} ANFS;
413#endif
414
216#if EV_MULTIPLICITY 415#if EV_MULTIPLICITY
217 416
218struct ev_loop 417 struct ev_loop
219{ 418 {
419 ev_tstamp ev_rt_now;
420 #define ev_rt_now ((loop)->ev_rt_now)
220# define VAR(name,decl) decl; 421 #define VAR(name,decl) decl;
221# include "ev_vars.h" 422 #include "ev_vars.h"
222};
223# undef VAR 423 #undef VAR
424 };
224# include "ev_wrap.h" 425 #include "ev_wrap.h"
426
427 static struct ev_loop default_loop_struct;
428 struct ev_loop *ev_default_loop_ptr;
225 429
226#else 430#else
227 431
432 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 433 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 434 #include "ev_vars.h"
230# undef VAR 435 #undef VAR
436
437 static int ev_default_loop_ptr;
231 438
232#endif 439#endif
233 440
234/*****************************************************************************/ 441/*****************************************************************************/
235 442
236inline ev_tstamp 443ev_tstamp
237ev_time (void) 444ev_time (void)
238{ 445{
239#if EV_USE_REALTIME 446#if EV_USE_REALTIME
240 struct timespec ts; 447 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 448 clock_gettime (CLOCK_REALTIME, &ts);
245 gettimeofday (&tv, 0); 452 gettimeofday (&tv, 0);
246 return tv.tv_sec + tv.tv_usec * 1e-6; 453 return tv.tv_sec + tv.tv_usec * 1e-6;
247#endif 454#endif
248} 455}
249 456
250inline ev_tstamp 457ev_tstamp inline_size
251get_clock (void) 458get_clock (void)
252{ 459{
253#if EV_USE_MONOTONIC 460#if EV_USE_MONOTONIC
254 if (expect_true (have_monotonic)) 461 if (expect_true (have_monotonic))
255 { 462 {
260#endif 467#endif
261 468
262 return ev_time (); 469 return ev_time ();
263} 470}
264 471
472#if EV_MULTIPLICITY
265ev_tstamp 473ev_tstamp
266ev_now (EV_P) 474ev_now (EV_P)
267{ 475{
268 return rt_now; 476 return ev_rt_now;
269} 477}
478#endif
270 479
271#define array_roundsize(base,n) ((n) | 4 & ~3) 480void
481ev_sleep (ev_tstamp delay)
482{
483 if (delay > 0.)
484 {
485#if EV_USE_NANOSLEEP
486 struct timespec ts;
272 487
488 ts.tv_sec = (time_t)delay;
489 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
490
491 nanosleep (&ts, 0);
492#elif defined(_WIN32)
493 Sleep ((unsigned long)(delay * 1e3));
494#else
495 struct timeval tv;
496
497 tv.tv_sec = (time_t)delay;
498 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
499
500 select (0, 0, 0, 0, &tv);
501#endif
502 }
503}
504
505/*****************************************************************************/
506
507int inline_size
508array_nextsize (int elem, int cur, int cnt)
509{
510 int ncur = cur + 1;
511
512 do
513 ncur <<= 1;
514 while (cnt > ncur);
515
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096)
518 {
519 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
521 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem;
523 }
524
525 return ncur;
526}
527
528static noinline void *
529array_realloc (int elem, void *base, int *cur, int cnt)
530{
531 *cur = array_nextsize (elem, *cur, cnt);
532 return ev_realloc (base, elem * *cur);
533}
534
273#define array_needsize(base,cur,cnt,init) \ 535#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 536 if (expect_false ((cnt) > (cur))) \
275 { \ 537 { \
276 int newcnt = cur; \ 538 int ocur_ = (cur); \
277 do \ 539 (base) = (type *)array_realloc \
278 { \ 540 (sizeof (type), (base), &(cur), (cnt)); \
279 newcnt = array_roundsize (base, newcnt << 1); \ 541 init ((base) + (ocur_), (cur) - ocur_); \
280 } \
281 while ((cnt) > newcnt); \
282 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
284 init (base + cur, newcnt - cur); \
285 cur = newcnt; \
286 } 542 }
287 543
544#if 0
288#define array_slim(stem) \ 545#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 546 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 547 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 548 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 549 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 550 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 551 }
552#endif
295 553
296#define array_free(stem, idx) \ 554#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 555 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298 556
299/*****************************************************************************/ 557/*****************************************************************************/
300 558
301static void 559void noinline
560ev_feed_event (EV_P_ void *w, int revents)
561{
562 W w_ = (W)w;
563 int pri = ABSPRI (w_);
564
565 if (expect_false (w_->pending))
566 pendings [pri][w_->pending - 1].events |= revents;
567 else
568 {
569 w_->pending = ++pendingcnt [pri];
570 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
571 pendings [pri][w_->pending - 1].w = w_;
572 pendings [pri][w_->pending - 1].events = revents;
573 }
574}
575
576void inline_speed
577queue_events (EV_P_ W *events, int eventcnt, int type)
578{
579 int i;
580
581 for (i = 0; i < eventcnt; ++i)
582 ev_feed_event (EV_A_ events [i], type);
583}
584
585/*****************************************************************************/
586
587void inline_size
302anfds_init (ANFD *base, int count) 588anfds_init (ANFD *base, int count)
303{ 589{
304 while (count--) 590 while (count--)
305 { 591 {
306 base->head = 0; 592 base->head = 0;
309 595
310 ++base; 596 ++base;
311 } 597 }
312} 598}
313 599
314static void 600void inline_speed
315event (EV_P_ W w, int events)
316{
317 if (w->pending)
318 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
320 return;
321 }
322
323 w->pending = ++pendingcnt [ABSPRI (w)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
325 pendings [ABSPRI (w)][w->pending - 1].w = w;
326 pendings [ABSPRI (w)][w->pending - 1].events = events;
327}
328
329static void
330queue_events (EV_P_ W *events, int eventcnt, int type)
331{
332 int i;
333
334 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type);
336}
337
338static void
339fd_event (EV_P_ int fd, int events) 601fd_event (EV_P_ int fd, int revents)
340{ 602{
341 ANFD *anfd = anfds + fd; 603 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 604 ev_io *w;
343 605
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 606 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
345 { 607 {
346 int ev = w->events & events; 608 int ev = w->events & revents;
347 609
348 if (ev) 610 if (ev)
349 event (EV_A_ (W)w, ev); 611 ev_feed_event (EV_A_ (W)w, ev);
350 } 612 }
351} 613}
352 614
353/*****************************************************************************/ 615void
616ev_feed_fd_event (EV_P_ int fd, int revents)
617{
618 if (fd >= 0 && fd < anfdmax)
619 fd_event (EV_A_ fd, revents);
620}
354 621
355static void 622void inline_size
356fd_reify (EV_P) 623fd_reify (EV_P)
357{ 624{
358 int i; 625 int i;
359 626
360 for (i = 0; i < fdchangecnt; ++i) 627 for (i = 0; i < fdchangecnt; ++i)
361 { 628 {
362 int fd = fdchanges [i]; 629 int fd = fdchanges [i];
363 ANFD *anfd = anfds + fd; 630 ANFD *anfd = anfds + fd;
364 struct ev_io *w; 631 ev_io *w;
365 632
366 int events = 0; 633 unsigned char events = 0;
367 634
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 635 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
369 events |= w->events; 636 events |= (unsigned char)w->events;
370 637
638#if EV_SELECT_IS_WINSOCKET
639 if (events)
640 {
641 unsigned long argp;
642 #ifdef EV_FD_TO_WIN32_HANDLE
643 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
644 #else
645 anfd->handle = _get_osfhandle (fd);
646 #endif
647 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
648 }
649#endif
650
651 {
652 unsigned char o_events = anfd->events;
653 unsigned char o_reify = anfd->reify;
654
371 anfd->reify = 0; 655 anfd->reify = 0;
372
373 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events; 656 anfd->events = events;
657
658 if (o_events != events || o_reify & EV_IOFDSET)
659 backend_modify (EV_A_ fd, o_events, events);
660 }
375 } 661 }
376 662
377 fdchangecnt = 0; 663 fdchangecnt = 0;
378} 664}
379 665
380static void 666void inline_size
381fd_change (EV_P_ int fd) 667fd_change (EV_P_ int fd, int flags)
382{ 668{
383 if (anfds [fd].reify || fdchangecnt < 0) 669 unsigned char reify = anfds [fd].reify;
384 return;
385
386 anfds [fd].reify = 1; 670 anfds [fd].reify |= flags;
387 671
672 if (expect_true (!reify))
673 {
388 ++fdchangecnt; 674 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 675 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
390 fdchanges [fdchangecnt - 1] = fd; 676 fdchanges [fdchangecnt - 1] = fd;
677 }
391} 678}
392 679
393static void 680void inline_speed
394fd_kill (EV_P_ int fd) 681fd_kill (EV_P_ int fd)
395{ 682{
396 struct ev_io *w; 683 ev_io *w;
397 684
398 while ((w = (struct ev_io *)anfds [fd].head)) 685 while ((w = (ev_io *)anfds [fd].head))
399 { 686 {
400 ev_io_stop (EV_A_ w); 687 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 688 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 689 }
690}
691
692int inline_size
693fd_valid (int fd)
694{
695#ifdef _WIN32
696 return _get_osfhandle (fd) != -1;
697#else
698 return fcntl (fd, F_GETFD) != -1;
699#endif
403} 700}
404 701
405/* called on EBADF to verify fds */ 702/* called on EBADF to verify fds */
406static void 703static void noinline
407fd_ebadf (EV_P) 704fd_ebadf (EV_P)
408{ 705{
409 int fd; 706 int fd;
410 707
411 for (fd = 0; fd < anfdmax; ++fd) 708 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 709 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 710 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 711 fd_kill (EV_A_ fd);
415} 712}
416 713
417/* called on ENOMEM in select/poll to kill some fds and retry */ 714/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 715static void noinline
419fd_enomem (EV_P) 716fd_enomem (EV_P)
420{ 717{
421 int fd; 718 int fd;
422 719
423 for (fd = anfdmax; fd--; ) 720 for (fd = anfdmax; fd--; )
426 fd_kill (EV_A_ fd); 723 fd_kill (EV_A_ fd);
427 return; 724 return;
428 } 725 }
429} 726}
430 727
431/* susually called after fork if method needs to re-arm all fds from scratch */ 728/* usually called after fork if backend needs to re-arm all fds from scratch */
432static void 729static void noinline
433fd_rearm_all (EV_P) 730fd_rearm_all (EV_P)
434{ 731{
435 int fd; 732 int fd;
436 733
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd) 734 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events) 735 if (anfds [fd].events)
440 { 736 {
441 anfds [fd].events = 0; 737 anfds [fd].events = 0;
442 fd_change (EV_A_ fd); 738 fd_change (EV_A_ fd, EV_IOFDSET | 1);
443 } 739 }
444} 740}
445 741
446/*****************************************************************************/ 742/*****************************************************************************/
447 743
448static void 744void inline_speed
449upheap (WT *heap, int k) 745upheap (WT *heap, int k)
450{ 746{
451 WT w = heap [k]; 747 WT w = heap [k];
452 748
453 while (k && heap [k >> 1]->at > w->at) 749 while (k)
454 { 750 {
751 int p = (k - 1) >> 1;
752
753 if (heap [p]->at <= w->at)
754 break;
755
455 heap [k] = heap [k >> 1]; 756 heap [k] = heap [p];
456 ((W)heap [k])->active = k + 1; 757 ((W)heap [k])->active = k + 1;
457 k >>= 1; 758 k = p;
458 } 759 }
459 760
460 heap [k] = w; 761 heap [k] = w;
461 ((W)heap [k])->active = k + 1; 762 ((W)heap [k])->active = k + 1;
462
463} 763}
464 764
465static void 765void inline_speed
466downheap (WT *heap, int N, int k) 766downheap (WT *heap, int N, int k)
467{ 767{
468 WT w = heap [k]; 768 WT w = heap [k];
469 769
470 while (k < (N >> 1)) 770 for (;;)
471 { 771 {
472 int j = k << 1; 772 int c = (k << 1) + 1;
473 773
474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 774 if (c >= N)
475 ++j;
476
477 if (w->at <= heap [j]->at)
478 break; 775 break;
479 776
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0;
779
780 if (w->at <= heap [c]->at)
781 break;
782
480 heap [k] = heap [j]; 783 heap [k] = heap [c];
481 ((W)heap [k])->active = k + 1; 784 ((W)heap [k])->active = k + 1;
785
482 k = j; 786 k = c;
483 } 787 }
484 788
485 heap [k] = w; 789 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 790 ((W)heap [k])->active = k + 1;
487} 791}
488 792
793void inline_size
794adjustheap (WT *heap, int N, int k)
795{
796 upheap (heap, k);
797 downheap (heap, N, k);
798}
799
489/*****************************************************************************/ 800/*****************************************************************************/
490 801
491typedef struct 802typedef struct
492{ 803{
493 WL head; 804 WL head;
494 sig_atomic_t volatile gotsig; 805 EV_ATOMIC_T gotsig;
495} ANSIG; 806} ANSIG;
496 807
497static ANSIG *signals; 808static ANSIG *signals;
498static int signalmax; 809static int signalmax;
499 810
500static int sigpipe [2]; 811static EV_ATOMIC_T gotsig;
501static sig_atomic_t volatile gotsig;
502static struct ev_io sigev;
503 812
504static void 813void inline_size
505signals_init (ANSIG *base, int count) 814signals_init (ANSIG *base, int count)
506{ 815{
507 while (count--) 816 while (count--)
508 { 817 {
509 base->head = 0; 818 base->head = 0;
511 820
512 ++base; 821 ++base;
513 } 822 }
514} 823}
515 824
825/*****************************************************************************/
826
827void inline_speed
828fd_intern (int fd)
829{
830#ifdef _WIN32
831 int arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif
837}
838
839static void noinline
840evpipe_init (EV_P)
841{
842 if (!ev_is_active (&pipeev))
843 {
844#if EV_USE_EVENTFD
845 if ((evfd = eventfd (0, 0)) >= 0)
846 {
847 evpipe [0] = -1;
848 fd_intern (evfd);
849 ev_io_set (&pipeev, evfd, EV_READ);
850 }
851 else
852#endif
853 {
854 while (pipe (evpipe))
855 syserr ("(libev) error creating signal/async pipe");
856
857 fd_intern (evpipe [0]);
858 fd_intern (evpipe [1]);
859 ev_io_set (&pipeev, evpipe [0], EV_READ);
860 }
861
862 ev_io_start (EV_A_ &pipeev);
863 ev_unref (EV_A); /* watcher should not keep loop alive */
864 }
865}
866
867void inline_size
868evpipe_write (EV_P_ EV_ATOMIC_T *flag)
869{
870 if (!*flag)
871 {
872 int old_errno = errno; /* save errno because write might clobber it */
873
874 *flag = 1;
875
876#if EV_USE_EVENTFD
877 if (evfd >= 0)
878 {
879 uint64_t counter = 1;
880 write (evfd, &counter, sizeof (uint64_t));
881 }
882 else
883#endif
884 write (evpipe [1], &old_errno, 1);
885
886 errno = old_errno;
887 }
888}
889
516static void 890static void
891pipecb (EV_P_ ev_io *iow, int revents)
892{
893#if EV_USE_EVENTFD
894 if (evfd >= 0)
895 {
896 uint64_t counter = 1;
897 read (evfd, &counter, sizeof (uint64_t));
898 }
899 else
900#endif
901 {
902 char dummy;
903 read (evpipe [0], &dummy, 1);
904 }
905
906 if (gotsig && ev_is_default_loop (EV_A))
907 {
908 int signum;
909 gotsig = 0;
910
911 for (signum = signalmax; signum--; )
912 if (signals [signum].gotsig)
913 ev_feed_signal_event (EV_A_ signum + 1);
914 }
915
916#if EV_ASYNC_ENABLE
917 if (gotasync)
918 {
919 int i;
920 gotasync = 0;
921
922 for (i = asynccnt; i--; )
923 if (asyncs [i]->sent)
924 {
925 asyncs [i]->sent = 0;
926 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
927 }
928 }
929#endif
930}
931
932/*****************************************************************************/
933
934static void
517sighandler (int signum) 935ev_sighandler (int signum)
518{ 936{
937#if EV_MULTIPLICITY
938 struct ev_loop *loop = &default_loop_struct;
939#endif
940
519#if WIN32 941#if _WIN32
520 signal (signum, sighandler); 942 signal (signum, ev_sighandler);
521#endif 943#endif
522 944
523 signals [signum - 1].gotsig = 1; 945 signals [signum - 1].gotsig = 1;
524 946 evpipe_write (EV_A_ &gotsig);
525 if (!gotsig)
526 {
527 int old_errno = errno;
528 gotsig = 1;
529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
531 }
532} 947}
533 948
534static void 949void noinline
535sigcb (EV_P_ struct ev_io *iow, int revents) 950ev_feed_signal_event (EV_P_ int signum)
536{ 951{
537 WL w; 952 WL w;
953
954#if EV_MULTIPLICITY
955 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
956#endif
957
538 int signum; 958 --signum;
539 959
540 read (sigpipe [0], &revents, 1); 960 if (signum < 0 || signum >= signalmax)
541 gotsig = 0; 961 return;
542 962
543 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig)
545 {
546 signals [signum].gotsig = 0; 963 signals [signum].gotsig = 0;
547 964
548 for (w = signals [signum].head; w; w = w->next) 965 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL); 966 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
550 }
551}
552
553static void
554siginit (EV_P)
555{
556#ifndef WIN32
557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559
560 /* rather than sort out wether we really need nb, set it */
561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
564
565 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 967}
569 968
570/*****************************************************************************/ 969/*****************************************************************************/
571 970
971static WL childs [EV_PID_HASHSIZE];
972
572#ifndef WIN32 973#ifndef _WIN32
573 974
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev; 975static ev_signal childev;
976
977#ifndef WIFCONTINUED
978# define WIFCONTINUED(status) 0
979#endif
980
981void inline_speed
982child_reap (EV_P_ int chain, int pid, int status)
983{
984 ev_child *w;
985 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
986
987 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
988 {
989 if ((w->pid == pid || !w->pid)
990 && (!traced || (w->flags & 1)))
991 {
992 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
993 w->rpid = pid;
994 w->rstatus = status;
995 ev_feed_event (EV_A_ (W)w, EV_CHILD);
996 }
997 }
998}
576 999
577#ifndef WCONTINUED 1000#ifndef WCONTINUED
578# define WCONTINUED 0 1001# define WCONTINUED 0
579#endif 1002#endif
580 1003
581static void 1004static void
582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
583{
584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 1005childcb (EV_P_ ev_signal *sw, int revents)
598{ 1006{
599 int pid, status; 1007 int pid, status;
600 1008
1009 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1010 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 1011 if (!WCONTINUED
1012 || errno != EINVAL
1013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1014 return;
1015
603 /* make sure we are called again until all childs have been reaped */ 1016 /* make sure we are called again until all children have been reaped */
1017 /* we need to do it this way so that the callback gets called before we continue */
604 event (EV_A_ (W)sw, EV_SIGNAL); 1018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 1019
606 child_reap (EV_A_ sw, pid, pid, status); 1020 child_reap (EV_A_ pid, pid, status);
1021 if (EV_PID_HASHSIZE > 1)
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
608 }
609} 1023}
610 1024
611#endif 1025#endif
612 1026
613/*****************************************************************************/ 1027/*****************************************************************************/
614 1028
1029#if EV_USE_PORT
1030# include "ev_port.c"
1031#endif
615#if EV_USE_KQUEUE 1032#if EV_USE_KQUEUE
616# include "ev_kqueue.c" 1033# include "ev_kqueue.c"
617#endif 1034#endif
618#if EV_USE_EPOLL 1035#if EV_USE_EPOLL
619# include "ev_epoll.c" 1036# include "ev_epoll.c"
636{ 1053{
637 return EV_VERSION_MINOR; 1054 return EV_VERSION_MINOR;
638} 1055}
639 1056
640/* return true if we are running with elevated privileges and should ignore env variables */ 1057/* return true if we are running with elevated privileges and should ignore env variables */
641static int 1058int inline_size
642enable_secure (void) 1059enable_secure (void)
643{ 1060{
644#ifdef WIN32 1061#ifdef _WIN32
645 return 0; 1062 return 0;
646#else 1063#else
647 return getuid () != geteuid () 1064 return getuid () != geteuid ()
648 || getgid () != getegid (); 1065 || getgid () != getegid ();
649#endif 1066#endif
650} 1067}
651 1068
652int 1069unsigned int
653ev_method (EV_P) 1070ev_supported_backends (void)
654{ 1071{
655 return method; 1072 unsigned int flags = 0;
656}
657 1073
658static void 1074 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
659loop_init (EV_P_ int methods) 1075 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1076 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1077 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1078 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1079
1080 return flags;
1081}
1082
1083unsigned int
1084ev_recommended_backends (void)
660{ 1085{
661 if (!method) 1086 unsigned int flags = ev_supported_backends ();
1087
1088#ifndef __NetBSD__
1089 /* kqueue is borked on everything but netbsd apparently */
1090 /* it usually doesn't work correctly on anything but sockets and pipes */
1091 flags &= ~EVBACKEND_KQUEUE;
1092#endif
1093#ifdef __APPLE__
1094 // flags &= ~EVBACKEND_KQUEUE; for documentation
1095 flags &= ~EVBACKEND_POLL;
1096#endif
1097
1098 return flags;
1099}
1100
1101unsigned int
1102ev_embeddable_backends (void)
1103{
1104 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1105
1106 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1107 /* please fix it and tell me how to detect the fix */
1108 flags &= ~EVBACKEND_EPOLL;
1109
1110 return flags;
1111}
1112
1113unsigned int
1114ev_backend (EV_P)
1115{
1116 return backend;
1117}
1118
1119unsigned int
1120ev_loop_count (EV_P)
1121{
1122 return loop_count;
1123}
1124
1125void
1126ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1127{
1128 io_blocktime = interval;
1129}
1130
1131void
1132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1133{
1134 timeout_blocktime = interval;
1135}
1136
1137static void noinline
1138loop_init (EV_P_ unsigned int flags)
1139{
1140 if (!backend)
662 { 1141 {
663#if EV_USE_MONOTONIC 1142#if EV_USE_MONOTONIC
664 { 1143 {
665 struct timespec ts; 1144 struct timespec ts;
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1145 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 1146 have_monotonic = 1;
668 } 1147 }
669#endif 1148#endif
670 1149
671 rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 1151 mn_now = get_clock ();
673 now_floor = mn_now; 1152 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 1153 rtmn_diff = ev_rt_now - mn_now;
675 1154
676 if (methods == EVMETHOD_AUTO) 1155 io_blocktime = 0.;
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1156 timeout_blocktime = 0.;
1157 backend = 0;
1158 backend_fd = -1;
1159 gotasync = 0;
1160#if EV_USE_INOTIFY
1161 fs_fd = -2;
1162#endif
1163
1164 /* pid check not overridable via env */
1165#ifndef _WIN32
1166 if (flags & EVFLAG_FORKCHECK)
1167 curpid = getpid ();
1168#endif
1169
1170 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 1173 flags = atoi (getenv ("LIBEV_FLAGS"));
679 else
680 methods = EVMETHOD_ANY;
681 1174
682 method = 0; 1175 if (!(flags & 0x0000ffffUL))
683#if EV_USE_WIN32 1176 flags |= ev_recommended_backends ();
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1177
1178#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
685#endif 1180#endif
686#if EV_USE_KQUEUE 1181#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1182 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
688#endif 1183#endif
689#if EV_USE_EPOLL 1184#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1185 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
691#endif 1186#endif
692#if EV_USE_POLL 1187#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1188 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
694#endif 1189#endif
695#if EV_USE_SELECT 1190#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1191 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
697#endif 1192#endif
698 }
699}
700 1193
701void 1194 ev_init (&pipeev, pipecb);
1195 ev_set_priority (&pipeev, EV_MAXPRI);
1196 }
1197}
1198
1199static void noinline
702loop_destroy (EV_P) 1200loop_destroy (EV_P)
703{ 1201{
704 int i; 1202 int i;
705 1203
1204 if (ev_is_active (&pipeev))
1205 {
1206 ev_ref (EV_A); /* signal watcher */
1207 ev_io_stop (EV_A_ &pipeev);
1208
1209#if EV_USE_EVENTFD
1210 if (evfd >= 0)
1211 close (evfd);
1212#endif
1213
1214 if (evpipe [0] >= 0)
1215 {
1216 close (evpipe [0]);
1217 close (evpipe [1]);
1218 }
1219 }
1220
706#if EV_USE_WIN32 1221#if EV_USE_INOTIFY
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1222 if (fs_fd >= 0)
1223 close (fs_fd);
1224#endif
1225
1226 if (backend_fd >= 0)
1227 close (backend_fd);
1228
1229#if EV_USE_PORT
1230 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
708#endif 1231#endif
709#if EV_USE_KQUEUE 1232#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1233 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
711#endif 1234#endif
712#if EV_USE_EPOLL 1235#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1236 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
714#endif 1237#endif
715#if EV_USE_POLL 1238#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1239 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
717#endif 1240#endif
718#if EV_USE_SELECT 1241#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1242 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
720#endif 1243#endif
721 1244
722 for (i = NUMPRI; i--; ) 1245 for (i = NUMPRI; i--; )
1246 {
723 array_free (pending, [i]); 1247 array_free (pending, [i]);
1248#if EV_IDLE_ENABLE
1249 array_free (idle, [i]);
1250#endif
1251 }
724 1252
1253 ev_free (anfds); anfdmax = 0;
1254
1255 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 1256 array_free (fdchange, EMPTY);
726 array_free (timer, ); 1257 array_free (timer, EMPTY);
1258#if EV_PERIODIC_ENABLE
727 array_free (periodic, ); 1259 array_free (periodic, EMPTY);
728 array_free (idle, ); 1260#endif
1261#if EV_FORK_ENABLE
1262 array_free (fork, EMPTY);
1263#endif
729 array_free (prepare, ); 1264 array_free (prepare, EMPTY);
730 array_free (check, ); 1265 array_free (check, EMPTY);
1266#if EV_ASYNC_ENABLE
1267 array_free (async, EMPTY);
1268#endif
731 1269
732 method = 0; 1270 backend = 0;
733 /*TODO*/
734} 1271}
735 1272
736void 1273void inline_size infy_fork (EV_P);
1274
1275void inline_size
737loop_fork (EV_P) 1276loop_fork (EV_P)
738{ 1277{
739 /*TODO*/ 1278#if EV_USE_PORT
1279 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1280#endif
1281#if EV_USE_KQUEUE
1282 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1283#endif
740#if EV_USE_EPOLL 1284#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1285 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
742#endif 1286#endif
743#if EV_USE_KQUEUE 1287#if EV_USE_INOTIFY
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1288 infy_fork (EV_A);
745#endif 1289#endif
1290
1291 if (ev_is_active (&pipeev))
1292 {
1293 /* this "locks" the handlers against writing to the pipe */
1294 /* while we modify the fd vars */
1295 gotsig = 1;
1296#if EV_ASYNC_ENABLE
1297 gotasync = 1;
1298#endif
1299
1300 ev_ref (EV_A);
1301 ev_io_stop (EV_A_ &pipeev);
1302
1303#if EV_USE_EVENTFD
1304 if (evfd >= 0)
1305 close (evfd);
1306#endif
1307
1308 if (evpipe [0] >= 0)
1309 {
1310 close (evpipe [0]);
1311 close (evpipe [1]);
1312 }
1313
1314 evpipe_init (EV_A);
1315 /* now iterate over everything, in case we missed something */
1316 pipecb (EV_A_ &pipeev, EV_READ);
1317 }
1318
1319 postfork = 0;
746} 1320}
747 1321
748#if EV_MULTIPLICITY 1322#if EV_MULTIPLICITY
749struct ev_loop * 1323struct ev_loop *
750ev_loop_new (int methods) 1324ev_loop_new (unsigned int flags)
751{ 1325{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1326 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753 1327
754 memset (loop, 0, sizeof (struct ev_loop)); 1328 memset (loop, 0, sizeof (struct ev_loop));
755 1329
756 loop_init (EV_A_ methods); 1330 loop_init (EV_A_ flags);
757 1331
758 if (ev_method (EV_A)) 1332 if (ev_backend (EV_A))
759 return loop; 1333 return loop;
760 1334
761 return 0; 1335 return 0;
762} 1336}
763 1337
769} 1343}
770 1344
771void 1345void
772ev_loop_fork (EV_P) 1346ev_loop_fork (EV_P)
773{ 1347{
774 loop_fork (EV_A); 1348 postfork = 1; /* must be in line with ev_default_fork */
775} 1349}
776 1350
777#endif 1351#endif
778 1352
779#if EV_MULTIPLICITY 1353#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 1354struct ev_loop *
1355ev_default_loop_init (unsigned int flags)
784#else 1356#else
785static int default_loop;
786
787int 1357int
1358ev_default_loop (unsigned int flags)
788#endif 1359#endif
789ev_default_loop (int methods)
790{ 1360{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop) 1361 if (!ev_default_loop_ptr)
796 { 1362 {
797#if EV_MULTIPLICITY 1363#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct; 1364 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
799#else 1365#else
800 default_loop = 1; 1366 ev_default_loop_ptr = 1;
801#endif 1367#endif
802 1368
803 loop_init (EV_A_ methods); 1369 loop_init (EV_A_ flags);
804 1370
805 if (ev_method (EV_A)) 1371 if (ev_backend (EV_A))
806 { 1372 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A);
810
811#ifndef WIN32 1373#ifndef _WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 1374 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 1375 ev_set_priority (&childev, EV_MAXPRI);
814 ev_signal_start (EV_A_ &childev); 1376 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1377 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif 1378#endif
817 } 1379 }
818 else 1380 else
819 default_loop = 0; 1381 ev_default_loop_ptr = 0;
820 } 1382 }
821 1383
822 return default_loop; 1384 return ev_default_loop_ptr;
823} 1385}
824 1386
825void 1387void
826ev_default_destroy (void) 1388ev_default_destroy (void)
827{ 1389{
828#if EV_MULTIPLICITY 1390#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 1391 struct ev_loop *loop = ev_default_loop_ptr;
830#endif 1392#endif
831 1393
1394#ifndef _WIN32
832 ev_ref (EV_A); /* child watcher */ 1395 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 1396 ev_signal_stop (EV_A_ &childev);
834 1397#endif
835 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840 1398
841 loop_destroy (EV_A); 1399 loop_destroy (EV_A);
842} 1400}
843 1401
844void 1402void
845ev_default_fork (void) 1403ev_default_fork (void)
846{ 1404{
847#if EV_MULTIPLICITY 1405#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 1406 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 1407#endif
850 1408
851 loop_fork (EV_A); 1409 if (backend)
852 1410 postfork = 1; /* must be in line with ev_loop_fork */
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 1411}
861 1412
862/*****************************************************************************/ 1413/*****************************************************************************/
863 1414
864static void 1415void
1416ev_invoke (EV_P_ void *w, int revents)
1417{
1418 EV_CB_INVOKE ((W)w, revents);
1419}
1420
1421void inline_speed
865call_pending (EV_P) 1422call_pending (EV_P)
866{ 1423{
867 int pri; 1424 int pri;
868 1425
869 for (pri = NUMPRI; pri--; ) 1426 for (pri = NUMPRI; pri--; )
870 while (pendingcnt [pri]) 1427 while (pendingcnt [pri])
871 { 1428 {
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1429 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 1430
874 if (p->w) 1431 if (expect_true (p->w))
875 { 1432 {
1433 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1434
876 p->w->pending = 0; 1435 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 1436 EV_CB_INVOKE (p->w, p->events);
878 } 1437 }
879 } 1438 }
880} 1439}
881 1440
882static void 1441void inline_size
883timers_reify (EV_P) 1442timers_reify (EV_P)
884{ 1443{
885 while (timercnt && ((WT)timers [0])->at <= mn_now) 1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
886 { 1445 {
887 struct ev_timer *w = timers [0]; 1446 ev_timer *w = (ev_timer *)timers [0];
888 1447
889 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
890 1449
891 /* first reschedule or stop timer */ 1450 /* first reschedule or stop timer */
892 if (w->repeat) 1451 if (w->repeat)
893 { 1452 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1454
895 ((WT)w)->at = mn_now + w->repeat; 1455 ((WT)w)->at += w->repeat;
1456 if (((WT)w)->at < mn_now)
1457 ((WT)w)->at = mn_now;
1458
896 downheap ((WT *)timers, timercnt, 0); 1459 downheap (timers, timercnt, 0);
897 } 1460 }
898 else 1461 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1463
901 event (EV_A_ (W)w, EV_TIMEOUT); 1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 1465 }
903} 1466}
904 1467
905static void 1468#if EV_PERIODIC_ENABLE
1469void inline_size
906periodics_reify (EV_P) 1470periodics_reify (EV_P)
907{ 1471{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1473 {
910 struct ev_periodic *w = periodics [0]; 1474 ev_periodic *w = (ev_periodic *)periodics [0];
911 1475
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
913 1477
914 /* first reschedule or stop timer */ 1478 /* first reschedule or stop timer */
915 if (w->interval) 1479 if (w->reschedule_cb)
916 { 1480 {
1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else if (w->interval)
1486 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1490 downheap (periodics, periodiccnt, 0);
920 } 1491 }
921 else 1492 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1494
924 event (EV_A_ (W)w, EV_PERIODIC); 1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1496 }
926} 1497}
927 1498
928static void 1499static void noinline
929periodics_reschedule (EV_P) 1500periodics_reschedule (EV_P)
930{ 1501{
931 int i; 1502 int i;
932 1503
933 /* adjust periodics after time jump */ 1504 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1505 for (i = 0; i < periodiccnt; ++i)
935 { 1506 {
936 struct ev_periodic *w = periodics [i]; 1507 ev_periodic *w = (ev_periodic *)periodics [i];
937 1508
1509 if (w->reschedule_cb)
1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1511 else if (w->interval)
1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 }
1514
1515 /* now rebuild the heap */
1516 for (i = periodiccnt >> 1; i--; )
1517 downheap (periodics, periodiccnt, i);
1518}
1519#endif
1520
1521#if EV_IDLE_ENABLE
1522void inline_size
1523idle_reify (EV_P)
1524{
1525 if (expect_false (idleall))
1526 {
1527 int pri;
1528
1529 for (pri = NUMPRI; pri--; )
939 { 1530 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1531 if (pendingcnt [pri])
1532 break;
941 1533
942 if (fabs (diff) >= 1e-4) 1534 if (idlecnt [pri])
943 { 1535 {
944 ev_periodic_stop (EV_A_ w); 1536 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
945 ev_periodic_start (EV_A_ w); 1537 break;
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 } 1538 }
949 } 1539 }
950 } 1540 }
951} 1541}
1542#endif
952 1543
953inline int 1544void inline_speed
954time_update_monotonic (EV_P) 1545time_update (EV_P_ ev_tstamp max_block)
955{
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969}
970
971static void
972time_update (EV_P)
973{ 1546{
974 int i; 1547 int i;
975 1548
976#if EV_USE_MONOTONIC 1549#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic)) 1550 if (expect_true (have_monotonic))
978 { 1551 {
979 if (time_update_monotonic (EV_A)) 1552 ev_tstamp odiff = rtmn_diff;
1553
1554 mn_now = get_clock ();
1555
1556 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1557 /* interpolate in the meantime */
1558 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
980 { 1559 {
981 ev_tstamp odiff = rtmn_diff; 1560 ev_rt_now = rtmn_diff + mn_now;
1561 return;
1562 }
982 1563
1564 now_floor = mn_now;
1565 ev_rt_now = ev_time ();
1566
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1567 /* loop a few times, before making important decisions.
1568 * on the choice of "4": one iteration isn't enough,
1569 * in case we get preempted during the calls to
1570 * ev_time and get_clock. a second call is almost guaranteed
1571 * to succeed in that case, though. and looping a few more times
1572 * doesn't hurt either as we only do this on time-jumps or
1573 * in the unlikely event of having been preempted here.
1574 */
1575 for (i = 4; --i; )
984 { 1576 {
985 rtmn_diff = rt_now - mn_now; 1577 rtmn_diff = ev_rt_now - mn_now;
986 1578
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1580 return; /* all is well */
989 1581
990 rt_now = ev_time (); 1582 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1583 mn_now = get_clock ();
992 now_floor = mn_now; 1584 now_floor = mn_now;
993 } 1585 }
994 1586
1587# if EV_PERIODIC_ENABLE
1588 periodics_reschedule (EV_A);
1589# endif
1590 /* no timer adjustment, as the monotonic clock doesn't jump */
1591 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1592 }
1593 else
1594#endif
1595 {
1596 ev_rt_now = ev_time ();
1597
1598 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1599 {
1600#if EV_PERIODIC_ENABLE
995 periodics_reschedule (EV_A); 1601 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 1602#endif
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1603 /* adjust timers. this is easy, as the offset is the same for all of them */
1604 for (i = 0; i < timercnt; ++i)
1605 ((WT)timers [i])->at += ev_rt_now - mn_now;
998 } 1606 }
999 }
1000 else
1001#endif
1002 {
1003 rt_now = ev_time ();
1004 1607
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 {
1007 periodics_reschedule (EV_A);
1008
1009 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now;
1012 }
1013
1014 mn_now = rt_now; 1608 mn_now = ev_rt_now;
1015 } 1609 }
1016} 1610}
1017 1611
1018void 1612void
1019ev_ref (EV_P) 1613ev_ref (EV_P)
1030static int loop_done; 1624static int loop_done;
1031 1625
1032void 1626void
1033ev_loop (EV_P_ int flags) 1627ev_loop (EV_P_ int flags)
1034{ 1628{
1035 double block; 1629 loop_done = EVUNLOOP_CANCEL;
1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1630
1631 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1037 1632
1038 do 1633 do
1039 { 1634 {
1635#ifndef _WIN32
1636 if (expect_false (curpid)) /* penalise the forking check even more */
1637 if (expect_false (getpid () != curpid))
1638 {
1639 curpid = getpid ();
1640 postfork = 1;
1641 }
1642#endif
1643
1644#if EV_FORK_ENABLE
1645 /* we might have forked, so queue fork handlers */
1646 if (expect_false (postfork))
1647 if (forkcnt)
1648 {
1649 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1650 call_pending (EV_A);
1651 }
1652#endif
1653
1040 /* queue check watchers (and execute them) */ 1654 /* queue prepare watchers (and execute them) */
1041 if (expect_false (preparecnt)) 1655 if (expect_false (preparecnt))
1042 { 1656 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1657 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1658 call_pending (EV_A);
1045 } 1659 }
1046 1660
1661 if (expect_false (!activecnt))
1662 break;
1663
1664 /* we might have forked, so reify kernel state if necessary */
1665 if (expect_false (postfork))
1666 loop_fork (EV_A);
1667
1047 /* update fd-related kernel structures */ 1668 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1669 fd_reify (EV_A);
1049 1670
1050 /* calculate blocking time */ 1671 /* calculate blocking time */
1672 {
1673 ev_tstamp waittime = 0.;
1674 ev_tstamp sleeptime = 0.;
1051 1675
1052 /* we only need this for !monotonic clockor timers, but as we basically 1676 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 { 1677 {
1060 rt_now = ev_time (); 1678 /* update time to cancel out callback processing overhead */
1061 mn_now = rt_now; 1679 time_update (EV_A_ 1e100);
1062 }
1063 1680
1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.;
1066 else
1067 {
1068 block = MAX_BLOCKTIME; 1681 waittime = MAX_BLOCKTIME;
1069 1682
1070 if (timercnt) 1683 if (timercnt)
1071 { 1684 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1073 if (block > to) block = to; 1686 if (waittime > to) waittime = to;
1074 } 1687 }
1075 1688
1689#if EV_PERIODIC_ENABLE
1076 if (periodiccnt) 1690 if (periodiccnt)
1077 { 1691 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1079 if (block > to) block = to; 1693 if (waittime > to) waittime = to;
1080 } 1694 }
1695#endif
1081 1696
1082 if (block < 0.) block = 0.; 1697 if (expect_false (waittime < timeout_blocktime))
1698 waittime = timeout_blocktime;
1699
1700 sleeptime = waittime - backend_fudge;
1701
1702 if (expect_true (sleeptime > io_blocktime))
1703 sleeptime = io_blocktime;
1704
1705 if (sleeptime)
1706 {
1707 ev_sleep (sleeptime);
1708 waittime -= sleeptime;
1709 }
1083 } 1710 }
1084 1711
1085 method_poll (EV_A_ block); 1712 ++loop_count;
1713 backend_poll (EV_A_ waittime);
1086 1714
1087 /* update rt_now, do magic */ 1715 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1716 time_update (EV_A_ waittime + sleeptime);
1717 }
1089 1718
1090 /* queue pending timers and reschedule them */ 1719 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1720 timers_reify (EV_A); /* relative timers called last */
1721#if EV_PERIODIC_ENABLE
1092 periodics_reify (EV_A); /* absolute timers called first */ 1722 periodics_reify (EV_A); /* absolute timers called first */
1723#endif
1093 1724
1725#if EV_IDLE_ENABLE
1094 /* queue idle watchers unless io or timers are pending */ 1726 /* queue idle watchers unless other events are pending */
1095 if (!pendingcnt) 1727 idle_reify (EV_A);
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1728#endif
1097 1729
1098 /* queue check watchers, to be executed first */ 1730 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1731 if (expect_false (checkcnt))
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1732 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1101 1733
1102 call_pending (EV_A); 1734 call_pending (EV_A);
1103 } 1735 }
1104 while (activecnt && !loop_done); 1736 while (expect_true (
1737 activecnt
1738 && !loop_done
1739 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1740 ));
1105 1741
1106 if (loop_done != 2) 1742 if (loop_done == EVUNLOOP_ONE)
1107 loop_done = 0; 1743 loop_done = EVUNLOOP_CANCEL;
1108} 1744}
1109 1745
1110void 1746void
1111ev_unloop (EV_P_ int how) 1747ev_unloop (EV_P_ int how)
1112{ 1748{
1113 loop_done = how; 1749 loop_done = how;
1114} 1750}
1115 1751
1116/*****************************************************************************/ 1752/*****************************************************************************/
1117 1753
1118inline void 1754void inline_size
1119wlist_add (WL *head, WL elem) 1755wlist_add (WL *head, WL elem)
1120{ 1756{
1121 elem->next = *head; 1757 elem->next = *head;
1122 *head = elem; 1758 *head = elem;
1123} 1759}
1124 1760
1125inline void 1761void inline_size
1126wlist_del (WL *head, WL elem) 1762wlist_del (WL *head, WL elem)
1127{ 1763{
1128 while (*head) 1764 while (*head)
1129 { 1765 {
1130 if (*head == elem) 1766 if (*head == elem)
1135 1771
1136 head = &(*head)->next; 1772 head = &(*head)->next;
1137 } 1773 }
1138} 1774}
1139 1775
1140inline void 1776void inline_speed
1141ev_clear_pending (EV_P_ W w) 1777clear_pending (EV_P_ W w)
1142{ 1778{
1143 if (w->pending) 1779 if (w->pending)
1144 { 1780 {
1145 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1781 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1146 w->pending = 0; 1782 w->pending = 0;
1147 } 1783 }
1148} 1784}
1149 1785
1150inline void 1786int
1787ev_clear_pending (EV_P_ void *w)
1788{
1789 W w_ = (W)w;
1790 int pending = w_->pending;
1791
1792 if (expect_true (pending))
1793 {
1794 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1795 w_->pending = 0;
1796 p->w = 0;
1797 return p->events;
1798 }
1799 else
1800 return 0;
1801}
1802
1803void inline_size
1804pri_adjust (EV_P_ W w)
1805{
1806 int pri = w->priority;
1807 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1808 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1809 w->priority = pri;
1810}
1811
1812void inline_speed
1151ev_start (EV_P_ W w, int active) 1813ev_start (EV_P_ W w, int active)
1152{ 1814{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1815 pri_adjust (EV_A_ w);
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
1156 w->active = active; 1816 w->active = active;
1157 ev_ref (EV_A); 1817 ev_ref (EV_A);
1158} 1818}
1159 1819
1160inline void 1820void inline_size
1161ev_stop (EV_P_ W w) 1821ev_stop (EV_P_ W w)
1162{ 1822{
1163 ev_unref (EV_A); 1823 ev_unref (EV_A);
1164 w->active = 0; 1824 w->active = 0;
1165} 1825}
1166 1826
1167/*****************************************************************************/ 1827/*****************************************************************************/
1168 1828
1169void 1829void noinline
1170ev_io_start (EV_P_ struct ev_io *w) 1830ev_io_start (EV_P_ ev_io *w)
1171{ 1831{
1172 int fd = w->fd; 1832 int fd = w->fd;
1173 1833
1174 if (ev_is_active (w)) 1834 if (expect_false (ev_is_active (w)))
1175 return; 1835 return;
1176 1836
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1837 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1838
1179 ev_start (EV_A_ (W)w, 1); 1839 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1840 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1841 wlist_add (&anfds[fd].head, (WL)w);
1182 1842
1183 fd_change (EV_A_ fd); 1843 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1844 w->events &= ~EV_IOFDSET;
1184} 1845}
1185 1846
1186void 1847void noinline
1187ev_io_stop (EV_P_ struct ev_io *w) 1848ev_io_stop (EV_P_ ev_io *w)
1188{ 1849{
1189 ev_clear_pending (EV_A_ (W)w); 1850 clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 1851 if (expect_false (!ev_is_active (w)))
1191 return; 1852 return;
1192 1853
1854 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1855
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1856 wlist_del (&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 1857 ev_stop (EV_A_ (W)w);
1195 1858
1196 fd_change (EV_A_ w->fd); 1859 fd_change (EV_A_ w->fd, 1);
1197} 1860}
1198 1861
1199void 1862void noinline
1200ev_timer_start (EV_P_ struct ev_timer *w) 1863ev_timer_start (EV_P_ ev_timer *w)
1201{ 1864{
1202 if (ev_is_active (w)) 1865 if (expect_false (ev_is_active (w)))
1203 return; 1866 return;
1204 1867
1205 ((WT)w)->at += mn_now; 1868 ((WT)w)->at += mn_now;
1206 1869
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1871
1209 ev_start (EV_A_ (W)w, ++timercnt); 1872 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1211 timers [timercnt - 1] = w; 1874 timers [timercnt - 1] = (WT)w;
1212 upheap ((WT *)timers, timercnt - 1); 1875 upheap (timers, timercnt - 1);
1213 1876
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1215} 1878}
1216 1879
1217void 1880void noinline
1218ev_timer_stop (EV_P_ struct ev_timer *w) 1881ev_timer_stop (EV_P_ ev_timer *w)
1219{ 1882{
1220 ev_clear_pending (EV_A_ (W)w); 1883 clear_pending (EV_A_ (W)w);
1221 if (!ev_is_active (w)) 1884 if (expect_false (!ev_is_active (w)))
1222 return; 1885 return;
1223 1886
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1225 1888
1226 if (((W)w)->active < timercnt--) 1889 {
1890 int active = ((W)w)->active;
1891
1892 if (expect_true (--active < --timercnt))
1227 { 1893 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 1894 timers [active] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1895 adjustheap (timers, timercnt, active);
1230 } 1896 }
1897 }
1231 1898
1232 ((WT)w)->at = w->repeat; 1899 ((WT)w)->at -= mn_now;
1233 1900
1234 ev_stop (EV_A_ (W)w); 1901 ev_stop (EV_A_ (W)w);
1235} 1902}
1236 1903
1237void 1904void noinline
1238ev_timer_again (EV_P_ struct ev_timer *w) 1905ev_timer_again (EV_P_ ev_timer *w)
1239{ 1906{
1240 if (ev_is_active (w)) 1907 if (ev_is_active (w))
1241 { 1908 {
1242 if (w->repeat) 1909 if (w->repeat)
1243 { 1910 {
1244 ((WT)w)->at = mn_now + w->repeat; 1911 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1912 adjustheap (timers, timercnt, ((W)w)->active - 1);
1246 } 1913 }
1247 else 1914 else
1248 ev_timer_stop (EV_A_ w); 1915 ev_timer_stop (EV_A_ w);
1249 } 1916 }
1250 else if (w->repeat) 1917 else if (w->repeat)
1918 {
1919 w->at = w->repeat;
1251 ev_timer_start (EV_A_ w); 1920 ev_timer_start (EV_A_ w);
1921 }
1252} 1922}
1253 1923
1254void 1924#if EV_PERIODIC_ENABLE
1925void noinline
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1926ev_periodic_start (EV_P_ ev_periodic *w)
1256{ 1927{
1257 if (ev_is_active (w)) 1928 if (expect_false (ev_is_active (w)))
1258 return; 1929 return;
1259 1930
1931 if (w->reschedule_cb)
1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval)
1934 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1936 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1938 }
1939 else
1940 ((WT)w)->at = w->offset;
1265 1941
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1942 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1268 periodics [periodiccnt - 1] = w; 1944 periodics [periodiccnt - 1] = (WT)w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1945 upheap (periodics, periodiccnt - 1);
1270 1946
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1272} 1948}
1273 1949
1274void 1950void noinline
1275ev_periodic_stop (EV_P_ struct ev_periodic *w) 1951ev_periodic_stop (EV_P_ ev_periodic *w)
1276{ 1952{
1277 ev_clear_pending (EV_A_ (W)w); 1953 clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w)) 1954 if (expect_false (!ev_is_active (w)))
1279 return; 1955 return;
1280 1956
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1282 1958
1283 if (((W)w)->active < periodiccnt--) 1959 {
1960 int active = ((W)w)->active;
1961
1962 if (expect_true (--active < --periodiccnt))
1284 { 1963 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1964 periodics [active] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1965 adjustheap (periodics, periodiccnt, active);
1287 } 1966 }
1967 }
1288 1968
1289 ev_stop (EV_A_ (W)w); 1969 ev_stop (EV_A_ (W)w);
1290} 1970}
1291 1971
1292void 1972void noinline
1293ev_idle_start (EV_P_ struct ev_idle *w) 1973ev_periodic_again (EV_P_ ev_periodic *w)
1294{ 1974{
1295 if (ev_is_active (w)) 1975 /* TODO: use adjustheap and recalculation */
1296 return;
1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w); 1976 ev_periodic_stop (EV_A_ w);
1977 ev_periodic_start (EV_A_ w);
1312} 1978}
1313 1979#endif
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357 1980
1358#ifndef SA_RESTART 1981#ifndef SA_RESTART
1359# define SA_RESTART 0 1982# define SA_RESTART 0
1360#endif 1983#endif
1361 1984
1362void 1985void noinline
1363ev_signal_start (EV_P_ struct ev_signal *w) 1986ev_signal_start (EV_P_ ev_signal *w)
1364{ 1987{
1365#if EV_MULTIPLICITY 1988#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1989 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1367#endif 1990#endif
1368 if (ev_is_active (w)) 1991 if (expect_false (ev_is_active (w)))
1369 return; 1992 return;
1370 1993
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1994 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1995
1996 evpipe_init (EV_A);
1997
1998 {
1999#ifndef _WIN32
2000 sigset_t full, prev;
2001 sigfillset (&full);
2002 sigprocmask (SIG_SETMASK, &full, &prev);
2003#endif
2004
2005 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2006
2007#ifndef _WIN32
2008 sigprocmask (SIG_SETMASK, &prev, 0);
2009#endif
2010 }
2011
1373 ev_start (EV_A_ (W)w, 1); 2012 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2013 wlist_add (&signals [w->signum - 1].head, (WL)w);
1376 2014
1377 if (!((WL)w)->next) 2015 if (!((WL)w)->next)
1378 { 2016 {
1379#if WIN32 2017#if _WIN32
1380 signal (w->signum, sighandler); 2018 signal (w->signum, ev_sighandler);
1381#else 2019#else
1382 struct sigaction sa; 2020 struct sigaction sa;
1383 sa.sa_handler = sighandler; 2021 sa.sa_handler = ev_sighandler;
1384 sigfillset (&sa.sa_mask); 2022 sigfillset (&sa.sa_mask);
1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2023 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1386 sigaction (w->signum, &sa, 0); 2024 sigaction (w->signum, &sa, 0);
1387#endif 2025#endif
1388 } 2026 }
1389} 2027}
1390 2028
1391void 2029void noinline
1392ev_signal_stop (EV_P_ struct ev_signal *w) 2030ev_signal_stop (EV_P_ ev_signal *w)
1393{ 2031{
1394 ev_clear_pending (EV_A_ (W)w); 2032 clear_pending (EV_A_ (W)w);
1395 if (!ev_is_active (w)) 2033 if (expect_false (!ev_is_active (w)))
1396 return; 2034 return;
1397 2035
1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2036 wlist_del (&signals [w->signum - 1].head, (WL)w);
1399 ev_stop (EV_A_ (W)w); 2037 ev_stop (EV_A_ (W)w);
1400 2038
1401 if (!signals [w->signum - 1].head) 2039 if (!signals [w->signum - 1].head)
1402 signal (w->signum, SIG_DFL); 2040 signal (w->signum, SIG_DFL);
1403} 2041}
1404 2042
1405void 2043void
1406ev_child_start (EV_P_ struct ev_child *w) 2044ev_child_start (EV_P_ ev_child *w)
1407{ 2045{
1408#if EV_MULTIPLICITY 2046#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2047 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1410#endif 2048#endif
1411 if (ev_is_active (w)) 2049 if (expect_false (ev_is_active (w)))
1412 return; 2050 return;
1413 2051
1414 ev_start (EV_A_ (W)w, 1); 2052 ev_start (EV_A_ (W)w, 1);
1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2053 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1416} 2054}
1417 2055
1418void 2056void
1419ev_child_stop (EV_P_ struct ev_child *w) 2057ev_child_stop (EV_P_ ev_child *w)
1420{ 2058{
1421 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 2060 if (expect_false (!ev_is_active (w)))
1423 return; 2061 return;
1424 2062
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2063 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1427} 2065}
1428 2066
2067#if EV_STAT_ENABLE
2068
2069# ifdef _WIN32
2070# undef lstat
2071# define lstat(a,b) _stati64 (a,b)
2072# endif
2073
2074#define DEF_STAT_INTERVAL 5.0074891
2075#define MIN_STAT_INTERVAL 0.1074891
2076
2077static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2078
2079#if EV_USE_INOTIFY
2080# define EV_INOTIFY_BUFSIZE 8192
2081
2082static void noinline
2083infy_add (EV_P_ ev_stat *w)
2084{
2085 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2086
2087 if (w->wd < 0)
2088 {
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2090
2091 /* monitor some parent directory for speedup hints */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 {
2094 char path [4096];
2095 strcpy (path, w->path);
2096
2097 do
2098 {
2099 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2100 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2101
2102 char *pend = strrchr (path, '/');
2103
2104 if (!pend)
2105 break; /* whoops, no '/', complain to your admin */
2106
2107 *pend = 0;
2108 w->wd = inotify_add_watch (fs_fd, path, mask);
2109 }
2110 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2111 }
2112 }
2113 else
2114 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2115
2116 if (w->wd >= 0)
2117 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2118}
2119
2120static void noinline
2121infy_del (EV_P_ ev_stat *w)
2122{
2123 int slot;
2124 int wd = w->wd;
2125
2126 if (wd < 0)
2127 return;
2128
2129 w->wd = -2;
2130 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2131 wlist_del (&fs_hash [slot].head, (WL)w);
2132
2133 /* remove this watcher, if others are watching it, they will rearm */
2134 inotify_rm_watch (fs_fd, wd);
2135}
2136
2137static void noinline
2138infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2139{
2140 if (slot < 0)
2141 /* overflow, need to check for all hahs slots */
2142 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2143 infy_wd (EV_A_ slot, wd, ev);
2144 else
2145 {
2146 WL w_;
2147
2148 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2149 {
2150 ev_stat *w = (ev_stat *)w_;
2151 w_ = w_->next; /* lets us remove this watcher and all before it */
2152
2153 if (w->wd == wd || wd == -1)
2154 {
2155 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2156 {
2157 w->wd = -1;
2158 infy_add (EV_A_ w); /* re-add, no matter what */
2159 }
2160
2161 stat_timer_cb (EV_A_ &w->timer, 0);
2162 }
2163 }
2164 }
2165}
2166
2167static void
2168infy_cb (EV_P_ ev_io *w, int revents)
2169{
2170 char buf [EV_INOTIFY_BUFSIZE];
2171 struct inotify_event *ev = (struct inotify_event *)buf;
2172 int ofs;
2173 int len = read (fs_fd, buf, sizeof (buf));
2174
2175 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2176 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2177}
2178
2179void inline_size
2180infy_init (EV_P)
2181{
2182 if (fs_fd != -2)
2183 return;
2184
2185 fs_fd = inotify_init ();
2186
2187 if (fs_fd >= 0)
2188 {
2189 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2190 ev_set_priority (&fs_w, EV_MAXPRI);
2191 ev_io_start (EV_A_ &fs_w);
2192 }
2193}
2194
2195void inline_size
2196infy_fork (EV_P)
2197{
2198 int slot;
2199
2200 if (fs_fd < 0)
2201 return;
2202
2203 close (fs_fd);
2204 fs_fd = inotify_init ();
2205
2206 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2207 {
2208 WL w_ = fs_hash [slot].head;
2209 fs_hash [slot].head = 0;
2210
2211 while (w_)
2212 {
2213 ev_stat *w = (ev_stat *)w_;
2214 w_ = w_->next; /* lets us add this watcher */
2215
2216 w->wd = -1;
2217
2218 if (fs_fd >= 0)
2219 infy_add (EV_A_ w); /* re-add, no matter what */
2220 else
2221 ev_timer_start (EV_A_ &w->timer);
2222 }
2223
2224 }
2225}
2226
2227#endif
2228
2229void
2230ev_stat_stat (EV_P_ ev_stat *w)
2231{
2232 if (lstat (w->path, &w->attr) < 0)
2233 w->attr.st_nlink = 0;
2234 else if (!w->attr.st_nlink)
2235 w->attr.st_nlink = 1;
2236}
2237
2238static void noinline
2239stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2240{
2241 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2242
2243 /* we copy this here each the time so that */
2244 /* prev has the old value when the callback gets invoked */
2245 w->prev = w->attr;
2246 ev_stat_stat (EV_A_ w);
2247
2248 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2249 if (
2250 w->prev.st_dev != w->attr.st_dev
2251 || w->prev.st_ino != w->attr.st_ino
2252 || w->prev.st_mode != w->attr.st_mode
2253 || w->prev.st_nlink != w->attr.st_nlink
2254 || w->prev.st_uid != w->attr.st_uid
2255 || w->prev.st_gid != w->attr.st_gid
2256 || w->prev.st_rdev != w->attr.st_rdev
2257 || w->prev.st_size != w->attr.st_size
2258 || w->prev.st_atime != w->attr.st_atime
2259 || w->prev.st_mtime != w->attr.st_mtime
2260 || w->prev.st_ctime != w->attr.st_ctime
2261 ) {
2262 #if EV_USE_INOTIFY
2263 infy_del (EV_A_ w);
2264 infy_add (EV_A_ w);
2265 ev_stat_stat (EV_A_ w); /* avoid race... */
2266 #endif
2267
2268 ev_feed_event (EV_A_ w, EV_STAT);
2269 }
2270}
2271
2272void
2273ev_stat_start (EV_P_ ev_stat *w)
2274{
2275 if (expect_false (ev_is_active (w)))
2276 return;
2277
2278 /* since we use memcmp, we need to clear any padding data etc. */
2279 memset (&w->prev, 0, sizeof (ev_statdata));
2280 memset (&w->attr, 0, sizeof (ev_statdata));
2281
2282 ev_stat_stat (EV_A_ w);
2283
2284 if (w->interval < MIN_STAT_INTERVAL)
2285 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2286
2287 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2288 ev_set_priority (&w->timer, ev_priority (w));
2289
2290#if EV_USE_INOTIFY
2291 infy_init (EV_A);
2292
2293 if (fs_fd >= 0)
2294 infy_add (EV_A_ w);
2295 else
2296#endif
2297 ev_timer_start (EV_A_ &w->timer);
2298
2299 ev_start (EV_A_ (W)w, 1);
2300}
2301
2302void
2303ev_stat_stop (EV_P_ ev_stat *w)
2304{
2305 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w)))
2307 return;
2308
2309#if EV_USE_INOTIFY
2310 infy_del (EV_A_ w);
2311#endif
2312 ev_timer_stop (EV_A_ &w->timer);
2313
2314 ev_stop (EV_A_ (W)w);
2315}
2316#endif
2317
2318#if EV_IDLE_ENABLE
2319void
2320ev_idle_start (EV_P_ ev_idle *w)
2321{
2322 if (expect_false (ev_is_active (w)))
2323 return;
2324
2325 pri_adjust (EV_A_ (W)w);
2326
2327 {
2328 int active = ++idlecnt [ABSPRI (w)];
2329
2330 ++idleall;
2331 ev_start (EV_A_ (W)w, active);
2332
2333 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2334 idles [ABSPRI (w)][active - 1] = w;
2335 }
2336}
2337
2338void
2339ev_idle_stop (EV_P_ ev_idle *w)
2340{
2341 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w)))
2343 return;
2344
2345 {
2346 int active = ((W)w)->active;
2347
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2350
2351 ev_stop (EV_A_ (W)w);
2352 --idleall;
2353 }
2354}
2355#endif
2356
2357void
2358ev_prepare_start (EV_P_ ev_prepare *w)
2359{
2360 if (expect_false (ev_is_active (w)))
2361 return;
2362
2363 ev_start (EV_A_ (W)w, ++preparecnt);
2364 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2365 prepares [preparecnt - 1] = w;
2366}
2367
2368void
2369ev_prepare_stop (EV_P_ ev_prepare *w)
2370{
2371 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w)))
2373 return;
2374
2375 {
2376 int active = ((W)w)->active;
2377 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active;
2379 }
2380
2381 ev_stop (EV_A_ (W)w);
2382}
2383
2384void
2385ev_check_start (EV_P_ ev_check *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++checkcnt);
2391 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2392 checks [checkcnt - 1] = w;
2393}
2394
2395void
2396ev_check_stop (EV_P_ ev_check *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ((W)w)->active;
2404 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active;
2406 }
2407
2408 ev_stop (EV_A_ (W)w);
2409}
2410
2411#if EV_EMBED_ENABLE
2412void noinline
2413ev_embed_sweep (EV_P_ ev_embed *w)
2414{
2415 ev_loop (w->other, EVLOOP_NONBLOCK);
2416}
2417
2418static void
2419embed_io_cb (EV_P_ ev_io *io, int revents)
2420{
2421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2422
2423 if (ev_cb (w))
2424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2425 else
2426 ev_loop (w->other, EVLOOP_NONBLOCK);
2427}
2428
2429static void
2430embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2431{
2432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2433
2434 {
2435 struct ev_loop *loop = w->other;
2436
2437 while (fdchangecnt)
2438 {
2439 fd_reify (EV_A);
2440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2441 }
2442 }
2443}
2444
2445#if 0
2446static void
2447embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2448{
2449 ev_idle_stop (EV_A_ idle);
2450}
2451#endif
2452
2453void
2454ev_embed_start (EV_P_ ev_embed *w)
2455{
2456 if (expect_false (ev_is_active (w)))
2457 return;
2458
2459 {
2460 struct ev_loop *loop = w->other;
2461 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2462 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2463 }
2464
2465 ev_set_priority (&w->io, ev_priority (w));
2466 ev_io_start (EV_A_ &w->io);
2467
2468 ev_prepare_init (&w->prepare, embed_prepare_cb);
2469 ev_set_priority (&w->prepare, EV_MINPRI);
2470 ev_prepare_start (EV_A_ &w->prepare);
2471
2472 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2473
2474 ev_start (EV_A_ (W)w, 1);
2475}
2476
2477void
2478ev_embed_stop (EV_P_ ev_embed *w)
2479{
2480 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w)))
2482 return;
2483
2484 ev_io_stop (EV_A_ &w->io);
2485 ev_prepare_stop (EV_A_ &w->prepare);
2486
2487 ev_stop (EV_A_ (W)w);
2488}
2489#endif
2490
2491#if EV_FORK_ENABLE
2492void
2493ev_fork_start (EV_P_ ev_fork *w)
2494{
2495 if (expect_false (ev_is_active (w)))
2496 return;
2497
2498 ev_start (EV_A_ (W)w, ++forkcnt);
2499 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2500 forks [forkcnt - 1] = w;
2501}
2502
2503void
2504ev_fork_stop (EV_P_ ev_fork *w)
2505{
2506 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w)))
2508 return;
2509
2510 {
2511 int active = ((W)w)->active;
2512 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active;
2514 }
2515
2516 ev_stop (EV_A_ (W)w);
2517}
2518#endif
2519
2520#if EV_ASYNC_ENABLE
2521void
2522ev_async_start (EV_P_ ev_async *w)
2523{
2524 if (expect_false (ev_is_active (w)))
2525 return;
2526
2527 evpipe_init (EV_A);
2528
2529 ev_start (EV_A_ (W)w, ++asynccnt);
2530 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2531 asyncs [asynccnt - 1] = w;
2532}
2533
2534void
2535ev_async_stop (EV_P_ ev_async *w)
2536{
2537 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w)))
2539 return;
2540
2541 {
2542 int active = ((W)w)->active;
2543 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active;
2545 }
2546
2547 ev_stop (EV_A_ (W)w);
2548}
2549
2550void
2551ev_async_send (EV_P_ ev_async *w)
2552{
2553 w->sent = 1;
2554 evpipe_write (EV_A_ &gotasync);
2555}
2556#endif
2557
1429/*****************************************************************************/ 2558/*****************************************************************************/
1430 2559
1431struct ev_once 2560struct ev_once
1432{ 2561{
1433 struct ev_io io; 2562 ev_io io;
1434 struct ev_timer to; 2563 ev_timer to;
1435 void (*cb)(int revents, void *arg); 2564 void (*cb)(int revents, void *arg);
1436 void *arg; 2565 void *arg;
1437}; 2566};
1438 2567
1439static void 2568static void
1448 2577
1449 cb (revents, arg); 2578 cb (revents, arg);
1450} 2579}
1451 2580
1452static void 2581static void
1453once_cb_io (EV_P_ struct ev_io *w, int revents) 2582once_cb_io (EV_P_ ev_io *w, int revents)
1454{ 2583{
1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1456} 2585}
1457 2586
1458static void 2587static void
1459once_cb_to (EV_P_ struct ev_timer *w, int revents) 2588once_cb_to (EV_P_ ev_timer *w, int revents)
1460{ 2589{
1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2590 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1462} 2591}
1463 2592
1464void 2593void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2594ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 2595{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 2596 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 2597
1469 if (!once) 2598 if (expect_false (!once))
2599 {
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2600 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 2601 return;
1472 { 2602 }
2603
1473 once->cb = cb; 2604 once->cb = cb;
1474 once->arg = arg; 2605 once->arg = arg;
1475 2606
1476 ev_watcher_init (&once->io, once_cb_io); 2607 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 2608 if (fd >= 0)
1478 { 2609 {
1479 ev_io_set (&once->io, fd, events); 2610 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 2611 ev_io_start (EV_A_ &once->io);
1481 } 2612 }
1482 2613
1483 ev_watcher_init (&once->to, once_cb_to); 2614 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 2615 if (timeout >= 0.)
1485 { 2616 {
1486 ev_timer_set (&once->to, timeout, 0.); 2617 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 2618 ev_timer_start (EV_A_ &once->to);
1488 }
1489 } 2619 }
1490} 2620}
1491 2621
2622#if EV_MULTIPLICITY
2623 #include "ev_wrap.h"
2624#endif
2625
2626#ifdef __cplusplus
2627}
2628#endif
2629

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines