ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.293 by root, Mon Jun 29 18:46:52 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
55#endif 146#endif
56 147
57#include <math.h> 148#include <math.h>
58#include <stdlib.h> 149#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 150#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 151#include <stddef.h>
63 152
64#include <stdio.h> 153#include <stdio.h>
65 154
66#include <assert.h> 155#include <assert.h>
67#include <errno.h> 156#include <errno.h>
68#include <sys/types.h> 157#include <sys/types.h>
158#include <time.h>
159
160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
69#ifndef WIN32 168#ifndef _WIN32
169# include <sys/time.h>
70# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
71#endif 178# endif
72#include <sys/time.h> 179#endif
73#include <time.h>
74 180
75/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
76 190
77#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
78# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
79#endif 209#endif
80 210
81#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
83#endif 213#endif
84 214
85#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
87#endif 221#endif
88 222
89#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
90# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
91#endif 229#endif
92 230
93#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
95#endif 233#endif
96 234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
97#ifndef EV_USE_WIN32 239#ifndef EV_USE_INOTIFY
98# ifdef WIN32 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 241# define EV_USE_INOTIFY 1
100# else 242# else
101# define EV_USE_WIN32 0 243# define EV_USE_INOTIFY 0
102# endif 244# endif
103#endif 245#endif
104 246
105#ifndef EV_USE_REALTIME 247#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
107#endif 252# endif
253#endif
108 254
109/**/ 255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 304
111#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
114#endif 308#endif
116#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
119#endif 313#endif
120 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
121/**/ 353/**/
122 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 374
128#include "ev.h"
129
130#if __GNUC__ >= 3 375#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 377# define noinline __attribute__ ((noinline))
133#else 378#else
134# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
135# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
136#endif 384#endif
137 385
138#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
140 395
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 398
399#define EMPTY /* required for microsofts broken pseudo-c compiler */
400#define EMPTY2(a,b) /* used to suppress some warnings */
401
144typedef struct ev_watcher *W; 402typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
147 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
149 418
150#if WIN32 419#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 420# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 421#endif
155 422
156/*****************************************************************************/ 423/*****************************************************************************/
157 424
158static void (*syserr_cb)(void); 425static void (*syserr_cb)(const char *msg);
159 426
160void ev_set_syserr_cb (void (*cb)(void)) 427void
428ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 429{
162 syserr_cb = cb; 430 syserr_cb = cb;
163} 431}
164 432
165static void 433static void noinline
166syserr (void) 434ev_syserr (const char *msg)
167{ 435{
436 if (!msg)
437 msg = "(libev) system error";
438
168 if (syserr_cb) 439 if (syserr_cb)
169 syserr_cb (); 440 syserr_cb (msg);
170 else 441 else
171 { 442 {
172 perror ("libev"); 443 perror (msg);
173 abort (); 444 abort ();
174 } 445 }
175} 446}
176 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
177static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
178 464
465void
179void ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
180{ 467{
181 alloc = cb; 468 alloc = cb;
182} 469}
183 470
184static void * 471inline_speed void *
185ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
186{ 473{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
188 475
189 if (!ptr && size) 476 if (!ptr && size)
190 { 477 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort (); 479 abort ();
198#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
200 487
201/*****************************************************************************/ 488/*****************************************************************************/
202 489
490/* file descriptor info structure */
203typedef struct 491typedef struct
204{ 492{
205 WL head; 493 WL head;
206 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
207 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
501#if EV_SELECT_IS_WINSOCKET
502 SOCKET handle;
503#endif
208} ANFD; 504} ANFD;
209 505
506/* stores the pending event set for a given watcher */
210typedef struct 507typedef struct
211{ 508{
212 W w; 509 W w;
213 int events; 510 int events; /* the pending event set for the given watcher */
214} ANPENDING; 511} ANPENDING;
215 512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
540
216#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
217 542
218struct ev_loop 543 struct ev_loop
219{ 544 {
545 ev_tstamp ev_rt_now;
546 #define ev_rt_now ((loop)->ev_rt_now)
220# define VAR(name,decl) decl; 547 #define VAR(name,decl) decl;
221# include "ev_vars.h" 548 #include "ev_vars.h"
222};
223# undef VAR 549 #undef VAR
550 };
224# include "ev_wrap.h" 551 #include "ev_wrap.h"
552
553 static struct ev_loop default_loop_struct;
554 struct ev_loop *ev_default_loop_ptr;
225 555
226#else 556#else
227 557
558 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 559 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 560 #include "ev_vars.h"
230# undef VAR 561 #undef VAR
562
563 static int ev_default_loop_ptr;
231 564
232#endif 565#endif
233 566
234/*****************************************************************************/ 567/*****************************************************************************/
235 568
236inline ev_tstamp 569#ifndef EV_HAVE_EV_TIME
570ev_tstamp
237ev_time (void) 571ev_time (void)
238{ 572{
239#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
240 struct timespec ts; 576 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
242 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
243#else 579 }
580#endif
581
244 struct timeval tv; 582 struct timeval tv;
245 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
246 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
247#endif
248} 585}
586#endif
249 587
250inline ev_tstamp 588inline_size ev_tstamp
251get_clock (void) 589get_clock (void)
252{ 590{
253#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
254 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
255 { 593 {
260#endif 598#endif
261 599
262 return ev_time (); 600 return ev_time ();
263} 601}
264 602
603#if EV_MULTIPLICITY
265ev_tstamp 604ev_tstamp
266ev_now (EV_P) 605ev_now (EV_P)
267{ 606{
268 return rt_now; 607 return ev_rt_now;
269} 608}
609#endif
270 610
271#define array_roundsize(base,n) ((n) | 4 & ~3) 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
272 618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
646array_nextsize (int elem, int cur, int cnt)
647{
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664}
665
666static noinline void *
667array_realloc (int elem, void *base, int *cur, int cnt)
668{
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
675
273#define array_needsize(base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 677 if (expect_false ((cnt) > (cur))) \
275 { \ 678 { \
276 int newcnt = cur; \ 679 int ocur_ = (cur); \
277 do \ 680 (base) = (type *)array_realloc \
278 { \ 681 (sizeof (type), (base), &(cur), (cnt)); \
279 newcnt = array_roundsize (base, newcnt << 1); \ 682 init ((base) + (ocur_), (cur) - ocur_); \
280 } \
281 while ((cnt) > newcnt); \
282 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
284 init (base + cur, newcnt - cur); \
285 cur = newcnt; \
286 } 683 }
287 684
685#if 0
288#define array_slim(stem) \ 686#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 688 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 689 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 692 }
693#endif
295 694
296#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
298 697
299/*****************************************************************************/ 698/*****************************************************************************/
300 699
301static void 700/* dummy callback for pending events */
302anfds_init (ANFD *base, int count) 701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
303{ 703{
304 while (count--) 704}
305 {
306 base->head = 0;
307 base->events = EV_NONE;
308 base->reify = 0;
309 705
310 ++base; 706void noinline
707ev_feed_event (EV_P_ void *w, int revents)
708{
709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
711
712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
311 } 715 {
312} 716 w_->pending = ++pendingcnt [pri];
313 717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
314static void 718 pendings [pri][w_->pending - 1].w = w_;
315event (EV_P_ W w, int events)
316{
317 if (w->pending)
318 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 719 pendings [pri][w_->pending - 1].events = revents;
320 return;
321 } 720 }
322
323 w->pending = ++pendingcnt [ABSPRI (w)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
325 pendings [ABSPRI (w)][w->pending - 1].w = w;
326 pendings [ABSPRI (w)][w->pending - 1].events = events;
327} 721}
328 722
329static void 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
330queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 740{
332 int i; 741 int i;
333 742
334 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
336} 745}
337 746
338static void 747/*****************************************************************************/
748
749inline_speed void
339fd_event (EV_P_ int fd, int events) 750fd_event (EV_P_ int fd, int revents)
340{ 751{
341 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 753 ev_io *w;
343 754
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 755 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
345 { 756 {
346 int ev = w->events & events; 757 int ev = w->events & revents;
347 758
348 if (ev) 759 if (ev)
349 event (EV_A_ (W)w, ev); 760 ev_feed_event (EV_A_ (W)w, ev);
350 } 761 }
351} 762}
352 763
353/*****************************************************************************/ 764void
765ev_feed_fd_event (EV_P_ int fd, int revents)
766{
767 if (fd >= 0 && fd < anfdmax)
768 fd_event (EV_A_ fd, revents);
769}
354 770
355static void 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
356fd_reify (EV_P) 774fd_reify (EV_P)
357{ 775{
358 int i; 776 int i;
359 777
360 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
361 { 779 {
362 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
363 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
364 struct ev_io *w; 782 ev_io *w;
365 783
366 int events = 0; 784 unsigned char events = 0;
367 785
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
369 events |= w->events; 787 events |= (unsigned char)w->events;
370 788
789#if EV_SELECT_IS_WINSOCKET
790 if (events)
791 {
792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
796 anfd->handle = _get_osfhandle (fd);
797 #endif
798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
799 }
800#endif
801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
371 anfd->reify = 0; 806 anfd->reify = 0;
372
373 method_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
375 } 812 }
376 813
377 fdchangecnt = 0; 814 fdchangecnt = 0;
378} 815}
379 816
380static void 817/* something about the given fd changed */
818inline_size void
381fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
382{ 820{
383 if (anfds [fd].reify || fdchangecnt < 0) 821 unsigned char reify = anfds [fd].reify;
384 return;
385
386 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
387 823
824 if (expect_true (!reify))
825 {
388 ++fdchangecnt; 826 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
390 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
391} 830}
392 831
393static void 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
394fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
395{ 835{
396 struct ev_io *w; 836 ev_io *w;
397 837
398 while ((w = (struct ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
399 { 839 {
400 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 842 }
843}
844
845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
847fd_valid (int fd)
848{
849#ifdef _WIN32
850 return _get_osfhandle (fd) != -1;
851#else
852 return fcntl (fd, F_GETFD) != -1;
853#endif
403} 854}
404 855
405/* called on EBADF to verify fds */ 856/* called on EBADF to verify fds */
406static void 857static void noinline
407fd_ebadf (EV_P) 858fd_ebadf (EV_P)
408{ 859{
409 int fd; 860 int fd;
410 861
411 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 863 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
414 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
415} 866}
416 867
417/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 869static void noinline
419fd_enomem (EV_P) 870fd_enomem (EV_P)
420{ 871{
421 int fd; 872 int fd;
422 873
423 for (fd = anfdmax; fd--; ) 874 for (fd = anfdmax; fd--; )
426 fd_kill (EV_A_ fd); 877 fd_kill (EV_A_ fd);
427 return; 878 return;
428 } 879 }
429} 880}
430 881
431/* susually called after fork if method needs to re-arm all fds from scratch */ 882/* usually called after fork if backend needs to re-arm all fds from scratch */
432static void 883static void noinline
433fd_rearm_all (EV_P) 884fd_rearm_all (EV_P)
434{ 885{
435 int fd; 886 int fd;
436 887
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events) 889 if (anfds [fd].events)
440 { 890 {
441 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
442 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
443 } 894 }
444} 895}
445 896
446/*****************************************************************************/ 897/*****************************************************************************/
447 898
448static void 899/*
449upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
450{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
451 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
452 904
453 while (k && heap [k >> 1]->at > w->at) 905/*
454 { 906 * at the moment we allow libev the luxury of two heaps,
455 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
456 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
457 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
458 } 910 */
911#if EV_USE_4HEAP
459 912
460 heap [k] = w; 913#define DHEAP 4
461 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
462 917
463} 918/* away from the root */
464 919inline_speed void
465static void
466downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
467{ 921{
468 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
469 924
470 while (k < (N >> 1)) 925 for (;;)
471 { 926 {
472 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
473 930
474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
475 ++j; 933 {
476 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
477 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
478 break; 947 break;
479 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
480 heap [k] = heap [j]; 987 heap [k] = heap [c];
481 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
482 k = j; 990 k = c;
483 } 991 }
484 992
485 heap [k] = w; 993 heap [k] = he;
486 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
1022adjustheap (ANHE *heap, int N, int k)
1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1025 upheap (heap, k);
1026 else
1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
487} 1040}
488 1041
489/*****************************************************************************/ 1042/*****************************************************************************/
490 1043
1044/* associate signal watchers to a signal signal */
491typedef struct 1045typedef struct
492{ 1046{
493 WL head; 1047 WL head;
494 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
495} ANSIG; 1049} ANSIG;
496 1050
497static ANSIG *signals; 1051static ANSIG *signals;
498static int signalmax; 1052static int signalmax;
499 1053
500static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
501static sig_atomic_t volatile gotsig;
502static struct ev_io sigev;
503 1055
1056/*****************************************************************************/
1057
1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
1061fd_intern (int fd)
1062{
1063#ifdef _WIN32
1064 unsigned long arg = 1;
1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1066#else
1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
1068 fcntl (fd, F_SETFL, O_NONBLOCK);
1069#endif
1070}
1071
1072static void noinline
1073evpipe_init (EV_P)
1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
1090 fd_intern (evpipe [0]);
1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
1095 ev_io_start (EV_A_ &pipe_w);
1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
504static void 1125static void
505signals_init (ANSIG *base, int count) 1126pipecb (EV_P_ ev_io *iow, int revents)
506{ 1127{
507 while (count--) 1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
508 { 1133 }
509 base->head = 0; 1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
510 base->gotsig = 0; 1144 gotsig = 0;
511 1145
512 ++base; 1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
513 } 1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
514} 1165}
1166
1167/*****************************************************************************/
515 1168
516static void 1169static void
517sighandler (int signum) 1170ev_sighandler (int signum)
518{ 1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
519#if WIN32 1176#if _WIN32
520 signal (signum, sighandler); 1177 signal (signum, ev_sighandler);
521#endif 1178#endif
522 1179
523 signals [signum - 1].gotsig = 1; 1180 signals [signum - 1].gotsig = 1;
524 1181 evpipe_write (EV_A_ &gotsig);
525 if (!gotsig)
526 {
527 int old_errno = errno;
528 gotsig = 1;
529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
531 }
532} 1182}
533 1183
534static void 1184void noinline
535sigcb (EV_P_ struct ev_io *iow, int revents) 1185ev_feed_signal_event (EV_P_ int signum)
536{ 1186{
537 WL w; 1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
538 int signum; 1193 --signum;
539 1194
540 read (sigpipe [0], &revents, 1); 1195 if (signum < 0 || signum >= signalmax)
541 gotsig = 0; 1196 return;
542 1197
543 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig)
545 {
546 signals [signum].gotsig = 0; 1198 signals [signum].gotsig = 0;
547 1199
548 for (w = signals [signum].head; w; w = w->next) 1200 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL); 1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
550 }
551}
552
553static void
554siginit (EV_P)
555{
556#ifndef WIN32
557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559
560 /* rather than sort out wether we really need nb, set it */
561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
564
565 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 1202}
569 1203
570/*****************************************************************************/ 1204/*****************************************************************************/
571 1205
1206static WL childs [EV_PID_HASHSIZE];
1207
572#ifndef WIN32 1208#ifndef _WIN32
573 1209
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev; 1210static ev_signal childev;
1211
1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
1218child_reap (EV_P_ int chain, int pid, int status)
1219{
1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222
1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
1227 {
1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 w->rpid = pid;
1230 w->rstatus = status;
1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232 }
1233 }
1234}
576 1235
577#ifndef WCONTINUED 1236#ifndef WCONTINUED
578# define WCONTINUED 0 1237# define WCONTINUED 0
579#endif 1238#endif
580 1239
1240/* called on sigchld etc., calls waitpid */
581static void 1241static void
582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
583{
584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
598{ 1243{
599 int pid, status; 1244 int pid, status;
600 1245
1246 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1247 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 1248 if (!WCONTINUED
1249 || errno != EINVAL
1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1251 return;
1252
603 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
1254 /* we need to do it this way so that the callback gets called before we continue */
604 event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 1256
606 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
1258 if (EV_PID_HASHSIZE > 1)
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
608 }
609} 1260}
610 1261
611#endif 1262#endif
612 1263
613/*****************************************************************************/ 1264/*****************************************************************************/
614 1265
1266#if EV_USE_PORT
1267# include "ev_port.c"
1268#endif
615#if EV_USE_KQUEUE 1269#if EV_USE_KQUEUE
616# include "ev_kqueue.c" 1270# include "ev_kqueue.c"
617#endif 1271#endif
618#if EV_USE_EPOLL 1272#if EV_USE_EPOLL
619# include "ev_epoll.c" 1273# include "ev_epoll.c"
636{ 1290{
637 return EV_VERSION_MINOR; 1291 return EV_VERSION_MINOR;
638} 1292}
639 1293
640/* return true if we are running with elevated privileges and should ignore env variables */ 1294/* return true if we are running with elevated privileges and should ignore env variables */
641static int 1295int inline_size
642enable_secure (void) 1296enable_secure (void)
643{ 1297{
644#ifdef WIN32 1298#ifdef _WIN32
645 return 0; 1299 return 0;
646#else 1300#else
647 return getuid () != geteuid () 1301 return getuid () != geteuid ()
648 || getgid () != getegid (); 1302 || getgid () != getegid ();
649#endif 1303#endif
650} 1304}
651 1305
652int 1306unsigned int
653ev_method (EV_P) 1307ev_supported_backends (void)
654{ 1308{
655 return method; 1309 unsigned int flags = 0;
656}
657 1310
658static void 1311 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
659loop_init (EV_P_ int methods) 1312 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1313 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1314 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1315 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1316
1317 return flags;
1318}
1319
1320unsigned int
1321ev_recommended_backends (void)
660{ 1322{
661 if (!method) 1323 unsigned int flags = ev_supported_backends ();
1324
1325#ifndef __NetBSD__
1326 /* kqueue is borked on everything but netbsd apparently */
1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1328 flags &= ~EVBACKEND_KQUEUE;
1329#endif
1330#ifdef __APPLE__
1331 /* only select works correctly on that "unix-certified" platform */
1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1334#endif
1335
1336 return flags;
1337}
1338
1339unsigned int
1340ev_embeddable_backends (void)
1341{
1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1343
1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_backend (EV_P)
1353{
1354 return backend;
1355}
1356
1357unsigned int
1358ev_loop_count (EV_P)
1359{
1360 return loop_count;
1361}
1362
1363void
1364ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365{
1366 io_blocktime = interval;
1367}
1368
1369void
1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 timeout_blocktime = interval;
1373}
1374
1375/* initialise a loop structure, must be zero-initialised */
1376static void noinline
1377loop_init (EV_P_ unsigned int flags)
1378{
1379 if (!backend)
662 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
663#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
1393 {
1394 struct timespec ts;
1395
1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1397 have_monotonic = 1;
1398 }
1399#endif
1400
1401 ev_rt_now = ev_time ();
1402 mn_now = get_clock ();
1403 now_floor = mn_now;
1404 rtmn_diff = ev_rt_now - mn_now;
1405
1406 io_blocktime = 0.;
1407 timeout_blocktime = 0.;
1408 backend = 0;
1409 backend_fd = -1;
1410 gotasync = 0;
1411#if EV_USE_INOTIFY
1412 fs_fd = -2;
1413#endif
1414
1415 /* pid check not overridable via env */
1416#ifndef _WIN32
1417 if (flags & EVFLAG_FORKCHECK)
1418 curpid = getpid ();
1419#endif
1420
1421 if (!(flags & EVFLAG_NOENV)
1422 && !enable_secure ()
1423 && getenv ("LIBEV_FLAGS"))
1424 flags = atoi (getenv ("LIBEV_FLAGS"));
1425
1426 if (!(flags & 0x0000ffffU))
1427 flags |= ev_recommended_backends ();
1428
1429#if EV_USE_PORT
1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1431#endif
1432#if EV_USE_KQUEUE
1433 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1434#endif
1435#if EV_USE_EPOLL
1436 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1437#endif
1438#if EV_USE_POLL
1439 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1440#endif
1441#if EV_USE_SELECT
1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1443#endif
1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
1447 ev_init (&pipe_w, pipecb);
1448 ev_set_priority (&pipe_w, EV_MAXPRI);
1449 }
1450}
1451
1452/* free up a loop structure */
1453static void noinline
1454loop_destroy (EV_P)
1455{
1456 int i;
1457
1458 if (ev_is_active (&pipe_w))
1459 {
1460 ev_ref (EV_A); /* signal watcher */
1461 ev_io_stop (EV_A_ &pipe_w);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 }
1474
1475#if EV_USE_INOTIFY
1476 if (fs_fd >= 0)
1477 close (fs_fd);
1478#endif
1479
1480 if (backend_fd >= 0)
1481 close (backend_fd);
1482
1483#if EV_USE_PORT
1484 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1485#endif
1486#if EV_USE_KQUEUE
1487 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1488#endif
1489#if EV_USE_EPOLL
1490 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1491#endif
1492#if EV_USE_POLL
1493 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1494#endif
1495#if EV_USE_SELECT
1496 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1497#endif
1498
1499 for (i = NUMPRI; i--; )
1500 {
1501 array_free (pending, [i]);
1502#if EV_IDLE_ENABLE
1503 array_free (idle, [i]);
1504#endif
1505 }
1506
1507 ev_free (anfds); anfdmax = 0;
1508
1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1511 array_free (fdchange, EMPTY);
1512 array_free (timer, EMPTY);
1513#if EV_PERIODIC_ENABLE
1514 array_free (periodic, EMPTY);
1515#endif
1516#if EV_FORK_ENABLE
1517 array_free (fork, EMPTY);
1518#endif
1519 array_free (prepare, EMPTY);
1520 array_free (check, EMPTY);
1521#if EV_ASYNC_ENABLE
1522 array_free (async, EMPTY);
1523#endif
1524
1525 backend = 0;
1526}
1527
1528#if EV_USE_INOTIFY
1529inline_size void infy_fork (EV_P);
1530#endif
1531
1532inline_size void
1533loop_fork (EV_P)
1534{
1535#if EV_USE_PORT
1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1537#endif
1538#if EV_USE_KQUEUE
1539 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1540#endif
1541#if EV_USE_EPOLL
1542 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1543#endif
1544#if EV_USE_INOTIFY
1545 infy_fork (EV_A);
1546#endif
1547
1548 if (ev_is_active (&pipe_w))
1549 {
1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553#if EV_ASYNC_ENABLE
1554 gotasync = 1;
1555#endif
1556
1557 ev_ref (EV_A);
1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560#if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563#endif
1564
1565 if (evpipe [0] >= 0)
1566 {
1567 close (evpipe [0]);
1568 close (evpipe [1]);
1569 }
1570
1571 evpipe_init (EV_A);
1572 /* now iterate over everything, in case we missed something */
1573 pipecb (EV_A_ &pipe_w, EV_READ);
1574 }
1575
1576 postfork = 0;
1577}
1578
1579#if EV_MULTIPLICITY
1580
1581struct ev_loop *
1582ev_loop_new (unsigned int flags)
1583{
1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1585
1586 memset (loop, 0, sizeof (struct ev_loop));
1587
1588 loop_init (EV_A_ flags);
1589
1590 if (ev_backend (EV_A))
1591 return loop;
1592
1593 return 0;
1594}
1595
1596void
1597ev_loop_destroy (EV_P)
1598{
1599 loop_destroy (EV_A);
1600 ev_free (loop);
1601}
1602
1603void
1604ev_loop_fork (EV_P)
1605{
1606 postfork = 1; /* must be in line with ev_default_fork */
1607}
1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
664 { 1661 {
665 struct timespec ts; 1662 verify_watcher (EV_A_ (W)w);
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
667 have_monotonic = 1; 1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
668 } 1665 }
669#endif
670 1666
671 rt_now = ev_time (); 1667 assert (timermax >= timercnt);
672 mn_now = get_clock (); 1668 verify_heap (EV_A_ timers, timercnt);
673 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now;
675 1669
676 if (methods == EVMETHOD_AUTO) 1670#if EV_PERIODIC_ENABLE
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1671 assert (periodicmax >= periodiccnt);
678 methods = atoi (getenv ("LIBEV_METHODS")); 1672 verify_heap (EV_A_ periodics, periodiccnt);
679 else
680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
689#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif
695#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif
698 }
699}
700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif 1673#endif
721 1674
722 for (i = NUMPRI; i--; ) 1675 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
724 1684
725 array_free (fdchange, ); 1685#if EV_FORK_ENABLE
726 array_free (timer, ); 1686 assert (forkmax >= forkcnt);
727 array_free (periodic, ); 1687 array_verify (EV_A_ (W *)forks, forkcnt);
728 array_free (idle, ); 1688#endif
729 array_free (prepare, );
730 array_free (check, );
731 1689
732 method = 0; 1690#if EV_ASYNC_ENABLE
733 /*TODO*/ 1691 assert (asyncmax >= asynccnt);
734} 1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
735 1694
736void 1695 assert (preparemax >= preparecnt);
737loop_fork (EV_P) 1696 array_verify (EV_A_ (W *)prepares, preparecnt);
738{ 1697
739 /*TODO*/ 1698 assert (checkmax >= checkcnt);
740#if EV_USE_EPOLL 1699 array_verify (EV_A_ (W *)checks, checkcnt);
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
742#endif 1704# endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 1705#endif
746} 1706}
1707
1708#endif /* multiplicity */
747 1709
748#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
749struct ev_loop * 1711struct ev_loop *
750ev_loop_new (int methods) 1712ev_default_loop_init (unsigned int flags)
751{ 1713#else
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1714int
753 1715ev_default_loop (unsigned int flags)
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif 1716#endif
778 1717{
1718 if (!ev_default_loop_ptr)
1719 {
779#if EV_MULTIPLICITY 1720#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct; 1721 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else 1722#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1; 1723 ev_default_loop_ptr = 1;
801#endif 1724#endif
802 1725
803 loop_init (EV_A_ methods); 1726 loop_init (EV_A_ flags);
804 1727
805 if (ev_method (EV_A)) 1728 if (ev_backend (EV_A))
806 { 1729 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A);
810
811#ifndef WIN32 1730#ifndef _WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 1731 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 1732 ev_set_priority (&childev, EV_MAXPRI);
814 ev_signal_start (EV_A_ &childev); 1733 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1734 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif 1735#endif
817 } 1736 }
818 else 1737 else
819 default_loop = 0; 1738 ev_default_loop_ptr = 0;
820 } 1739 }
821 1740
822 return default_loop; 1741 return ev_default_loop_ptr;
823} 1742}
824 1743
825void 1744void
826ev_default_destroy (void) 1745ev_default_destroy (void)
827{ 1746{
828#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 1748 struct ev_loop *loop = ev_default_loop_ptr;
830#endif 1749#endif
831 1750
1751 ev_default_loop_ptr = 0;
1752
1753#ifndef _WIN32
832 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
834 1756#endif
835 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840 1757
841 loop_destroy (EV_A); 1758 loop_destroy (EV_A);
842} 1759}
843 1760
844void 1761void
845ev_default_fork (void) 1762ev_default_fork (void)
846{ 1763{
847#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 1765 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 1766#endif
850 1767
851 loop_fork (EV_A); 1768 postfork = 1; /* must be in line with ev_loop_fork */
852
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 1769}
861 1770
862/*****************************************************************************/ 1771/*****************************************************************************/
863 1772
864static void 1773void
1774ev_invoke (EV_P_ void *w, int revents)
1775{
1776 EV_CB_INVOKE ((W)w, revents);
1777}
1778
1779inline_speed void
865call_pending (EV_P) 1780call_pending (EV_P)
866{ 1781{
867 int pri; 1782 int pri;
868 1783
869 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
870 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
871 { 1786 {
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 1788
874 if (p->w) 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
875 { 1790 /* ^ this is no longer true, as pending_w could be here */
1791
876 p->w->pending = 0; 1792 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
878 } 1794 EV_FREQUENT_CHECK;
879 } 1795 }
880} 1796}
881 1797
882static void 1798#if EV_IDLE_ENABLE
1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
883timers_reify (EV_P) 1802idle_reify (EV_P)
884{ 1803{
885 while (timercnt && ((WT)timers [0])->at <= mn_now) 1804 if (expect_false (idleall))
886 { 1805 {
887 struct ev_timer *w = timers [0]; 1806 int pri;
888 1807
889 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1808 for (pri = NUMPRI; pri--; )
890
891 /* first reschedule or stop timer */
892 if (w->repeat)
893 { 1809 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1810 if (pendingcnt [pri])
895 ((WT)w)->at = mn_now + w->repeat; 1811 break;
896 downheap ((WT *)timers, timercnt, 0);
897 }
898 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1812
901 event (EV_A_ (W)w, EV_TIMEOUT); 1813 if (idlecnt [pri])
902 }
903}
904
905static void
906periodics_reify (EV_P)
907{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
909 {
910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913
914 /* first reschedule or stop timer */
915 if (w->interval)
916 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0);
920 }
921 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923
924 event (EV_A_ (W)w, EV_PERIODIC);
925 }
926}
927
928static void
929periodics_reschedule (EV_P)
930{
931 int i;
932
933 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i)
935 {
936 struct ev_periodic *w = periodics [i];
937
938 if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 { 1814 {
944 ev_periodic_stop (EV_A_ w); 1815 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
945 ev_periodic_start (EV_A_ w); 1816 break;
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 } 1817 }
949 } 1818 }
950 } 1819 }
951} 1820}
1821#endif
952 1822
953inline int 1823/* make timers pending */
954time_update_monotonic (EV_P) 1824inline_size void
1825timers_reify (EV_P)
955{ 1826{
956 mn_now = get_clock (); 1827 EV_FREQUENT_CHECK;
957 1828
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 } 1830 {
963 else 1831 do
1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1845
1846 ANHE_at_cache (timers [HEAP0]);
1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1854 }
1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1856
1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
964 { 1858 }
965 now_floor = mn_now; 1859}
966 rt_now = ev_time (); 1860
967 return 1; 1861#if EV_PERIODIC_ENABLE
1862/* make periodics pending */
1863inline_size void
1864periodics_reify (EV_P)
1865{
1866 EV_FREQUENT_CHECK;
1867
1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
968 } 1869 {
969} 1870 int feed_count = 0;
970 1871
971static void 1872 do
972time_update (EV_P) 1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1912 }
1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1914
1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1916 }
1917}
1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1921static void noinline
1922periodics_reschedule (EV_P)
973{ 1923{
974 int i; 1924 int i;
975 1925
1926 /* adjust periodics after time jump */
1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1928 {
1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1930
1931 if (w->reschedule_cb)
1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval)
1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1950 {
1951 ANHE *he = timers + i + HEAP0;
1952 ANHE_w (*he)->at += adjust;
1953 ANHE_at_cache (*he);
1954 }
1955}
1956
1957/* fetch new monotonic and realtime times from the kernel */
1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1960time_update (EV_P_ ev_tstamp max_block)
1961{
976#if EV_USE_MONOTONIC 1962#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic)) 1963 if (expect_true (have_monotonic))
978 { 1964 {
979 if (time_update_monotonic (EV_A)) 1965 int i;
1966 ev_tstamp odiff = rtmn_diff;
1967
1968 mn_now = get_clock ();
1969
1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971 /* interpolate in the meantime */
1972 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
980 { 1973 {
981 ev_tstamp odiff = rtmn_diff; 1974 ev_rt_now = rtmn_diff + mn_now;
1975 return;
1976 }
982 1977
1978 now_floor = mn_now;
1979 ev_rt_now = ev_time ();
1980
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1981 /* loop a few times, before making important decisions.
1982 * on the choice of "4": one iteration isn't enough,
1983 * in case we get preempted during the calls to
1984 * ev_time and get_clock. a second call is almost guaranteed
1985 * to succeed in that case, though. and looping a few more times
1986 * doesn't hurt either as we only do this on time-jumps or
1987 * in the unlikely event of having been preempted here.
1988 */
1989 for (i = 4; --i; )
984 { 1990 {
985 rtmn_diff = rt_now - mn_now; 1991 rtmn_diff = ev_rt_now - mn_now;
986 1992
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
988 return; /* all is well */ 1994 return; /* all is well */
989 1995
990 rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1997 mn_now = get_clock ();
992 now_floor = mn_now; 1998 now_floor = mn_now;
993 } 1999 }
994 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2003# if EV_PERIODIC_ENABLE
2004 periodics_reschedule (EV_A);
2005# endif
2006 }
2007 else
2008#endif
2009 {
2010 ev_rt_now = ev_time ();
2011
2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2016#if EV_PERIODIC_ENABLE
995 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 2018#endif
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 } 2019 }
999 }
1000 else
1001#endif
1002 {
1003 rt_now = ev_time ();
1004 2020
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 {
1007 periodics_reschedule (EV_A);
1008
1009 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now;
1012 }
1013
1014 mn_now = rt_now; 2021 mn_now = ev_rt_now;
1015 } 2022 }
1016}
1017
1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028} 2023}
1029 2024
1030static int loop_done; 2025static int loop_done;
1031 2026
1032void 2027void
1033ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1034{ 2029{
1035 double block; 2030 loop_done = EVUNLOOP_CANCEL;
1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2031
2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1037 2033
1038 do 2034 do
1039 { 2035 {
2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
2040#ifndef _WIN32
2041 if (expect_false (curpid)) /* penalise the forking check even more */
2042 if (expect_false (getpid () != curpid))
2043 {
2044 curpid = getpid ();
2045 postfork = 1;
2046 }
2047#endif
2048
2049#if EV_FORK_ENABLE
2050 /* we might have forked, so queue fork handlers */
2051 if (expect_false (postfork))
2052 if (forkcnt)
2053 {
2054 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2055 call_pending (EV_A);
2056 }
2057#endif
2058
1040 /* queue check watchers (and execute them) */ 2059 /* queue prepare watchers (and execute them) */
1041 if (expect_false (preparecnt)) 2060 if (expect_false (preparecnt))
1042 { 2061 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 2063 call_pending (EV_A);
1045 } 2064 }
1046 2065
2066 /* we might have forked, so reify kernel state if necessary */
2067 if (expect_false (postfork))
2068 loop_fork (EV_A);
2069
1047 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 2071 fd_reify (EV_A);
1049 2072
1050 /* calculate blocking time */ 2073 /* calculate blocking time */
2074 {
2075 ev_tstamp waittime = 0.;
2076 ev_tstamp sleeptime = 0.;
1051 2077
1052 /* we only need this for !monotonic clockor timers, but as we basically 2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 { 2079 {
1060 rt_now = ev_time (); 2080 /* remember old timestamp for io_blocktime calculation */
1061 mn_now = rt_now; 2081 ev_tstamp prev_mn_now = mn_now;
1062 }
1063 2082
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 2083 /* update time to cancel out callback processing overhead */
1065 block = 0.; 2084 time_update (EV_A_ 1e100);
1066 else 2085
1067 {
1068 block = MAX_BLOCKTIME; 2086 waittime = MAX_BLOCKTIME;
1069 2087
1070 if (timercnt) 2088 if (timercnt)
1071 { 2089 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2090 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1073 if (block > to) block = to; 2091 if (waittime > to) waittime = to;
1074 } 2092 }
1075 2093
2094#if EV_PERIODIC_ENABLE
1076 if (periodiccnt) 2095 if (periodiccnt)
1077 { 2096 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2097 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1079 if (block > to) block = to; 2098 if (waittime > to) waittime = to;
1080 } 2099 }
2100#endif
1081 2101
1082 if (block < 0.) block = 0.; 2102 /* don't let timeouts decrease the waittime below timeout_blocktime */
2103 if (expect_false (waittime < timeout_blocktime))
2104 waittime = timeout_blocktime;
2105
2106 /* extra check because io_blocktime is commonly 0 */
2107 if (expect_false (io_blocktime))
2108 {
2109 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2110
2111 if (sleeptime > waittime - backend_fudge)
2112 sleeptime = waittime - backend_fudge;
2113
2114 if (expect_true (sleeptime > 0.))
2115 {
2116 ev_sleep (sleeptime);
2117 waittime -= sleeptime;
2118 }
2119 }
1083 } 2120 }
1084 2121
1085 method_poll (EV_A_ block); 2122 ++loop_count;
2123 backend_poll (EV_A_ waittime);
1086 2124
1087 /* update rt_now, do magic */ 2125 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 2126 time_update (EV_A_ waittime + sleeptime);
2127 }
1089 2128
1090 /* queue pending timers and reschedule them */ 2129 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 2130 timers_reify (EV_A); /* relative timers called last */
2131#if EV_PERIODIC_ENABLE
1092 periodics_reify (EV_A); /* absolute timers called first */ 2132 periodics_reify (EV_A); /* absolute timers called first */
2133#endif
1093 2134
2135#if EV_IDLE_ENABLE
1094 /* queue idle watchers unless io or timers are pending */ 2136 /* queue idle watchers unless other events are pending */
1095 if (!pendingcnt) 2137 idle_reify (EV_A);
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2138#endif
1097 2139
1098 /* queue check watchers, to be executed first */ 2140 /* queue check watchers, to be executed first */
1099 if (checkcnt) 2141 if (expect_false (checkcnt))
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1101 2143
1102 call_pending (EV_A); 2144 call_pending (EV_A);
1103 } 2145 }
1104 while (activecnt && !loop_done); 2146 while (expect_true (
2147 activecnt
2148 && !loop_done
2149 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2150 ));
1105 2151
1106 if (loop_done != 2) 2152 if (loop_done == EVUNLOOP_ONE)
1107 loop_done = 0; 2153 loop_done = EVUNLOOP_CANCEL;
1108} 2154}
1109 2155
1110void 2156void
1111ev_unloop (EV_P_ int how) 2157ev_unloop (EV_P_ int how)
1112{ 2158{
1113 loop_done = how; 2159 loop_done = how;
1114} 2160}
1115 2161
2162void
2163ev_ref (EV_P)
2164{
2165 ++activecnt;
2166}
2167
2168void
2169ev_unref (EV_P)
2170{
2171 --activecnt;
2172}
2173
2174void
2175ev_now_update (EV_P)
2176{
2177 time_update (EV_A_ 1e100);
2178}
2179
2180void
2181ev_suspend (EV_P)
2182{
2183 ev_now_update (EV_A);
2184}
2185
2186void
2187ev_resume (EV_P)
2188{
2189 ev_tstamp mn_prev = mn_now;
2190
2191 ev_now_update (EV_A);
2192 timers_reschedule (EV_A_ mn_now - mn_prev);
2193#if EV_PERIODIC_ENABLE
2194 /* TODO: really do this? */
2195 periodics_reschedule (EV_A);
2196#endif
2197}
2198
1116/*****************************************************************************/ 2199/*****************************************************************************/
2200/* singly-linked list management, used when the expected list length is short */
1117 2201
1118inline void 2202inline_size void
1119wlist_add (WL *head, WL elem) 2203wlist_add (WL *head, WL elem)
1120{ 2204{
1121 elem->next = *head; 2205 elem->next = *head;
1122 *head = elem; 2206 *head = elem;
1123} 2207}
1124 2208
1125inline void 2209inline_size void
1126wlist_del (WL *head, WL elem) 2210wlist_del (WL *head, WL elem)
1127{ 2211{
1128 while (*head) 2212 while (*head)
1129 { 2213 {
1130 if (*head == elem) 2214 if (*head == elem)
1135 2219
1136 head = &(*head)->next; 2220 head = &(*head)->next;
1137 } 2221 }
1138} 2222}
1139 2223
2224/* internal, faster, version of ev_clear_pending */
1140inline void 2225inline_speed void
1141ev_clear_pending (EV_P_ W w) 2226clear_pending (EV_P_ W w)
1142{ 2227{
1143 if (w->pending) 2228 if (w->pending)
1144 { 2229 {
1145 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2230 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1146 w->pending = 0; 2231 w->pending = 0;
1147 } 2232 }
1148} 2233}
1149 2234
2235int
2236ev_clear_pending (EV_P_ void *w)
2237{
2238 W w_ = (W)w;
2239 int pending = w_->pending;
2240
2241 if (expect_true (pending))
2242 {
2243 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2244 p->w = (W)&pending_w;
2245 w_->pending = 0;
2246 return p->events;
2247 }
2248 else
2249 return 0;
2250}
2251
1150inline void 2252inline_size void
2253pri_adjust (EV_P_ W w)
2254{
2255 int pri = w->priority;
2256 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2257 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2258 w->priority = pri;
2259}
2260
2261inline_speed void
1151ev_start (EV_P_ W w, int active) 2262ev_start (EV_P_ W w, int active)
1152{ 2263{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2264 pri_adjust (EV_A_ w);
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
1156 w->active = active; 2265 w->active = active;
1157 ev_ref (EV_A); 2266 ev_ref (EV_A);
1158} 2267}
1159 2268
1160inline void 2269inline_size void
1161ev_stop (EV_P_ W w) 2270ev_stop (EV_P_ W w)
1162{ 2271{
1163 ev_unref (EV_A); 2272 ev_unref (EV_A);
1164 w->active = 0; 2273 w->active = 0;
1165} 2274}
1166 2275
1167/*****************************************************************************/ 2276/*****************************************************************************/
1168 2277
1169void 2278void noinline
1170ev_io_start (EV_P_ struct ev_io *w) 2279ev_io_start (EV_P_ ev_io *w)
1171{ 2280{
1172 int fd = w->fd; 2281 int fd = w->fd;
1173 2282
1174 if (ev_is_active (w)) 2283 if (expect_false (ev_is_active (w)))
1175 return; 2284 return;
1176 2285
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 2286 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2287 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2288
2289 EV_FREQUENT_CHECK;
1178 2290
1179 ev_start (EV_A_ (W)w, 1); 2291 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2292 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2293 wlist_add (&anfds[fd].head, (WL)w);
1182 2294
1183 fd_change (EV_A_ fd); 2295 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1184} 2296 w->events &= ~EV__IOFDSET;
1185 2297
1186void 2298 EV_FREQUENT_CHECK;
2299}
2300
2301void noinline
1187ev_io_stop (EV_P_ struct ev_io *w) 2302ev_io_stop (EV_P_ ev_io *w)
1188{ 2303{
1189 ev_clear_pending (EV_A_ (W)w); 2304 clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 2305 if (expect_false (!ev_is_active (w)))
1191 return; 2306 return;
1192 2307
2308 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2309
2310 EV_FREQUENT_CHECK;
2311
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2312 wlist_del (&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 2313 ev_stop (EV_A_ (W)w);
1195 2314
1196 fd_change (EV_A_ w->fd); 2315 fd_change (EV_A_ w->fd, 1);
1197}
1198 2316
1199void 2317 EV_FREQUENT_CHECK;
2318}
2319
2320void noinline
1200ev_timer_start (EV_P_ struct ev_timer *w) 2321ev_timer_start (EV_P_ ev_timer *w)
1201{ 2322{
1202 if (ev_is_active (w)) 2323 if (expect_false (ev_is_active (w)))
1203 return; 2324 return;
1204 2325
1205 ((WT)w)->at += mn_now; 2326 ev_at (w) += mn_now;
1206 2327
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2328 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 2329
2330 EV_FREQUENT_CHECK;
2331
2332 ++timercnt;
1209 ev_start (EV_A_ (W)w, ++timercnt); 2333 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1210 array_needsize (timers, timermax, timercnt, ); 2334 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1211 timers [timercnt - 1] = w; 2335 ANHE_w (timers [ev_active (w)]) = (WT)w;
1212 upheap ((WT *)timers, timercnt - 1); 2336 ANHE_at_cache (timers [ev_active (w)]);
2337 upheap (timers, ev_active (w));
1213 2338
2339 EV_FREQUENT_CHECK;
2340
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2341 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1215} 2342}
1216 2343
1217void 2344void noinline
1218ev_timer_stop (EV_P_ struct ev_timer *w) 2345ev_timer_stop (EV_P_ ev_timer *w)
1219{ 2346{
1220 ev_clear_pending (EV_A_ (W)w); 2347 clear_pending (EV_A_ (W)w);
1221 if (!ev_is_active (w)) 2348 if (expect_false (!ev_is_active (w)))
1222 return; 2349 return;
1223 2350
2351 EV_FREQUENT_CHECK;
2352
2353 {
2354 int active = ev_active (w);
2355
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2356 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1225 2357
1226 if (((W)w)->active < timercnt--) 2358 --timercnt;
2359
2360 if (expect_true (active < timercnt + HEAP0))
1227 { 2361 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 2362 timers [active] = timers [timercnt + HEAP0];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2363 adjustheap (timers, timercnt, active);
1230 } 2364 }
2365 }
1231 2366
1232 ((WT)w)->at = w->repeat; 2367 EV_FREQUENT_CHECK;
2368
2369 ev_at (w) -= mn_now;
1233 2370
1234 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1235} 2372}
1236 2373
1237void 2374void noinline
1238ev_timer_again (EV_P_ struct ev_timer *w) 2375ev_timer_again (EV_P_ ev_timer *w)
1239{ 2376{
2377 EV_FREQUENT_CHECK;
2378
1240 if (ev_is_active (w)) 2379 if (ev_is_active (w))
1241 { 2380 {
1242 if (w->repeat) 2381 if (w->repeat)
1243 { 2382 {
1244 ((WT)w)->at = mn_now + w->repeat; 2383 ev_at (w) = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2384 ANHE_at_cache (timers [ev_active (w)]);
2385 adjustheap (timers, timercnt, ev_active (w));
1246 } 2386 }
1247 else 2387 else
1248 ev_timer_stop (EV_A_ w); 2388 ev_timer_stop (EV_A_ w);
1249 } 2389 }
1250 else if (w->repeat) 2390 else if (w->repeat)
2391 {
2392 ev_at (w) = w->repeat;
1251 ev_timer_start (EV_A_ w); 2393 ev_timer_start (EV_A_ w);
1252} 2394 }
1253 2395
1254void 2396 EV_FREQUENT_CHECK;
2397}
2398
2399#if EV_PERIODIC_ENABLE
2400void noinline
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 2401ev_periodic_start (EV_P_ ev_periodic *w)
1256{ 2402{
1257 if (ev_is_active (w)) 2403 if (expect_false (ev_is_active (w)))
1258 return; 2404 return;
1259 2405
2406 if (w->reschedule_cb)
2407 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2408 else if (w->interval)
2409 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2410 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 2411 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2412 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2413 }
2414 else
2415 ev_at (w) = w->offset;
1265 2416
2417 EV_FREQUENT_CHECK;
2418
2419 ++periodiccnt;
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 2420 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 2421 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1268 periodics [periodiccnt - 1] = w; 2422 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 2423 ANHE_at_cache (periodics [ev_active (w)]);
2424 upheap (periodics, ev_active (w));
1270 2425
2426 EV_FREQUENT_CHECK;
2427
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2428 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1272} 2429}
1273 2430
1274void 2431void noinline
1275ev_periodic_stop (EV_P_ struct ev_periodic *w) 2432ev_periodic_stop (EV_P_ ev_periodic *w)
1276{ 2433{
1277 ev_clear_pending (EV_A_ (W)w); 2434 clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w)) 2435 if (expect_false (!ev_is_active (w)))
1279 return; 2436 return;
1280 2437
2438 EV_FREQUENT_CHECK;
2439
2440 {
2441 int active = ev_active (w);
2442
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2443 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1282 2444
1283 if (((W)w)->active < periodiccnt--) 2445 --periodiccnt;
2446
2447 if (expect_true (active < periodiccnt + HEAP0))
1284 { 2448 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2449 periodics [active] = periodics [periodiccnt + HEAP0];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2450 adjustheap (periodics, periodiccnt, active);
1287 } 2451 }
2452 }
2453
2454 EV_FREQUENT_CHECK;
1288 2455
1289 ev_stop (EV_A_ (W)w); 2456 ev_stop (EV_A_ (W)w);
1290} 2457}
1291 2458
1292void 2459void noinline
1293ev_idle_start (EV_P_ struct ev_idle *w) 2460ev_periodic_again (EV_P_ ev_periodic *w)
1294{ 2461{
1295 if (ev_is_active (w)) 2462 /* TODO: use adjustheap and recalculation */
1296 return;
1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w); 2463 ev_periodic_stop (EV_A_ w);
2464 ev_periodic_start (EV_A_ w);
1312} 2465}
1313 2466#endif
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357 2467
1358#ifndef SA_RESTART 2468#ifndef SA_RESTART
1359# define SA_RESTART 0 2469# define SA_RESTART 0
1360#endif 2470#endif
1361 2471
1362void 2472void noinline
1363ev_signal_start (EV_P_ struct ev_signal *w) 2473ev_signal_start (EV_P_ ev_signal *w)
1364{ 2474{
1365#if EV_MULTIPLICITY 2475#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2476 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1367#endif 2477#endif
1368 if (ev_is_active (w)) 2478 if (expect_false (ev_is_active (w)))
1369 return; 2479 return;
1370 2480
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2481 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2482
2483 evpipe_init (EV_A);
2484
2485 EV_FREQUENT_CHECK;
2486
2487 {
2488#ifndef _WIN32
2489 sigset_t full, prev;
2490 sigfillset (&full);
2491 sigprocmask (SIG_SETMASK, &full, &prev);
2492#endif
2493
2494 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2495
2496#ifndef _WIN32
2497 sigprocmask (SIG_SETMASK, &prev, 0);
2498#endif
2499 }
1372 2500
1373 ev_start (EV_A_ (W)w, 1); 2501 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2502 wlist_add (&signals [w->signum - 1].head, (WL)w);
1376 2503
1377 if (!((WL)w)->next) 2504 if (!((WL)w)->next)
1378 { 2505 {
1379#if WIN32 2506#if _WIN32
1380 signal (w->signum, sighandler); 2507 signal (w->signum, ev_sighandler);
1381#else 2508#else
1382 struct sigaction sa; 2509 struct sigaction sa;
1383 sa.sa_handler = sighandler; 2510 sa.sa_handler = ev_sighandler;
1384 sigfillset (&sa.sa_mask); 2511 sigfillset (&sa.sa_mask);
1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2512 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1386 sigaction (w->signum, &sa, 0); 2513 sigaction (w->signum, &sa, 0);
1387#endif 2514#endif
1388 } 2515 }
1389}
1390 2516
1391void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1392ev_signal_stop (EV_P_ struct ev_signal *w) 2521ev_signal_stop (EV_P_ ev_signal *w)
1393{ 2522{
1394 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1395 if (!ev_is_active (w)) 2524 if (expect_false (!ev_is_active (w)))
1396 return; 2525 return;
1397 2526
2527 EV_FREQUENT_CHECK;
2528
1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2529 wlist_del (&signals [w->signum - 1].head, (WL)w);
1399 ev_stop (EV_A_ (W)w); 2530 ev_stop (EV_A_ (W)w);
1400 2531
1401 if (!signals [w->signum - 1].head) 2532 if (!signals [w->signum - 1].head)
1402 signal (w->signum, SIG_DFL); 2533 signal (w->signum, SIG_DFL);
1403}
1404 2534
2535 EV_FREQUENT_CHECK;
2536}
2537
1405void 2538void
1406ev_child_start (EV_P_ struct ev_child *w) 2539ev_child_start (EV_P_ ev_child *w)
1407{ 2540{
1408#if EV_MULTIPLICITY 2541#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2542 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1410#endif 2543#endif
1411 if (ev_is_active (w)) 2544 if (expect_false (ev_is_active (w)))
1412 return; 2545 return;
1413 2546
2547 EV_FREQUENT_CHECK;
2548
1414 ev_start (EV_A_ (W)w, 1); 2549 ev_start (EV_A_ (W)w, 1);
1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2550 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1416}
1417 2551
2552 EV_FREQUENT_CHECK;
2553}
2554
1418void 2555void
1419ev_child_stop (EV_P_ struct ev_child *w) 2556ev_child_stop (EV_P_ ev_child *w)
1420{ 2557{
1421 ev_clear_pending (EV_A_ (W)w); 2558 clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 2559 if (expect_false (!ev_is_active (w)))
1423 return; 2560 return;
1424 2561
2562 EV_FREQUENT_CHECK;
2563
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2564 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
2566
2567 EV_FREQUENT_CHECK;
1427} 2568}
2569
2570#if EV_STAT_ENABLE
2571
2572# ifdef _WIN32
2573# undef lstat
2574# define lstat(a,b) _stati64 (a,b)
2575# endif
2576
2577#define DEF_STAT_INTERVAL 5.0074891
2578#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2579#define MIN_STAT_INTERVAL 0.1074891
2580
2581static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2582
2583#if EV_USE_INOTIFY
2584# define EV_INOTIFY_BUFSIZE 8192
2585
2586static void noinline
2587infy_add (EV_P_ ev_stat *w)
2588{
2589 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2590
2591 if (w->wd < 0)
2592 {
2593 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2594 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2595
2596 /* monitor some parent directory for speedup hints */
2597 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2598 /* but an efficiency issue only */
2599 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2600 {
2601 char path [4096];
2602 strcpy (path, w->path);
2603
2604 do
2605 {
2606 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2607 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2608
2609 char *pend = strrchr (path, '/');
2610
2611 if (!pend || pend == path)
2612 break;
2613
2614 *pend = 0;
2615 w->wd = inotify_add_watch (fs_fd, path, mask);
2616 }
2617 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2618 }
2619 }
2620
2621 if (w->wd >= 0)
2622 {
2623 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2624
2625 /* now local changes will be tracked by inotify, but remote changes won't */
2626 /* unless the filesystem it known to be local, we therefore still poll */
2627 /* also do poll on <2.6.25, but with normal frequency */
2628 struct statfs sfs;
2629
2630 if (fs_2625 && !statfs (w->path, &sfs))
2631 if (sfs.f_type == 0x1373 /* devfs */
2632 || sfs.f_type == 0xEF53 /* ext2/3 */
2633 || sfs.f_type == 0x3153464a /* jfs */
2634 || sfs.f_type == 0x52654973 /* reiser3 */
2635 || sfs.f_type == 0x01021994 /* tempfs */
2636 || sfs.f_type == 0x58465342 /* xfs */)
2637 return;
2638
2639 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2640 ev_timer_again (EV_A_ &w->timer);
2641 }
2642}
2643
2644static void noinline
2645infy_del (EV_P_ ev_stat *w)
2646{
2647 int slot;
2648 int wd = w->wd;
2649
2650 if (wd < 0)
2651 return;
2652
2653 w->wd = -2;
2654 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2655 wlist_del (&fs_hash [slot].head, (WL)w);
2656
2657 /* remove this watcher, if others are watching it, they will rearm */
2658 inotify_rm_watch (fs_fd, wd);
2659}
2660
2661static void noinline
2662infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2663{
2664 if (slot < 0)
2665 /* overflow, need to check for all hash slots */
2666 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2667 infy_wd (EV_A_ slot, wd, ev);
2668 else
2669 {
2670 WL w_;
2671
2672 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2673 {
2674 ev_stat *w = (ev_stat *)w_;
2675 w_ = w_->next; /* lets us remove this watcher and all before it */
2676
2677 if (w->wd == wd || wd == -1)
2678 {
2679 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2680 {
2681 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682 w->wd = -1;
2683 infy_add (EV_A_ w); /* re-add, no matter what */
2684 }
2685
2686 stat_timer_cb (EV_A_ &w->timer, 0);
2687 }
2688 }
2689 }
2690}
2691
2692static void
2693infy_cb (EV_P_ ev_io *w, int revents)
2694{
2695 char buf [EV_INOTIFY_BUFSIZE];
2696 struct inotify_event *ev = (struct inotify_event *)buf;
2697 int ofs;
2698 int len = read (fs_fd, buf, sizeof (buf));
2699
2700 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2701 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2702}
2703
2704inline_size void
2705check_2625 (EV_P)
2706{
2707 /* kernels < 2.6.25 are borked
2708 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2709 */
2710 struct utsname buf;
2711 int major, minor, micro;
2712
2713 if (uname (&buf))
2714 return;
2715
2716 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2717 return;
2718
2719 if (major < 2
2720 || (major == 2 && minor < 6)
2721 || (major == 2 && minor == 6 && micro < 25))
2722 return;
2723
2724 fs_2625 = 1;
2725}
2726
2727inline_size void
2728infy_init (EV_P)
2729{
2730 if (fs_fd != -2)
2731 return;
2732
2733 fs_fd = -1;
2734
2735 check_2625 (EV_A);
2736
2737 fs_fd = inotify_init ();
2738
2739 if (fs_fd >= 0)
2740 {
2741 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2742 ev_set_priority (&fs_w, EV_MAXPRI);
2743 ev_io_start (EV_A_ &fs_w);
2744 }
2745}
2746
2747inline_size void
2748infy_fork (EV_P)
2749{
2750 int slot;
2751
2752 if (fs_fd < 0)
2753 return;
2754
2755 close (fs_fd);
2756 fs_fd = inotify_init ();
2757
2758 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2759 {
2760 WL w_ = fs_hash [slot].head;
2761 fs_hash [slot].head = 0;
2762
2763 while (w_)
2764 {
2765 ev_stat *w = (ev_stat *)w_;
2766 w_ = w_->next; /* lets us add this watcher */
2767
2768 w->wd = -1;
2769
2770 if (fs_fd >= 0)
2771 infy_add (EV_A_ w); /* re-add, no matter what */
2772 else
2773 ev_timer_again (EV_A_ &w->timer);
2774 }
2775 }
2776}
2777
2778#endif
2779
2780#ifdef _WIN32
2781# define EV_LSTAT(p,b) _stati64 (p, b)
2782#else
2783# define EV_LSTAT(p,b) lstat (p, b)
2784#endif
2785
2786void
2787ev_stat_stat (EV_P_ ev_stat *w)
2788{
2789 if (lstat (w->path, &w->attr) < 0)
2790 w->attr.st_nlink = 0;
2791 else if (!w->attr.st_nlink)
2792 w->attr.st_nlink = 1;
2793}
2794
2795static void noinline
2796stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2797{
2798 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2799
2800 /* we copy this here each the time so that */
2801 /* prev has the old value when the callback gets invoked */
2802 w->prev = w->attr;
2803 ev_stat_stat (EV_A_ w);
2804
2805 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2806 if (
2807 w->prev.st_dev != w->attr.st_dev
2808 || w->prev.st_ino != w->attr.st_ino
2809 || w->prev.st_mode != w->attr.st_mode
2810 || w->prev.st_nlink != w->attr.st_nlink
2811 || w->prev.st_uid != w->attr.st_uid
2812 || w->prev.st_gid != w->attr.st_gid
2813 || w->prev.st_rdev != w->attr.st_rdev
2814 || w->prev.st_size != w->attr.st_size
2815 || w->prev.st_atime != w->attr.st_atime
2816 || w->prev.st_mtime != w->attr.st_mtime
2817 || w->prev.st_ctime != w->attr.st_ctime
2818 ) {
2819 #if EV_USE_INOTIFY
2820 if (fs_fd >= 0)
2821 {
2822 infy_del (EV_A_ w);
2823 infy_add (EV_A_ w);
2824 ev_stat_stat (EV_A_ w); /* avoid race... */
2825 }
2826 #endif
2827
2828 ev_feed_event (EV_A_ w, EV_STAT);
2829 }
2830}
2831
2832void
2833ev_stat_start (EV_P_ ev_stat *w)
2834{
2835 if (expect_false (ev_is_active (w)))
2836 return;
2837
2838 ev_stat_stat (EV_A_ w);
2839
2840 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2841 w->interval = MIN_STAT_INTERVAL;
2842
2843 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2844 ev_set_priority (&w->timer, ev_priority (w));
2845
2846#if EV_USE_INOTIFY
2847 infy_init (EV_A);
2848
2849 if (fs_fd >= 0)
2850 infy_add (EV_A_ w);
2851 else
2852#endif
2853 ev_timer_again (EV_A_ &w->timer);
2854
2855 ev_start (EV_A_ (W)w, 1);
2856
2857 EV_FREQUENT_CHECK;
2858}
2859
2860void
2861ev_stat_stop (EV_P_ ev_stat *w)
2862{
2863 clear_pending (EV_A_ (W)w);
2864 if (expect_false (!ev_is_active (w)))
2865 return;
2866
2867 EV_FREQUENT_CHECK;
2868
2869#if EV_USE_INOTIFY
2870 infy_del (EV_A_ w);
2871#endif
2872 ev_timer_stop (EV_A_ &w->timer);
2873
2874 ev_stop (EV_A_ (W)w);
2875
2876 EV_FREQUENT_CHECK;
2877}
2878#endif
2879
2880#if EV_IDLE_ENABLE
2881void
2882ev_idle_start (EV_P_ ev_idle *w)
2883{
2884 if (expect_false (ev_is_active (w)))
2885 return;
2886
2887 pri_adjust (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890
2891 {
2892 int active = ++idlecnt [ABSPRI (w)];
2893
2894 ++idleall;
2895 ev_start (EV_A_ (W)w, active);
2896
2897 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2898 idles [ABSPRI (w)][active - 1] = w;
2899 }
2900
2901 EV_FREQUENT_CHECK;
2902}
2903
2904void
2905ev_idle_stop (EV_P_ ev_idle *w)
2906{
2907 clear_pending (EV_A_ (W)w);
2908 if (expect_false (!ev_is_active (w)))
2909 return;
2910
2911 EV_FREQUENT_CHECK;
2912
2913 {
2914 int active = ev_active (w);
2915
2916 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2917 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2918
2919 ev_stop (EV_A_ (W)w);
2920 --idleall;
2921 }
2922
2923 EV_FREQUENT_CHECK;
2924}
2925#endif
2926
2927void
2928ev_prepare_start (EV_P_ ev_prepare *w)
2929{
2930 if (expect_false (ev_is_active (w)))
2931 return;
2932
2933 EV_FREQUENT_CHECK;
2934
2935 ev_start (EV_A_ (W)w, ++preparecnt);
2936 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2937 prepares [preparecnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2940}
2941
2942void
2943ev_prepare_stop (EV_P_ ev_prepare *w)
2944{
2945 clear_pending (EV_A_ (W)w);
2946 if (expect_false (!ev_is_active (w)))
2947 return;
2948
2949 EV_FREQUENT_CHECK;
2950
2951 {
2952 int active = ev_active (w);
2953
2954 prepares [active - 1] = prepares [--preparecnt];
2955 ev_active (prepares [active - 1]) = active;
2956 }
2957
2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2961}
2962
2963void
2964ev_check_start (EV_P_ ev_check *w)
2965{
2966 if (expect_false (ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 ev_start (EV_A_ (W)w, ++checkcnt);
2972 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2973 checks [checkcnt - 1] = w;
2974
2975 EV_FREQUENT_CHECK;
2976}
2977
2978void
2979ev_check_stop (EV_P_ ev_check *w)
2980{
2981 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w)))
2983 return;
2984
2985 EV_FREQUENT_CHECK;
2986
2987 {
2988 int active = ev_active (w);
2989
2990 checks [active - 1] = checks [--checkcnt];
2991 ev_active (checks [active - 1]) = active;
2992 }
2993
2994 ev_stop (EV_A_ (W)w);
2995
2996 EV_FREQUENT_CHECK;
2997}
2998
2999#if EV_EMBED_ENABLE
3000void noinline
3001ev_embed_sweep (EV_P_ ev_embed *w)
3002{
3003 ev_loop (w->other, EVLOOP_NONBLOCK);
3004}
3005
3006static void
3007embed_io_cb (EV_P_ ev_io *io, int revents)
3008{
3009 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3010
3011 if (ev_cb (w))
3012 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3013 else
3014 ev_loop (w->other, EVLOOP_NONBLOCK);
3015}
3016
3017static void
3018embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3021
3022 {
3023 struct ev_loop *loop = w->other;
3024
3025 while (fdchangecnt)
3026 {
3027 fd_reify (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030 }
3031}
3032
3033static void
3034embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3035{
3036 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3037
3038 ev_embed_stop (EV_A_ w);
3039
3040 {
3041 struct ev_loop *loop = w->other;
3042
3043 ev_loop_fork (EV_A);
3044 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3045 }
3046
3047 ev_embed_start (EV_A_ w);
3048}
3049
3050#if 0
3051static void
3052embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3053{
3054 ev_idle_stop (EV_A_ idle);
3055}
3056#endif
3057
3058void
3059ev_embed_start (EV_P_ ev_embed *w)
3060{
3061 if (expect_false (ev_is_active (w)))
3062 return;
3063
3064 {
3065 struct ev_loop *loop = w->other;
3066 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3067 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3068 }
3069
3070 EV_FREQUENT_CHECK;
3071
3072 ev_set_priority (&w->io, ev_priority (w));
3073 ev_io_start (EV_A_ &w->io);
3074
3075 ev_prepare_init (&w->prepare, embed_prepare_cb);
3076 ev_set_priority (&w->prepare, EV_MINPRI);
3077 ev_prepare_start (EV_A_ &w->prepare);
3078
3079 ev_fork_init (&w->fork, embed_fork_cb);
3080 ev_fork_start (EV_A_ &w->fork);
3081
3082 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3083
3084 ev_start (EV_A_ (W)w, 1);
3085
3086 EV_FREQUENT_CHECK;
3087}
3088
3089void
3090ev_embed_stop (EV_P_ ev_embed *w)
3091{
3092 clear_pending (EV_A_ (W)w);
3093 if (expect_false (!ev_is_active (w)))
3094 return;
3095
3096 EV_FREQUENT_CHECK;
3097
3098 ev_io_stop (EV_A_ &w->io);
3099 ev_prepare_stop (EV_A_ &w->prepare);
3100 ev_fork_stop (EV_A_ &w->fork);
3101
3102 EV_FREQUENT_CHECK;
3103}
3104#endif
3105
3106#if EV_FORK_ENABLE
3107void
3108ev_fork_start (EV_P_ ev_fork *w)
3109{
3110 if (expect_false (ev_is_active (w)))
3111 return;
3112
3113 EV_FREQUENT_CHECK;
3114
3115 ev_start (EV_A_ (W)w, ++forkcnt);
3116 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3117 forks [forkcnt - 1] = w;
3118
3119 EV_FREQUENT_CHECK;
3120}
3121
3122void
3123ev_fork_stop (EV_P_ ev_fork *w)
3124{
3125 clear_pending (EV_A_ (W)w);
3126 if (expect_false (!ev_is_active (w)))
3127 return;
3128
3129 EV_FREQUENT_CHECK;
3130
3131 {
3132 int active = ev_active (w);
3133
3134 forks [active - 1] = forks [--forkcnt];
3135 ev_active (forks [active - 1]) = active;
3136 }
3137
3138 ev_stop (EV_A_ (W)w);
3139
3140 EV_FREQUENT_CHECK;
3141}
3142#endif
3143
3144#if EV_ASYNC_ENABLE
3145void
3146ev_async_start (EV_P_ ev_async *w)
3147{
3148 if (expect_false (ev_is_active (w)))
3149 return;
3150
3151 evpipe_init (EV_A);
3152
3153 EV_FREQUENT_CHECK;
3154
3155 ev_start (EV_A_ (W)w, ++asynccnt);
3156 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3157 asyncs [asynccnt - 1] = w;
3158
3159 EV_FREQUENT_CHECK;
3160}
3161
3162void
3163ev_async_stop (EV_P_ ev_async *w)
3164{
3165 clear_pending (EV_A_ (W)w);
3166 if (expect_false (!ev_is_active (w)))
3167 return;
3168
3169 EV_FREQUENT_CHECK;
3170
3171 {
3172 int active = ev_active (w);
3173
3174 asyncs [active - 1] = asyncs [--asynccnt];
3175 ev_active (asyncs [active - 1]) = active;
3176 }
3177
3178 ev_stop (EV_A_ (W)w);
3179
3180 EV_FREQUENT_CHECK;
3181}
3182
3183void
3184ev_async_send (EV_P_ ev_async *w)
3185{
3186 w->sent = 1;
3187 evpipe_write (EV_A_ &gotasync);
3188}
3189#endif
1428 3190
1429/*****************************************************************************/ 3191/*****************************************************************************/
1430 3192
1431struct ev_once 3193struct ev_once
1432{ 3194{
1433 struct ev_io io; 3195 ev_io io;
1434 struct ev_timer to; 3196 ev_timer to;
1435 void (*cb)(int revents, void *arg); 3197 void (*cb)(int revents, void *arg);
1436 void *arg; 3198 void *arg;
1437}; 3199};
1438 3200
1439static void 3201static void
1440once_cb (EV_P_ struct ev_once *once, int revents) 3202once_cb (EV_P_ struct ev_once *once, int revents)
1441{ 3203{
1442 void (*cb)(int revents, void *arg) = once->cb; 3204 void (*cb)(int revents, void *arg) = once->cb;
1443 void *arg = once->arg; 3205 void *arg = once->arg;
1444 3206
1445 ev_io_stop (EV_A_ &once->io); 3207 ev_io_stop (EV_A_ &once->io);
1446 ev_timer_stop (EV_A_ &once->to); 3208 ev_timer_stop (EV_A_ &once->to);
1447 ev_free (once); 3209 ev_free (once);
1448 3210
1449 cb (revents, arg); 3211 cb (revents, arg);
1450} 3212}
1451 3213
1452static void 3214static void
1453once_cb_io (EV_P_ struct ev_io *w, int revents) 3215once_cb_io (EV_P_ ev_io *w, int revents)
1454{ 3216{
1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1456} 3220}
1457 3221
1458static void 3222static void
1459once_cb_to (EV_P_ struct ev_timer *w, int revents) 3223once_cb_to (EV_P_ ev_timer *w, int revents)
1460{ 3224{
1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1462} 3228}
1463 3229
1464void 3230void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3231ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 3232{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 3233 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 3234
1469 if (!once) 3235 if (expect_false (!once))
3236 {
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3237 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 3238 return;
1472 { 3239 }
3240
1473 once->cb = cb; 3241 once->cb = cb;
1474 once->arg = arg; 3242 once->arg = arg;
1475 3243
1476 ev_watcher_init (&once->io, once_cb_io); 3244 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 3245 if (fd >= 0)
3246 {
3247 ev_io_set (&once->io, fd, events);
3248 ev_io_start (EV_A_ &once->io);
3249 }
3250
3251 ev_init (&once->to, once_cb_to);
3252 if (timeout >= 0.)
3253 {
3254 ev_timer_set (&once->to, timeout, 0.);
3255 ev_timer_start (EV_A_ &once->to);
3256 }
3257}
3258
3259/*****************************************************************************/
3260
3261#if EV_WALK_ENABLE
3262void
3263ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3264{
3265 int i, j;
3266 ev_watcher_list *wl, *wn;
3267
3268 if (types & (EV_IO | EV_EMBED))
3269 for (i = 0; i < anfdmax; ++i)
3270 for (wl = anfds [i].head; wl; )
1478 { 3271 {
1479 ev_io_set (&once->io, fd, events); 3272 wn = wl->next;
1480 ev_io_start (EV_A_ &once->io); 3273
3274#if EV_EMBED_ENABLE
3275 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3276 {
3277 if (types & EV_EMBED)
3278 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3279 }
3280 else
3281#endif
3282#if EV_USE_INOTIFY
3283 if (ev_cb ((ev_io *)wl) == infy_cb)
3284 ;
3285 else
3286#endif
3287 if ((ev_io *)wl != &pipe_w)
3288 if (types & EV_IO)
3289 cb (EV_A_ EV_IO, wl);
3290
3291 wl = wn;
1481 } 3292 }
1482 3293
1483 ev_watcher_init (&once->to, once_cb_to); 3294 if (types & (EV_TIMER | EV_STAT))
1484 if (timeout >= 0.) 3295 for (i = timercnt + HEAP0; i-- > HEAP0; )
3296#if EV_STAT_ENABLE
3297 /*TODO: timer is not always active*/
3298 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1485 { 3299 {
1486 ev_timer_set (&once->to, timeout, 0.); 3300 if (types & EV_STAT)
1487 ev_timer_start (EV_A_ &once->to); 3301 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1488 } 3302 }
1489 } 3303 else
1490} 3304#endif
3305 if (types & EV_TIMER)
3306 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1491 3307
3308#if EV_PERIODIC_ENABLE
3309 if (types & EV_PERIODIC)
3310 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3311 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3312#endif
3313
3314#if EV_IDLE_ENABLE
3315 if (types & EV_IDLE)
3316 for (j = NUMPRI; i--; )
3317 for (i = idlecnt [j]; i--; )
3318 cb (EV_A_ EV_IDLE, idles [j][i]);
3319#endif
3320
3321#if EV_FORK_ENABLE
3322 if (types & EV_FORK)
3323 for (i = forkcnt; i--; )
3324 if (ev_cb (forks [i]) != embed_fork_cb)
3325 cb (EV_A_ EV_FORK, forks [i]);
3326#endif
3327
3328#if EV_ASYNC_ENABLE
3329 if (types & EV_ASYNC)
3330 for (i = asynccnt; i--; )
3331 cb (EV_A_ EV_ASYNC, asyncs [i]);
3332#endif
3333
3334 if (types & EV_PREPARE)
3335 for (i = preparecnt; i--; )
3336#if EV_EMBED_ENABLE
3337 if (ev_cb (prepares [i]) != embed_prepare_cb)
3338#endif
3339 cb (EV_A_ EV_PREPARE, prepares [i]);
3340
3341 if (types & EV_CHECK)
3342 for (i = checkcnt; i--; )
3343 cb (EV_A_ EV_CHECK, checks [i]);
3344
3345 if (types & EV_SIGNAL)
3346 for (i = 0; i < signalmax; ++i)
3347 for (wl = signals [i].head; wl; )
3348 {
3349 wn = wl->next;
3350 cb (EV_A_ EV_SIGNAL, wl);
3351 wl = wn;
3352 }
3353
3354 if (types & EV_CHILD)
3355 for (i = EV_PID_HASHSIZE; i--; )
3356 for (wl = childs [i]; wl; )
3357 {
3358 wn = wl->next;
3359 cb (EV_A_ EV_CHILD, wl);
3360 wl = wn;
3361 }
3362/* EV_STAT 0x00001000 /* stat data changed */
3363/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3364}
3365#endif
3366
3367#if EV_MULTIPLICITY
3368 #include "ev_wrap.h"
3369#endif
3370
3371#ifdef __cplusplus
3372}
3373#endif
3374

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines