ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.31 by root, Thu Nov 1 09:05:33 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
63#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
65#endif 119#endif
66#ifndef EV_USE_REALTIME 120
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
68#endif
69 122
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 127
75#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 143
77typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
80 147
81static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84 149
85static int have_monotonic; /* runtime */ 150#if WIN32
86 151/* note: the comment below could not be substantiated, but what would I care */
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
88static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
89static void (*method_poll)(ev_tstamp timeout); 154#endif
90 155
91/*****************************************************************************/ 156/*****************************************************************************/
92 157
93ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
94ev_time (void) 237ev_time (void)
95{ 238{
96#if EV_USE_REALTIME 239#if EV_USE_REALTIME
97 struct timespec ts; 240 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 247#endif
105} 248}
106 249
107static ev_tstamp 250inline ev_tstamp
108get_clock (void) 251get_clock (void)
109{ 252{
110#if EV_USE_MONOTONIC 253#if EV_USE_MONOTONIC
111 if (have_monotonic) 254 if (expect_true (have_monotonic))
112 { 255 {
113 struct timespec ts; 256 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 257 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 258 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 259 }
117#endif 260#endif
118 261
119 return ev_time (); 262 return ev_time ();
120} 263}
121 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
122#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
123 272
124#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 274 if (expect_false ((cnt) > cur)) \
126 { \ 275 { \
127 int newcnt = cur; \ 276 int newcnt = cur; \
128 do \ 277 do \
129 { \ 278 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
131 } \ 280 } \
132 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
133 \ 282 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
136 cur = newcnt; \ 285 cur = newcnt; \
137 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
138 298
139/*****************************************************************************/ 299/*****************************************************************************/
140
141typedef struct
142{
143 struct ev_io *head;
144 int events;
145} ANFD;
146
147static ANFD *anfds;
148static int anfdmax;
149 300
150static void 301static void
151anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
152{ 303{
153 while (count--) 304 while (count--)
154 { 305 {
155 base->head = 0; 306 base->head = 0;
156 base->events = EV_NONE; 307 base->events = EV_NONE;
308 base->reify = 0;
309
157 ++base; 310 ++base;
158 } 311 }
159} 312}
160 313
161typedef struct
162{
163 W w;
164 int events;
165} ANPENDING;
166
167static ANPENDING *pendings;
168static int pendingmax, pendingcnt;
169
170static void 314static void
171event (W w, int events) 315event (EV_P_ W w, int events)
172{ 316{
317 if (w->pending)
318 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
320 return;
321 }
322
173 w->pending = ++pendingcnt; 323 w->pending = ++pendingcnt [ABSPRI (w)];
174 array_needsize (pendings, pendingmax, pendingcnt, ); 324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
175 pendings [pendingcnt - 1].w = w; 325 pendings [ABSPRI (w)][w->pending - 1].w = w;
176 pendings [pendingcnt - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events = events;
177} 327}
178 328
179static void 329static void
180queue_events (W *events, int eventcnt, int type) 330queue_events (EV_P_ W *events, int eventcnt, int type)
181{ 331{
182 int i; 332 int i;
183 333
184 for (i = 0; i < eventcnt; ++i) 334 for (i = 0; i < eventcnt; ++i)
185 event (events [i], type); 335 event (EV_A_ events [i], type);
186} 336}
187 337
188static void 338static void
189fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
190{ 340{
191 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
192 struct ev_io *w; 342 struct ev_io *w;
193 343
194 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
195 { 345 {
196 int ev = w->events & events; 346 int ev = w->events & events;
197 347
198 if (ev) 348 if (ev)
199 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
200 } 350 }
201} 351}
202 352
203/*****************************************************************************/ 353/*****************************************************************************/
204 354
205static int *fdchanges;
206static int fdchangemax, fdchangecnt;
207
208static void 355static void
209fd_reify (void) 356fd_reify (EV_P)
210{ 357{
211 int i; 358 int i;
212 359
213 for (i = 0; i < fdchangecnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
214 { 361 {
216 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
217 struct ev_io *w; 364 struct ev_io *w;
218 365
219 int events = 0; 366 int events = 0;
220 367
221 for (w = anfd->head; w; w = w->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
222 events |= w->events; 369 events |= w->events;
223 370
224 anfd->events &= ~EV_REIFY; 371 anfd->reify = 0;
225 372
226 if (anfd->events != events)
227 {
228 method_modify (fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
229 anfd->events = events; 374 anfd->events = events;
230 }
231 } 375 }
232 376
233 fdchangecnt = 0; 377 fdchangecnt = 0;
234} 378}
235 379
236static void 380static void
237fd_change (int fd) 381fd_change (EV_P_ int fd)
238{ 382{
239 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 383 if (anfds [fd].reify || fdchangecnt < 0)
240 return; 384 return;
241 385
242 anfds [fd].events |= EV_REIFY; 386 anfds [fd].reify = 1;
243 387
244 ++fdchangecnt; 388 ++fdchangecnt;
245 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
246 fdchanges [fdchangecnt - 1] = fd; 390 fdchanges [fdchangecnt - 1] = fd;
247} 391}
248 392
393static void
394fd_kill (EV_P_ int fd)
395{
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
403}
404
249/* called on EBADF to verify fds */ 405/* called on EBADF to verify fds */
250static void 406static void
251fd_recheck (void) 407fd_ebadf (EV_P)
252{ 408{
253 int fd; 409 int fd;
254 410
255 for (fd = 0; fd < anfdmax; ++fd) 411 for (fd = 0; fd < anfdmax; ++fd)
256 if (anfds [fd].events) 412 if (anfds [fd].events)
257 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
258 while (anfds [fd].head) 414 fd_kill (EV_A_ fd);
415}
416
417/* called on ENOMEM in select/poll to kill some fds and retry */
418static void
419fd_enomem (EV_P)
420{
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
259 { 425 {
260 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 426 fd_kill (EV_A_ fd);
261 ev_io_stop (anfds [fd].head); 427 return;
262 } 428 }
429}
430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
263} 444}
264 445
265/*****************************************************************************/ 446/*****************************************************************************/
266 447
267static struct ev_timer **timers;
268static int timermax, timercnt;
269
270static struct ev_periodic **periodics;
271static int periodicmax, periodiccnt;
272
273static void 448static void
274upheap (WT *timers, int k) 449upheap (WT *heap, int k)
275{ 450{
276 WT w = timers [k]; 451 WT w = heap [k];
277 452
278 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
279 { 454 {
280 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
281 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
282 k >>= 1; 457 k >>= 1;
283 } 458 }
284 459
285 timers [k] = w; 460 heap [k] = w;
286 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
287 462
288} 463}
289 464
290static void 465static void
291downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
292{ 467{
293 WT w = timers [k]; 468 WT w = heap [k];
294 469
295 while (k < (N >> 1)) 470 while (k < (N >> 1))
296 { 471 {
297 int j = k << 1; 472 int j = k << 1;
298 473
299 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
300 ++j; 475 ++j;
301 476
302 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
303 break; 478 break;
304 479
305 timers [k] = timers [j]; 480 heap [k] = heap [j];
306 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
307 k = j; 482 k = j;
308 } 483 }
309 484
310 timers [k] = w; 485 heap [k] = w;
311 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
312} 487}
313 488
314/*****************************************************************************/ 489/*****************************************************************************/
315 490
316typedef struct 491typedef struct
317{ 492{
318 struct ev_signal *head; 493 WL head;
319 sig_atomic_t gotsig; 494 sig_atomic_t volatile gotsig;
320} ANSIG; 495} ANSIG;
321 496
322static ANSIG *signals; 497static ANSIG *signals;
323static int signalmax; 498static int signalmax;
324 499
325static int sigpipe [2]; 500static int sigpipe [2];
326static sig_atomic_t gotsig; 501static sig_atomic_t volatile gotsig;
327static struct ev_io sigev; 502static struct ev_io sigev;
328 503
329static void 504static void
330signals_init (ANSIG *base, int count) 505signals_init (ANSIG *base, int count)
331{ 506{
332 while (count--) 507 while (count--)
333 { 508 {
334 base->head = 0; 509 base->head = 0;
335 base->gotsig = 0; 510 base->gotsig = 0;
511
336 ++base; 512 ++base;
337 } 513 }
338} 514}
339 515
340static void 516static void
341sighandler (int signum) 517sighandler (int signum)
342{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
343 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
344 524
345 if (!gotsig) 525 if (!gotsig)
346 { 526 {
527 int old_errno = errno;
347 gotsig = 1; 528 gotsig = 1;
348 write (sigpipe [1], &gotsig, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
349 } 531 }
350} 532}
351 533
352static void 534static void
353sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
354{ 536{
355 struct ev_signal *w; 537 WL w;
356 int sig; 538 int signum;
357 539
540 read (sigpipe [0], &revents, 1);
358 gotsig = 0; 541 gotsig = 0;
359 read (sigpipe [0], &revents, 1);
360 542
361 for (sig = signalmax; sig--; ) 543 for (signum = signalmax; signum--; )
362 if (signals [sig].gotsig) 544 if (signals [signum].gotsig)
363 { 545 {
364 signals [sig].gotsig = 0; 546 signals [signum].gotsig = 0;
365 547
366 for (w = signals [sig].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
367 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
368 } 550 }
369} 551}
370 552
371static void 553static void
372siginit (void) 554siginit (EV_P)
373{ 555{
556#ifndef WIN32
374 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
375 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
376 559
377 /* rather than sort out wether we really need nb, set it */ 560 /* rather than sort out wether we really need nb, set it */
378 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
379 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
380 564
381 ev_io_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
382 ev_io_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
383} 568}
384 569
385/*****************************************************************************/ 570/*****************************************************************************/
386 571
387static struct ev_idle **idles; 572#ifndef WIN32
388static int idlemax, idlecnt;
389
390static struct ev_prepare **prepares;
391static int preparemax, preparecnt;
392
393static struct ev_check **checks;
394static int checkmax, checkcnt;
395
396/*****************************************************************************/
397 573
398static struct ev_child *childs [PID_HASHSIZE]; 574static struct ev_child *childs [PID_HASHSIZE];
399static struct ev_signal childev; 575static struct ev_signal childev;
400 576
401#ifndef WCONTINUED 577#ifndef WCONTINUED
402# define WCONTINUED 0 578# define WCONTINUED 0
403#endif 579#endif
404 580
405static void 581static void
406childcb (struct ev_signal *sw, int revents) 582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
407{ 583{
408 struct ev_child *w; 584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents)
598{
409 int pid, status; 599 int pid, status;
410 600
411 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
412 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 602 {
413 if (w->pid == pid || w->pid == -1) 603 /* make sure we are called again until all childs have been reaped */
414 { 604 event (EV_A_ (W)sw, EV_SIGNAL);
415 w->status = status; 605
416 event ((W)w, EV_CHILD); 606 child_reap (EV_A_ sw, pid, pid, status);
417 } 607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
418} 609}
610
611#endif
419 612
420/*****************************************************************************/ 613/*****************************************************************************/
421 614
615#if EV_USE_KQUEUE
616# include "ev_kqueue.c"
617#endif
422#if EV_USE_EPOLL 618#if EV_USE_EPOLL
423# include "ev_epoll.c" 619# include "ev_epoll.c"
424#endif 620#endif
621#if EV_USE_POLL
622# include "ev_poll.c"
623#endif
425#if EV_USE_SELECT 624#if EV_USE_SELECT
426# include "ev_select.c" 625# include "ev_select.c"
427#endif 626#endif
428 627
429int 628int
436ev_version_minor (void) 635ev_version_minor (void)
437{ 636{
438 return EV_VERSION_MINOR; 637 return EV_VERSION_MINOR;
439} 638}
440 639
441int ev_init (int flags) 640/* return true if we are running with elevated privileges and should ignore env variables */
641static int
642enable_secure (void)
442{ 643{
644#ifdef WIN32
645 return 0;
646#else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649#endif
650}
651
652int
653ev_method (EV_P)
654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
443 if (!ev_method) 661 if (!method)
444 { 662 {
445#if EV_USE_MONOTONIC 663#if EV_USE_MONOTONIC
446 { 664 {
447 struct timespec ts; 665 struct timespec ts;
448 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
449 have_monotonic = 1; 667 have_monotonic = 1;
450 } 668 }
451#endif 669#endif
452 670
453 ev_now = ev_time (); 671 rt_now = ev_time ();
454 now = get_clock (); 672 mn_now = get_clock ();
673 now_floor = mn_now;
455 diff = ev_now - now; 674 rtmn_diff = rt_now - mn_now;
456 675
457 if (pipe (sigpipe)) 676 if (methods == EVMETHOD_AUTO)
458 return 0; 677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
459 678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
460 ev_method = EVMETHOD_NONE; 680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
461#if EV_USE_EPOLL 689#if EV_USE_EPOLL
462 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
463#endif 694#endif
464#if EV_USE_SELECT 695#if EV_USE_SELECT
465 if (ev_method == EVMETHOD_NONE) select_init (flags); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
466#endif 697#endif
698 }
699}
467 700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
468 if (ev_method) 805 if (ev_method (EV_A))
469 { 806 {
470 ev_watcher_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
471 siginit (); 809 siginit (EV_A);
472 810
811#ifndef WIN32
473 ev_signal_init (&childev, childcb, SIGCHLD); 812 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI);
474 ev_signal_start (&childev); 814 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif
475 } 817 }
818 else
819 default_loop = 0;
476 } 820 }
477 821
478 return ev_method; 822 return default_loop;
479} 823}
480 824
481/*****************************************************************************/
482
483void 825void
484ev_prefork (void) 826ev_default_destroy (void)
485{ 827{
486 /* nop */ 828#if EV_MULTIPLICITY
487} 829 struct ev_loop *loop = default_loop;
488
489void
490ev_postfork_parent (void)
491{
492 /* nop */
493}
494
495void
496ev_postfork_child (void)
497{
498#if EV_USE_EPOLL
499 if (ev_method == EVMETHOD_EPOLL)
500 epoll_postfork_child ();
501#endif 830#endif
502 831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
503 ev_io_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
504 close (sigpipe [0]); 854 close (sigpipe [0]);
505 close (sigpipe [1]); 855 close (sigpipe [1]);
506 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
507 siginit (); 859 siginit (EV_A);
508} 860}
509 861
510/*****************************************************************************/ 862/*****************************************************************************/
511 863
512static void 864static void
513call_pending (void) 865call_pending (EV_P)
514{ 866{
867 int pri;
868
869 for (pri = NUMPRI; pri--; )
515 while (pendingcnt) 870 while (pendingcnt [pri])
516 { 871 {
517 ANPENDING *p = pendings + --pendingcnt; 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
518 873
519 if (p->w) 874 if (p->w)
520 { 875 {
521 p->w->pending = 0; 876 p->w->pending = 0;
522 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
523 } 878 }
524 } 879 }
525} 880}
526 881
527static void 882static void
528timers_reify (void) 883timers_reify (EV_P)
529{ 884{
530 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
531 { 886 {
532 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
533 890
534 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
535 if (w->repeat) 892 if (w->repeat)
536 { 893 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
537 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
538 assert (("timer timeout in the past, negative repeat?", w->at > now));
539 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
540 } 897 }
541 else 898 else
542 ev_timer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
543 900
544 event ((W)w, EV_TIMEOUT); 901 event (EV_A_ (W)w, EV_TIMEOUT);
545 } 902 }
546} 903}
547 904
548static void 905static void
549periodics_reify (void) 906periodics_reify (EV_P)
550{ 907{
551 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
552 { 909 {
553 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
554 913
555 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
556 if (w->interval) 915 if (w->interval)
557 { 916 {
558 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
559 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
560 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
561 } 920 }
562 else 921 else
563 ev_periodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
564 923
565 event ((W)w, EV_TIMEOUT); 924 event (EV_A_ (W)w, EV_PERIODIC);
566 } 925 }
567} 926}
568 927
569static void 928static void
570periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
571{ 930{
572 int i; 931 int i;
573 932
574 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
575 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
576 { 935 {
577 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
578 937
579 if (w->interval) 938 if (w->interval)
580 { 939 {
581 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
582 941
583 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
584 { 943 {
585 ev_periodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
586 ev_periodic_start (w); 945 ev_periodic_start (EV_A_ w);
587 946
588 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
589 } 948 }
590 } 949 }
591 } 950 }
592} 951}
593 952
953inline int
954time_update_monotonic (EV_P)
955{
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969}
970
594static void 971static void
595time_update (void) 972time_update (EV_P)
596{ 973{
597 int i; 974 int i;
598 975
599 ev_now = ev_time (); 976#if EV_USE_MONOTONIC
600
601 if (have_monotonic) 977 if (expect_true (have_monotonic))
602 { 978 {
603 ev_tstamp odiff = diff; 979 if (time_update_monotonic (EV_A))
604
605 for (i = 4; --i; ) /* loop a few times, before making important decisions */
606 { 980 {
607 now = get_clock (); 981 ev_tstamp odiff = rtmn_diff;
982
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 {
608 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
609 986
610 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
611 return; /* all is well */ 988 return; /* all is well */
612 989
613 ev_now = ev_time (); 990 rt_now = ev_time ();
991 mn_now = get_clock ();
992 now_floor = mn_now;
993 }
994
995 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
614 } 998 }
615
616 periodics_reschedule (diff - odiff);
617 /* no timer adjustment, as the monotonic clock doesn't jump */
618 } 999 }
619 else 1000 else
1001#endif
620 { 1002 {
621 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1003 rt_now = ev_time ();
1004
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
622 { 1006 {
623 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
624 1008
625 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
626 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
627 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
628 } 1012 }
629 1013
630 now = ev_now; 1014 mn_now = rt_now;
631 } 1015 }
632} 1016}
633 1017
634int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
635 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
636void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
637{ 1034{
638 double block; 1035 double block;
639 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
640 1037
641 do 1038 do
642 { 1039 {
643 /* queue check watchers (and execute them) */ 1040 /* queue check watchers (and execute them) */
644 if (preparecnt) 1041 if (expect_false (preparecnt))
645 { 1042 {
646 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
647 call_pending (); 1044 call_pending (EV_A);
648 } 1045 }
649 1046
650 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
651 fd_reify (); 1048 fd_reify (EV_A);
652 1049
653 /* calculate blocking time */ 1050 /* calculate blocking time */
654 1051
655 /* we only need this for !monotonic clockor timers, but as we basically 1052 /* we only need this for !monotonic clockor timers, but as we basically
656 always have timers, we just calculate it always */ 1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 {
657 ev_now = ev_time (); 1060 rt_now = ev_time ();
1061 mn_now = rt_now;
1062 }
658 1063
659 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
660 block = 0.; 1065 block = 0.;
661 else 1066 else
662 { 1067 {
663 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
664 1069
665 if (timercnt) 1070 if (timercnt)
666 { 1071 {
667 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
668 if (block > to) block = to; 1073 if (block > to) block = to;
669 } 1074 }
670 1075
671 if (periodiccnt) 1076 if (periodiccnt)
672 { 1077 {
673 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
674 if (block > to) block = to; 1079 if (block > to) block = to;
675 } 1080 }
676 1081
677 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
678 } 1083 }
679 1084
680 method_poll (block); 1085 method_poll (EV_A_ block);
681 1086
682 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
683 time_update (); 1088 time_update (EV_A);
684 1089
685 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
686 timers_reify (); /* relative timers called last */ 1091 timers_reify (EV_A); /* relative timers called last */
687 periodics_reify (); /* absolute timers called first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
688 1093
689 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
690 if (!pendingcnt) 1095 if (!pendingcnt)
691 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
692 1097
693 /* queue check watchers, to be executed first */ 1098 /* queue check watchers, to be executed first */
694 if (checkcnt) 1099 if (checkcnt)
695 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
696 1101
697 call_pending (); 1102 call_pending (EV_A);
698 } 1103 }
699 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
700 1105
701 if (ev_loop_done != 2) 1106 if (loop_done != 2)
702 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
703} 1114}
704 1115
705/*****************************************************************************/ 1116/*****************************************************************************/
706 1117
707static void 1118inline void
708wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
709{ 1120{
710 elem->next = *head; 1121 elem->next = *head;
711 *head = elem; 1122 *head = elem;
712} 1123}
713 1124
714static void 1125inline void
715wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
716{ 1127{
717 while (*head) 1128 while (*head)
718 { 1129 {
719 if (*head == elem) 1130 if (*head == elem)
724 1135
725 head = &(*head)->next; 1136 head = &(*head)->next;
726 } 1137 }
727} 1138}
728 1139
729static void 1140inline void
730ev_clear (W w) 1141ev_clear_pending (EV_P_ W w)
731{ 1142{
732 if (w->pending) 1143 if (w->pending)
733 { 1144 {
734 pendings [w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
735 w->pending = 0; 1146 w->pending = 0;
736 } 1147 }
737} 1148}
738 1149
739static void 1150inline void
740ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
741{ 1152{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
742 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
743} 1158}
744 1159
745static void 1160inline void
746ev_stop (W w) 1161ev_stop (EV_P_ W w)
747{ 1162{
1163 ev_unref (EV_A);
748 w->active = 0; 1164 w->active = 0;
749} 1165}
750 1166
751/*****************************************************************************/ 1167/*****************************************************************************/
752 1168
753void 1169void
754ev_io_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
755{ 1171{
1172 int fd = w->fd;
1173
756 if (ev_is_active (w)) 1174 if (ev_is_active (w))
757 return; 1175 return;
758 1176
759 int fd = w->fd; 1177 assert (("ev_io_start called with negative fd", fd >= 0));
760 1178
761 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
762 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
763 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
764 1182
765 fd_change (fd); 1183 fd_change (EV_A_ fd);
766} 1184}
767 1185
768void 1186void
769ev_io_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
770{ 1188{
771 ev_clear ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
773 return; 1191 return;
774 1192
775 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
776 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
777 1195
778 fd_change (w->fd); 1196 fd_change (EV_A_ w->fd);
779} 1197}
780 1198
781void 1199void
782ev_timer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
783{ 1201{
784 if (ev_is_active (w)) 1202 if (ev_is_active (w))
785 return; 1203 return;
786 1204
787 w->at += now; 1205 ((WT)w)->at += mn_now;
788 1206
789 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
790 1208
791 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
792 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
793 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
794 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
795}
796 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
797void 1217void
798ev_timer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
799{ 1219{
800 ev_clear ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
801 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
802 return; 1222 return;
803 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
804 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
805 { 1227 {
806 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
807 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
808 } 1230 }
809 1231
810 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
811 1233
812 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
813} 1235}
814 1236
815void 1237void
816ev_timer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
817{ 1239{
818 if (ev_is_active (w)) 1240 if (ev_is_active (w))
819 { 1241 {
820 if (w->repeat) 1242 if (w->repeat)
821 { 1243 {
822 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
823 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
824 } 1246 }
825 else 1247 else
826 ev_timer_stop (w); 1248 ev_timer_stop (EV_A_ w);
827 } 1249 }
828 else if (w->repeat) 1250 else if (w->repeat)
829 ev_timer_start (w); 1251 ev_timer_start (EV_A_ w);
830} 1252}
831 1253
832void 1254void
833ev_periodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
834{ 1256{
835 if (ev_is_active (w)) 1257 if (ev_is_active (w))
836 return; 1258 return;
837 1259
838 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
839 1261
840 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
841 if (w->interval) 1263 if (w->interval)
842 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
843 1265
844 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
845 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
846 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
847 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
848}
849 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
850void 1274void
851ev_periodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
852{ 1276{
853 ev_clear ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
854 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
855 return; 1279 return;
856 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
857 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
858 { 1284 {
859 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
860 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
861 } 1287 }
862 1288
863 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
864} 1290}
865 1291
866void 1292void
867ev_signal_start (struct ev_signal *w) 1293ev_idle_start (EV_P_ struct ev_idle *w)
868{ 1294{
869 if (ev_is_active (w)) 1295 if (ev_is_active (w))
870 return; 1296 return;
871 1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357
1358#ifndef SA_RESTART
1359# define SA_RESTART 0
1360#endif
1361
1362void
1363ev_signal_start (EV_P_ struct ev_signal *w)
1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1368 if (ev_is_active (w))
1369 return;
1370
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372
872 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
873 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
874 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
875 1376
876 if (!w->next) 1377 if (!((WL)w)->next)
877 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
878 struct sigaction sa; 1382 struct sigaction sa;
879 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
880 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
881 sa.sa_flags = 0; 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
882 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
883 } 1388 }
884} 1389}
885 1390
886void 1391void
887ev_signal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
888{ 1393{
889 ev_clear ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
890 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
891 return; 1396 return;
892 1397
893 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
894 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
895 1400
896 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
897 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
898} 1403}
899 1404
900void 1405void
901ev_idle_start (struct ev_idle *w) 1406ev_child_start (EV_P_ struct ev_child *w)
902{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
903 if (ev_is_active (w)) 1411 if (ev_is_active (w))
904 return; 1412 return;
905 1413
906 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
907 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
908 idles [idlecnt - 1] = w;
909} 1416}
910 1417
911void 1418void
912ev_idle_stop (struct ev_idle *w) 1419ev_child_stop (EV_P_ struct ev_child *w)
913{ 1420{
914 ev_clear ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
915 if (ev_is_active (w)) 1422 if (ev_is_active (w))
916 return; 1423 return;
917 1424
918 idles [w->active - 1] = idles [--idlecnt];
919 ev_stop ((W)w);
920}
921
922void
923ev_prepare_start (struct ev_prepare *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, ++preparecnt);
929 array_needsize (prepares, preparemax, preparecnt, );
930 prepares [preparecnt - 1] = w;
931}
932
933void
934ev_prepare_stop (struct ev_prepare *w)
935{
936 ev_clear ((W)w);
937 if (ev_is_active (w))
938 return;
939
940 prepares [w->active - 1] = prepares [--preparecnt];
941 ev_stop ((W)w);
942}
943
944void
945ev_check_start (struct ev_check *w)
946{
947 if (ev_is_active (w))
948 return;
949
950 ev_start ((W)w, ++checkcnt);
951 array_needsize (checks, checkmax, checkcnt, );
952 checks [checkcnt - 1] = w;
953}
954
955void
956ev_check_stop (struct ev_check *w)
957{
958 ev_clear ((W)w);
959 if (ev_is_active (w))
960 return;
961
962 checks [w->active - 1] = checks [--checkcnt];
963 ev_stop ((W)w);
964}
965
966void
967ev_child_start (struct ev_child *w)
968{
969 if (ev_is_active (w))
970 return;
971
972 ev_start ((W)w, 1);
973 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
974}
975
976void
977ev_child_stop (struct ev_child *w)
978{
979 ev_clear ((W)w);
980 if (ev_is_active (w))
981 return;
982
983 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
984 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
985} 1427}
986 1428
987/*****************************************************************************/ 1429/*****************************************************************************/
988 1430
989struct ev_once 1431struct ev_once
993 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
994 void *arg; 1436 void *arg;
995}; 1437};
996 1438
997static void 1439static void
998once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
999{ 1441{
1000 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1001 void *arg = once->arg; 1443 void *arg = once->arg;
1002 1444
1003 ev_io_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
1004 ev_timer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1005 free (once); 1447 ev_free (once);
1006 1448
1007 cb (revents, arg); 1449 cb (revents, arg);
1008} 1450}
1009 1451
1010static void 1452static void
1011once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
1012{ 1454{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1014} 1456}
1015 1457
1016static void 1458static void
1017once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
1018{ 1460{
1019 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1020} 1462}
1021 1463
1022void 1464void
1023ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1024{ 1466{
1025 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1026 1468
1027 if (!once) 1469 if (!once)
1028 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 else 1471 else
1030 { 1472 {
1033 1475
1034 ev_watcher_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
1035 if (fd >= 0) 1477 if (fd >= 0)
1036 { 1478 {
1037 ev_io_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
1038 ev_io_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
1039 } 1481 }
1040 1482
1041 ev_watcher_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
1042 if (timeout >= 0.) 1484 if (timeout >= 0.)
1043 { 1485 {
1044 ev_timer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
1045 ev_timer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
1046 } 1488 }
1047 } 1489 }
1048} 1490}
1049 1491
1050/*****************************************************************************/
1051
1052#if 0
1053
1054struct ev_io wio;
1055
1056static void
1057sin_cb (struct ev_io *w, int revents)
1058{
1059 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1060}
1061
1062static void
1063ocb (struct ev_timer *w, int revents)
1064{
1065 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1066 ev_timer_stop (w);
1067 ev_timer_start (w);
1068}
1069
1070static void
1071scb (struct ev_signal *w, int revents)
1072{
1073 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1074 ev_io_stop (&wio);
1075 ev_io_start (&wio);
1076}
1077
1078static void
1079gcb (struct ev_signal *w, int revents)
1080{
1081 fprintf (stderr, "generic %x\n", revents);
1082
1083}
1084
1085int main (void)
1086{
1087 ev_init (0);
1088
1089 ev_io_init (&wio, sin_cb, 0, EV_READ);
1090 ev_io_start (&wio);
1091
1092 struct ev_timer t[10000];
1093
1094#if 0
1095 int i;
1096 for (i = 0; i < 10000; ++i)
1097 {
1098 struct ev_timer *w = t + i;
1099 ev_watcher_init (w, ocb, i);
1100 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1101 ev_timer_start (w);
1102 if (drand48 () < 0.5)
1103 ev_timer_stop (w);
1104 }
1105#endif
1106
1107 struct ev_timer t1;
1108 ev_timer_init (&t1, ocb, 5, 10);
1109 ev_timer_start (&t1);
1110
1111 struct ev_signal sig;
1112 ev_signal_init (&sig, scb, SIGQUIT);
1113 ev_signal_start (&sig);
1114
1115 struct ev_check cw;
1116 ev_check_init (&cw, gcb);
1117 ev_check_start (&cw);
1118
1119 struct ev_idle iw;
1120 ev_idle_init (&iw, gcb);
1121 ev_idle_start (&iw);
1122
1123 ev_loop (0);
1124
1125 return 0;
1126}
1127
1128#endif
1129
1130
1131
1132

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines