ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
54# endif
55#endif 79#endif
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
63#endif 91#endif
64 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
65#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
67#endif 119#endif
68#ifndef EV_USE_REALTIME 120
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
70#endif
71 122
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 127
77#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 143
79typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
82 147
83static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86 149
87static int have_monotonic; /* runtime */ 150#if WIN32
88 151/* note: the comment below could not be substantiated, but what would I care */
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
90static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
91static void (*method_poll)(ev_tstamp timeout); 154#endif
92 155
93/*****************************************************************************/ 156/*****************************************************************************/
94 157
95ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
96ev_time (void) 237ev_time (void)
97{ 238{
98#if EV_USE_REALTIME 239#if EV_USE_REALTIME
99 struct timespec ts; 240 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 247#endif
107} 248}
108 249
109static ev_tstamp 250inline ev_tstamp
110get_clock (void) 251get_clock (void)
111{ 252{
112#if EV_USE_MONOTONIC 253#if EV_USE_MONOTONIC
113 if (have_monotonic) 254 if (expect_true (have_monotonic))
114 { 255 {
115 struct timespec ts; 256 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 257 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 258 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 259 }
119#endif 260#endif
120 261
121 return ev_time (); 262 return ev_time ();
122} 263}
123 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
124#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
125 272
126#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 274 if (expect_false ((cnt) > cur)) \
128 { \ 275 { \
129 int newcnt = cur; \ 276 int newcnt = cur; \
130 do \ 277 do \
131 { \ 278 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
133 } \ 280 } \
134 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
135 \ 282 \
136 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
138 cur = newcnt; \ 285 cur = newcnt; \
139 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
140 298
141/*****************************************************************************/ 299/*****************************************************************************/
142
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152 300
153static void 301static void
154anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
155{ 303{
156 while (count--) 304 while (count--)
161 309
162 ++base; 310 ++base;
163 } 311 }
164} 312}
165 313
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 314static void
176event (W w, int events) 315event (EV_P_ W w, int events)
177{ 316{
178 if (w->pending) 317 if (w->pending)
179 { 318 {
180 pendings [w->pending - 1].events |= events; 319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 320 return;
182 } 321 }
183 322
184 w->pending = ++pendingcnt; 323 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 325 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 327}
189 328
190static void 329static void
191queue_events (W *events, int eventcnt, int type) 330queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 331{
193 int i; 332 int i;
194 333
195 for (i = 0; i < eventcnt; ++i) 334 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 335 event (EV_A_ events [i], type);
197} 336}
198 337
199static void 338static void
200fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
201{ 340{
202 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 342 struct ev_io *w;
204 343
205 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 345 {
207 int ev = w->events & events; 346 int ev = w->events & events;
208 347
209 if (ev) 348 if (ev)
210 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
211 } 350 }
212} 351}
213 352
214/*****************************************************************************/ 353/*****************************************************************************/
215 354
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 355static void
220fd_reify (void) 356fd_reify (EV_P)
221{ 357{
222 int i; 358 int i;
223 359
224 for (i = 0; i < fdchangecnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
225 { 361 {
227 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 364 struct ev_io *w;
229 365
230 int events = 0; 366 int events = 0;
231 367
232 for (w = anfd->head; w; w = w->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 369 events |= w->events;
234 370
235 anfd->reify = 0; 371 anfd->reify = 0;
236 372
237 if (anfd->events != events)
238 {
239 method_modify (fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 374 anfd->events = events;
241 }
242 } 375 }
243 376
244 fdchangecnt = 0; 377 fdchangecnt = 0;
245} 378}
246 379
247static void 380static void
248fd_change (int fd) 381fd_change (EV_P_ int fd)
249{ 382{
250 if (anfds [fd].reify || fdchangecnt < 0) 383 if (anfds [fd].reify || fdchangecnt < 0)
251 return; 384 return;
252 385
253 anfds [fd].reify = 1; 386 anfds [fd].reify = 1;
255 ++fdchangecnt; 388 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 390 fdchanges [fdchangecnt - 1] = fd;
258} 391}
259 392
393static void
394fd_kill (EV_P_ int fd)
395{
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
403}
404
260/* called on EBADF to verify fds */ 405/* called on EBADF to verify fds */
261static void 406static void
262fd_recheck (void) 407fd_ebadf (EV_P)
263{ 408{
264 int fd; 409 int fd;
265 410
266 for (fd = 0; fd < anfdmax; ++fd) 411 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 412 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 414 fd_kill (EV_A_ fd);
415}
416
417/* called on ENOMEM in select/poll to kill some fds and retry */
418static void
419fd_enomem (EV_P)
420{
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
270 { 425 {
271 ev_io_stop (anfds [fd].head); 426 fd_kill (EV_A_ fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 427 return;
273 } 428 }
429}
430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
274} 444}
275 445
276/*****************************************************************************/ 446/*****************************************************************************/
277 447
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 448static void
285upheap (WT *timers, int k) 449upheap (WT *heap, int k)
286{ 450{
287 WT w = timers [k]; 451 WT w = heap [k];
288 452
289 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
290 { 454 {
291 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
293 k >>= 1; 457 k >>= 1;
294 } 458 }
295 459
296 timers [k] = w; 460 heap [k] = w;
297 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
298 462
299} 463}
300 464
301static void 465static void
302downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
303{ 467{
304 WT w = timers [k]; 468 WT w = heap [k];
305 469
306 while (k < (N >> 1)) 470 while (k < (N >> 1))
307 { 471 {
308 int j = k << 1; 472 int j = k << 1;
309 473
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 475 ++j;
312 476
313 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
314 break; 478 break;
315 479
316 timers [k] = timers [j]; 480 heap [k] = heap [j];
317 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
318 k = j; 482 k = j;
319 } 483 }
320 484
321 timers [k] = w; 485 heap [k] = w;
322 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
323} 487}
324 488
325/*****************************************************************************/ 489/*****************************************************************************/
326 490
327typedef struct 491typedef struct
328{ 492{
329 struct ev_signal *head; 493 WL head;
330 sig_atomic_t volatile gotsig; 494 sig_atomic_t volatile gotsig;
331} ANSIG; 495} ANSIG;
332 496
333static ANSIG *signals; 497static ANSIG *signals;
334static int signalmax; 498static int signalmax;
350} 514}
351 515
352static void 516static void
353sighandler (int signum) 517sighandler (int signum)
354{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
355 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
356 524
357 if (!gotsig) 525 if (!gotsig)
358 { 526 {
527 int old_errno = errno;
359 gotsig = 1; 528 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
361 } 531 }
362} 532}
363 533
364static void 534static void
365sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 536{
367 struct ev_signal *w; 537 WL w;
368 int sig; 538 int signum;
369 539
370 read (sigpipe [0], &revents, 1); 540 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 541 gotsig = 0;
372 542
373 for (sig = signalmax; sig--; ) 543 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 544 if (signals [signum].gotsig)
375 { 545 {
376 signals [sig].gotsig = 0; 546 signals [signum].gotsig = 0;
377 547
378 for (w = signals [sig].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
380 } 550 }
381} 551}
382 552
383static void 553static void
384siginit (void) 554siginit (EV_P)
385{ 555{
556#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 559
389 /* rather than sort out wether we really need nb, set it */ 560 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
392 564
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 568}
396 569
397/*****************************************************************************/ 570/*****************************************************************************/
398 571
399static struct ev_idle **idles; 572#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409 573
410static struct ev_child *childs [PID_HASHSIZE]; 574static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 575static struct ev_signal childev;
412 576
413#ifndef WCONTINUED 577#ifndef WCONTINUED
414# define WCONTINUED 0 578# define WCONTINUED 0
415#endif 579#endif
416 580
417static void 581static void
418childcb (struct ev_signal *sw, int revents) 582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 583{
420 struct ev_child *w; 584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents)
598{
421 int pid, status; 599 int pid, status;
422 600
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 602 {
425 if (w->pid == pid || w->pid == -1) 603 /* make sure we are called again until all childs have been reaped */
426 { 604 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 605
428 event ((W)w, EV_CHILD); 606 child_reap (EV_A_ sw, pid, pid, status);
429 } 607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
430} 609}
610
611#endif
431 612
432/*****************************************************************************/ 613/*****************************************************************************/
433 614
615#if EV_USE_KQUEUE
616# include "ev_kqueue.c"
617#endif
434#if EV_USE_EPOLL 618#if EV_USE_EPOLL
435# include "ev_epoll.c" 619# include "ev_epoll.c"
436#endif 620#endif
621#if EV_USE_POLL
622# include "ev_poll.c"
623#endif
437#if EV_USE_SELECT 624#if EV_USE_SELECT
438# include "ev_select.c" 625# include "ev_select.c"
439#endif 626#endif
440 627
441int 628int
448ev_version_minor (void) 635ev_version_minor (void)
449{ 636{
450 return EV_VERSION_MINOR; 637 return EV_VERSION_MINOR;
451} 638}
452 639
453int ev_init (int flags) 640/* return true if we are running with elevated privileges and should ignore env variables */
641static int
642enable_secure (void)
454{ 643{
644#ifdef WIN32
645 return 0;
646#else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649#endif
650}
651
652int
653ev_method (EV_P)
654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
455 if (!ev_method) 661 if (!method)
456 { 662 {
457#if EV_USE_MONOTONIC 663#if EV_USE_MONOTONIC
458 { 664 {
459 struct timespec ts; 665 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 667 have_monotonic = 1;
462 } 668 }
463#endif 669#endif
464 670
465 ev_now = ev_time (); 671 rt_now = ev_time ();
466 now = get_clock (); 672 mn_now = get_clock ();
673 now_floor = mn_now;
467 diff = ev_now - now; 674 rtmn_diff = rt_now - mn_now;
468 675
469 if (pipe (sigpipe)) 676 if (methods == EVMETHOD_AUTO)
470 return 0; 677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
472 ev_method = EVMETHOD_NONE; 680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
473#if EV_USE_EPOLL 689#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 694#endif
476#if EV_USE_SELECT 695#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 697#endif
698 }
699}
479 700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
480 if (ev_method) 805 if (ev_method (EV_A))
481 { 806 {
482 ev_watcher_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
483 siginit (); 809 siginit (EV_A);
484 810
811#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 812 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 814 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif
487 } 817 }
818 else
819 default_loop = 0;
488 } 820 }
489 821
490 return ev_method; 822 return default_loop;
491} 823}
492 824
493/*****************************************************************************/
494
495void 825void
496ev_fork_prepare (void) 826ev_default_destroy (void)
497{ 827{
498 /* nop */ 828#if EV_MULTIPLICITY
499} 829 struct ev_loop *loop = default_loop;
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif 830#endif
514 831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
515 ev_io_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
516 close (sigpipe [0]); 854 close (sigpipe [0]);
517 close (sigpipe [1]); 855 close (sigpipe [1]);
518 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
519 siginit (); 859 siginit (EV_A);
520} 860}
521 861
522/*****************************************************************************/ 862/*****************************************************************************/
523 863
524static void 864static void
525call_pending (void) 865call_pending (EV_P)
526{ 866{
867 int pri;
868
869 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 870 while (pendingcnt [pri])
528 { 871 {
529 ANPENDING *p = pendings + --pendingcnt; 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 873
531 if (p->w) 874 if (p->w)
532 { 875 {
533 p->w->pending = 0; 876 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
535 } 878 }
536 } 879 }
537} 880}
538 881
539static void 882static void
540timers_reify (void) 883timers_reify (EV_P)
541{ 884{
542 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
543 { 886 {
544 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
545 890
546 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
547 if (w->repeat) 892 if (w->repeat)
548 { 893 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
552 } 897 }
553 else 898 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 900
556 event ((W)w, EV_TIMEOUT); 901 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 902 }
558} 903}
559 904
560static void 905static void
561periodics_reify (void) 906periodics_reify (EV_P)
562{ 907{
563 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
564 { 909 {
565 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
566 913
567 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
568 if (w->interval) 915 if (w->interval)
569 { 916 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
573 } 920 }
574 else 921 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 923
577 event ((W)w, EV_PERIODIC); 924 event (EV_A_ (W)w, EV_PERIODIC);
578 } 925 }
579} 926}
580 927
581static void 928static void
582periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
583{ 930{
584 int i; 931 int i;
585 932
586 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
588 { 935 {
589 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
590 937
591 if (w->interval) 938 if (w->interval)
592 { 939 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
594 941
595 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
596 { 943 {
597 ev_periodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 945 ev_periodic_start (EV_A_ w);
599 946
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 948 }
602 } 949 }
603 } 950 }
604} 951}
605 952
953inline int
954time_update_monotonic (EV_P)
955{
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969}
970
606static void 971static void
607time_update (void) 972time_update (EV_P)
608{ 973{
609 int i; 974 int i;
610 975
611 ev_now = ev_time (); 976#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 977 if (expect_true (have_monotonic))
614 { 978 {
615 ev_tstamp odiff = diff; 979 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 980 {
619 now = get_clock (); 981 ev_tstamp odiff = rtmn_diff;
982
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 {
620 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
621 986
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 988 return; /* all is well */
624 989
625 ev_now = ev_time (); 990 rt_now = ev_time ();
991 mn_now = get_clock ();
992 now_floor = mn_now;
993 }
994
995 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 998 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 999 }
631 else 1000 else
1001#endif
632 { 1002 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1003 rt_now = ev_time ();
1004
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 1006 {
635 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
636 1008
637 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
640 } 1012 }
641 1013
642 now = ev_now; 1014 mn_now = rt_now;
643 } 1015 }
644} 1016}
645 1017
646int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
647 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
648void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
649{ 1034{
650 double block; 1035 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 1037
653 do 1038 do
654 { 1039 {
655 /* queue check watchers (and execute them) */ 1040 /* queue check watchers (and execute them) */
656 if (preparecnt) 1041 if (expect_false (preparecnt))
657 { 1042 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 1044 call_pending (EV_A);
660 } 1045 }
661 1046
662 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
663 fd_reify (); 1048 fd_reify (EV_A);
664 1049
665 /* calculate blocking time */ 1050 /* calculate blocking time */
666 1051
667 /* we only need this for !monotonic clockor timers, but as we basically 1052 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 {
669 ev_now = ev_time (); 1060 rt_now = ev_time ();
1061 mn_now = rt_now;
1062 }
670 1063
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 1065 block = 0.;
673 else 1066 else
674 { 1067 {
675 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
676 1069
677 if (timercnt) 1070 if (timercnt)
678 { 1071 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
680 if (block > to) block = to; 1073 if (block > to) block = to;
681 } 1074 }
682 1075
683 if (periodiccnt) 1076 if (periodiccnt)
684 { 1077 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
686 if (block > to) block = to; 1079 if (block > to) block = to;
687 } 1080 }
688 1081
689 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
690 } 1083 }
691 1084
692 method_poll (block); 1085 method_poll (EV_A_ block);
693 1086
694 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
695 time_update (); 1088 time_update (EV_A);
696 1089
697 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 1091 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
700 1093
701 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 1095 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 1097
705 /* queue check watchers, to be executed first */ 1098 /* queue check watchers, to be executed first */
706 if (checkcnt) 1099 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1101
709 call_pending (); 1102 call_pending (EV_A);
710 } 1103 }
711 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
712 1105
713 if (ev_loop_done != 2) 1106 if (loop_done != 2)
714 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
715} 1114}
716 1115
717/*****************************************************************************/ 1116/*****************************************************************************/
718 1117
719static void 1118inline void
720wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
721{ 1120{
722 elem->next = *head; 1121 elem->next = *head;
723 *head = elem; 1122 *head = elem;
724} 1123}
725 1124
726static void 1125inline void
727wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
728{ 1127{
729 while (*head) 1128 while (*head)
730 { 1129 {
731 if (*head == elem) 1130 if (*head == elem)
736 1135
737 head = &(*head)->next; 1136 head = &(*head)->next;
738 } 1137 }
739} 1138}
740 1139
741static void 1140inline void
742ev_clear_pending (W w) 1141ev_clear_pending (EV_P_ W w)
743{ 1142{
744 if (w->pending) 1143 if (w->pending)
745 { 1144 {
746 pendings [w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1146 w->pending = 0;
748 } 1147 }
749} 1148}
750 1149
751static void 1150inline void
752ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
753{ 1152{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
754 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
755} 1158}
756 1159
757static void 1160inline void
758ev_stop (W w) 1161ev_stop (EV_P_ W w)
759{ 1162{
1163 ev_unref (EV_A);
760 w->active = 0; 1164 w->active = 0;
761} 1165}
762 1166
763/*****************************************************************************/ 1167/*****************************************************************************/
764 1168
765void 1169void
766ev_io_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
767{ 1171{
1172 int fd = w->fd;
1173
768 if (ev_is_active (w)) 1174 if (ev_is_active (w))
769 return; 1175 return;
770 1176
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1177 assert (("ev_io_start called with negative fd", fd >= 0));
774 1178
775 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1182
779 fd_change (fd); 1183 fd_change (EV_A_ fd);
780} 1184}
781 1185
782void 1186void
783ev_io_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
784{ 1188{
785 ev_clear_pending ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
787 return; 1191 return;
788 1192
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
791 1195
792 fd_change (w->fd); 1196 fd_change (EV_A_ w->fd);
793} 1197}
794 1198
795void 1199void
796ev_timer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1201{
798 if (ev_is_active (w)) 1202 if (ev_is_active (w))
799 return; 1203 return;
800 1204
801 w->at += now; 1205 ((WT)w)->at += mn_now;
802 1206
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1208
805 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
809}
810 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
811void 1217void
812ev_timer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1219{
814 ev_clear_pending ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
816 return; 1222 return;
817 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
818 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
819 { 1227 {
820 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
821 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
822 } 1230 }
823 1231
824 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
825 1233
826 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
827} 1235}
828 1236
829void 1237void
830ev_timer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1239{
832 if (ev_is_active (w)) 1240 if (ev_is_active (w))
833 { 1241 {
834 if (w->repeat) 1242 if (w->repeat)
835 { 1243 {
836 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
838 } 1246 }
839 else 1247 else
840 ev_timer_stop (w); 1248 ev_timer_stop (EV_A_ w);
841 } 1249 }
842 else if (w->repeat) 1250 else if (w->repeat)
843 ev_timer_start (w); 1251 ev_timer_start (EV_A_ w);
844} 1252}
845 1253
846void 1254void
847ev_periodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1256{
849 if (ev_is_active (w)) 1257 if (ev_is_active (w))
850 return; 1258 return;
851 1259
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1261
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1263 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
857 1265
858 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
862}
863 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
864void 1274void
865ev_periodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1276{
867 ev_clear_pending ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
869 return; 1279 return;
870 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
871 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
872 { 1284 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
875 } 1287 }
876 1288
877 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
878} 1290}
879 1291
880void 1292void
881ev_signal_start (struct ev_signal *w) 1293ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1294{
883 if (ev_is_active (w)) 1295 if (ev_is_active (w))
884 return; 1296 return;
885 1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357
1358#ifndef SA_RESTART
1359# define SA_RESTART 0
1360#endif
1361
1362void
1363ev_signal_start (EV_P_ struct ev_signal *w)
1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1368 if (ev_is_active (w))
1369 return;
1370
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1372
888 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1376
892 if (!w->next) 1377 if (!((WL)w)->next)
893 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
894 struct sigaction sa; 1382 struct sigaction sa;
895 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
899 } 1388 }
900} 1389}
901 1390
902void 1391void
903ev_signal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1393{
905 ev_clear_pending ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
907 return; 1396 return;
908 1397
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
911 1400
912 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
914} 1403}
915 1404
916void 1405void
917ev_idle_start (struct ev_idle *w) 1406ev_child_start (EV_P_ struct ev_child *w)
918{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
919 if (ev_is_active (w)) 1411 if (ev_is_active (w))
920 return; 1412 return;
921 1413
922 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1416}
926 1417
927void 1418void
928ev_idle_stop (struct ev_idle *w) 1419ev_child_stop (EV_P_ struct ev_child *w)
929{ 1420{
930 ev_clear_pending ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1422 if (ev_is_active (w))
932 return; 1423 return;
933 1424
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
1001} 1427}
1002 1428
1003/*****************************************************************************/ 1429/*****************************************************************************/
1004 1430
1005struct ev_once 1431struct ev_once
1009 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
1010 void *arg; 1436 void *arg;
1011}; 1437};
1012 1438
1013static void 1439static void
1014once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1441{
1016 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1443 void *arg = once->arg;
1018 1444
1019 ev_io_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1447 ev_free (once);
1022 1448
1023 cb (revents, arg); 1449 cb (revents, arg);
1024} 1450}
1025 1451
1026static void 1452static void
1027once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1454{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1456}
1031 1457
1032static void 1458static void
1033once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1460{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1462}
1037 1463
1038void 1464void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1466{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1042 1468
1043 if (!once) 1469 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1045 else 1471 else
1046 { 1472 {
1049 1475
1050 ev_watcher_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1477 if (fd >= 0)
1052 { 1478 {
1053 ev_io_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
1055 } 1481 }
1056 1482
1057 ev_watcher_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1484 if (timeout >= 0.)
1059 { 1485 {
1060 ev_timer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
1062 } 1488 }
1063 } 1489 }
1064} 1490}
1065 1491
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines