ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
63#endif 103#endif
64 104
65#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
67#endif 107#endif
96#endif 136#endif
97 137
98#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
100 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
101typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
102typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
104 147
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
106ev_tstamp ev_now;
107int ev_method;
108 149
109static int have_monotonic; /* runtime */ 150#if WIN32
110 151/* note: the comment below could not be substantiated, but what would I care */
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
112static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
113static void (*method_poll)(ev_tstamp timeout); 154#endif
114 155
115/*****************************************************************************/ 156/*****************************************************************************/
116 157
117ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
118ev_time (void) 237ev_time (void)
119{ 238{
120#if EV_USE_REALTIME 239#if EV_USE_REALTIME
121 struct timespec ts; 240 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
126 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 247#endif
129} 248}
130 249
131static ev_tstamp 250inline ev_tstamp
132get_clock (void) 251get_clock (void)
133{ 252{
134#if EV_USE_MONOTONIC 253#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 254 if (expect_true (have_monotonic))
136 { 255 {
141#endif 260#endif
142 261
143 return ev_time (); 262 return ev_time ();
144} 263}
145 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
146#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
147 272
148#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
149 if (expect_false ((cnt) > cur)) \ 274 if (expect_false ((cnt) > cur)) \
150 { \ 275 { \
151 int newcnt = cur; \ 276 int newcnt = cur; \
152 do \ 277 do \
153 { \ 278 { \
154 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
155 } \ 280 } \
156 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
157 \ 282 \
158 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
159 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
160 cur = newcnt; \ 285 cur = newcnt; \
161 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
162 298
163/*****************************************************************************/ 299/*****************************************************************************/
164
165typedef struct
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171
172static ANFD *anfds;
173static int anfdmax;
174 300
175static void 301static void
176anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
177{ 303{
178 while (count--) 304 while (count--)
183 309
184 ++base; 310 ++base;
185 } 311 }
186} 312}
187 313
188typedef struct
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void 314static void
198event (W w, int events) 315event (EV_P_ W w, int events)
199{ 316{
200 if (w->pending) 317 if (w->pending)
201 { 318 {
202 pendings [w->pending - 1].events |= events; 319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
203 return; 320 return;
204 } 321 }
205 322
206 w->pending = ++pendingcnt; 323 w->pending = ++pendingcnt [ABSPRI (w)];
207 array_needsize (pendings, pendingmax, pendingcnt, ); 324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
208 pendings [pendingcnt - 1].w = w; 325 pendings [ABSPRI (w)][w->pending - 1].w = w;
209 pendings [pendingcnt - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events = events;
210} 327}
211 328
212static void 329static void
213queue_events (W *events, int eventcnt, int type) 330queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 331{
215 int i; 332 int i;
216 333
217 for (i = 0; i < eventcnt; ++i) 334 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 335 event (EV_A_ events [i], type);
219} 336}
220 337
221static void 338static void
222fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
223{ 340{
224 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 342 struct ev_io *w;
226 343
227 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 { 345 {
229 int ev = w->events & events; 346 int ev = w->events & events;
230 347
231 if (ev) 348 if (ev)
232 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
233 } 350 }
234} 351}
235 352
236/*****************************************************************************/ 353/*****************************************************************************/
237 354
238static int *fdchanges;
239static int fdchangemax, fdchangecnt;
240
241static void 355static void
242fd_reify (void) 356fd_reify (EV_P)
243{ 357{
244 int i; 358 int i;
245 359
246 for (i = 0; i < fdchangecnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
247 { 361 {
249 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 364 struct ev_io *w;
251 365
252 int events = 0; 366 int events = 0;
253 367
254 for (w = anfd->head; w; w = w->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 events |= w->events; 369 events |= w->events;
256 370
257 anfd->reify = 0; 371 anfd->reify = 0;
258 372
259 if (anfd->events != events)
260 {
261 method_modify (fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
262 anfd->events = events; 374 anfd->events = events;
263 }
264 } 375 }
265 376
266 fdchangecnt = 0; 377 fdchangecnt = 0;
267} 378}
268 379
269static void 380static void
270fd_change (int fd) 381fd_change (EV_P_ int fd)
271{ 382{
272 if (anfds [fd].reify || fdchangecnt < 0) 383 if (anfds [fd].reify || fdchangecnt < 0)
273 return; 384 return;
274 385
275 anfds [fd].reify = 1; 386 anfds [fd].reify = 1;
277 ++fdchangecnt; 388 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
279 fdchanges [fdchangecnt - 1] = fd; 390 fdchanges [fdchangecnt - 1] = fd;
280} 391}
281 392
393static void
394fd_kill (EV_P_ int fd)
395{
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
403}
404
282/* called on EBADF to verify fds */ 405/* called on EBADF to verify fds */
283static void 406static void
284fd_recheck (void) 407fd_ebadf (EV_P)
285{ 408{
286 int fd; 409 int fd;
287 410
288 for (fd = 0; fd < anfdmax; ++fd) 411 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 412 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
291 while (anfds [fd].head) 414 fd_kill (EV_A_ fd);
415}
416
417/* called on ENOMEM in select/poll to kill some fds and retry */
418static void
419fd_enomem (EV_P)
420{
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
292 { 425 {
293 ev_io_stop (anfds [fd].head); 426 fd_kill (EV_A_ fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 427 return;
295 } 428 }
429}
430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
296} 444}
297 445
298/*****************************************************************************/ 446/*****************************************************************************/
299 447
300static struct ev_timer **timers;
301static int timermax, timercnt;
302
303static struct ev_periodic **periodics;
304static int periodicmax, periodiccnt;
305
306static void 448static void
307upheap (WT *timers, int k) 449upheap (WT *heap, int k)
308{ 450{
309 WT w = timers [k]; 451 WT w = heap [k];
310 452
311 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
312 { 454 {
313 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
314 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
315 k >>= 1; 457 k >>= 1;
316 } 458 }
317 459
318 timers [k] = w; 460 heap [k] = w;
319 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
320 462
321} 463}
322 464
323static void 465static void
324downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
325{ 467{
326 WT w = timers [k]; 468 WT w = heap [k];
327 469
328 while (k < (N >> 1)) 470 while (k < (N >> 1))
329 { 471 {
330 int j = k << 1; 472 int j = k << 1;
331 473
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
333 ++j; 475 ++j;
334 476
335 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
336 break; 478 break;
337 479
338 timers [k] = timers [j]; 480 heap [k] = heap [j];
339 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
340 k = j; 482 k = j;
341 } 483 }
342 484
343 timers [k] = w; 485 heap [k] = w;
344 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
345} 487}
346 488
347/*****************************************************************************/ 489/*****************************************************************************/
348 490
349typedef struct 491typedef struct
350{ 492{
351 struct ev_signal *head; 493 WL head;
352 sig_atomic_t volatile gotsig; 494 sig_atomic_t volatile gotsig;
353} ANSIG; 495} ANSIG;
354 496
355static ANSIG *signals; 497static ANSIG *signals;
356static int signalmax; 498static int signalmax;
372} 514}
373 515
374static void 516static void
375sighandler (int signum) 517sighandler (int signum)
376{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
377 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
378 524
379 if (!gotsig) 525 if (!gotsig)
380 { 526 {
527 int old_errno = errno;
381 gotsig = 1; 528 gotsig = 1;
382 write (sigpipe [1], &signum, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
383 } 531 }
384} 532}
385 533
386static void 534static void
387sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
388{ 536{
389 struct ev_signal *w; 537 WL w;
390 int signum; 538 int signum;
391 539
392 read (sigpipe [0], &revents, 1); 540 read (sigpipe [0], &revents, 1);
393 gotsig = 0; 541 gotsig = 0;
394 542
396 if (signals [signum].gotsig) 544 if (signals [signum].gotsig)
397 { 545 {
398 signals [signum].gotsig = 0; 546 signals [signum].gotsig = 0;
399 547
400 for (w = signals [signum].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
402 } 550 }
403} 551}
404 552
405static void 553static void
406siginit (void) 554siginit (EV_P)
407{ 555{
556#ifndef WIN32
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410 559
411 /* rather than sort out wether we really need nb, set it */ 560 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
414 564
415 ev_io_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
417} 568}
418 569
419/*****************************************************************************/ 570/*****************************************************************************/
420 571
421static struct ev_idle **idles; 572#ifndef WIN32
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431 573
432static struct ev_child *childs [PID_HASHSIZE]; 574static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev; 575static struct ev_signal childev;
434 576
435#ifndef WCONTINUED 577#ifndef WCONTINUED
436# define WCONTINUED 0 578# define WCONTINUED 0
437#endif 579#endif
438 580
439static void 581static void
440childcb (struct ev_signal *sw, int revents) 582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
441{ 583{
442 struct ev_child *w; 584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents)
598{
443 int pid, status; 599 int pid, status;
444 600
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 602 {
447 if (w->pid == pid || !w->pid) 603 /* make sure we are called again until all childs have been reaped */
448 { 604 event (EV_A_ (W)sw, EV_SIGNAL);
449 w->status = status; 605
450 event ((W)w, EV_CHILD); 606 child_reap (EV_A_ sw, pid, pid, status);
451 } 607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
452} 609}
610
611#endif
453 612
454/*****************************************************************************/ 613/*****************************************************************************/
455 614
615#if EV_USE_KQUEUE
616# include "ev_kqueue.c"
617#endif
456#if EV_USE_EPOLL 618#if EV_USE_EPOLL
457# include "ev_epoll.c" 619# include "ev_epoll.c"
458#endif 620#endif
621#if EV_USE_POLL
622# include "ev_poll.c"
623#endif
459#if EV_USE_SELECT 624#if EV_USE_SELECT
460# include "ev_select.c" 625# include "ev_select.c"
461#endif 626#endif
462 627
463int 628int
470ev_version_minor (void) 635ev_version_minor (void)
471{ 636{
472 return EV_VERSION_MINOR; 637 return EV_VERSION_MINOR;
473} 638}
474 639
475int ev_init (int flags) 640/* return true if we are running with elevated privileges and should ignore env variables */
641static int
642enable_secure (void)
476{ 643{
644#ifdef WIN32
645 return 0;
646#else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649#endif
650}
651
652int
653ev_method (EV_P)
654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
477 if (!ev_method) 661 if (!method)
478 { 662 {
479#if EV_USE_MONOTONIC 663#if EV_USE_MONOTONIC
480 { 664 {
481 struct timespec ts; 665 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 667 have_monotonic = 1;
484 } 668 }
485#endif 669#endif
486 670
487 ev_now = ev_time (); 671 rt_now = ev_time ();
488 now = get_clock (); 672 mn_now = get_clock ();
489 now_floor = now; 673 now_floor = mn_now;
490 diff = ev_now - now; 674 rtmn_diff = rt_now - mn_now;
491 675
492 if (pipe (sigpipe)) 676 if (methods == EVMETHOD_AUTO)
493 return 0; 677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
494 678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
495 ev_method = EVMETHOD_NONE; 680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
496#if EV_USE_EPOLL 689#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
498#endif 694#endif
499#if EV_USE_SELECT 695#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
501#endif 697#endif
698 }
699}
502 700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
503 if (ev_method) 805 if (ev_method (EV_A))
504 { 806 {
505 ev_watcher_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
506 siginit (); 809 siginit (EV_A);
507 810
811#ifndef WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 812 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 814 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif
510 } 817 }
818 else
819 default_loop = 0;
511 } 820 }
512 821
513 return ev_method; 822 return default_loop;
514} 823}
515 824
516/*****************************************************************************/
517
518void 825void
519ev_fork_prepare (void) 826ev_default_destroy (void)
520{ 827{
521 /* nop */ 828#if EV_MULTIPLICITY
522} 829 struct ev_loop *loop = default_loop;
523
524void
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif 830#endif
537 831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
538 ev_io_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
539 close (sigpipe [0]); 854 close (sigpipe [0]);
540 close (sigpipe [1]); 855 close (sigpipe [1]);
541 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
542 siginit (); 859 siginit (EV_A);
543} 860}
544 861
545/*****************************************************************************/ 862/*****************************************************************************/
546 863
547static void 864static void
548call_pending (void) 865call_pending (EV_P)
549{ 866{
867 int pri;
868
869 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 870 while (pendingcnt [pri])
551 { 871 {
552 ANPENDING *p = pendings + --pendingcnt; 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 873
554 if (p->w) 874 if (p->w)
555 { 875 {
556 p->w->pending = 0; 876 p->w->pending = 0;
557 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
558 } 878 }
559 } 879 }
560} 880}
561 881
562static void 882static void
563timers_reify (void) 883timers_reify (EV_P)
564{ 884{
565 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
566 { 886 {
567 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
568 890
569 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
570 if (w->repeat) 892 if (w->repeat)
571 { 893 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
575 } 897 }
576 else 898 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 900
579 event ((W)w, EV_TIMEOUT); 901 event (EV_A_ (W)w, EV_TIMEOUT);
580 } 902 }
581} 903}
582 904
583static void 905static void
584periodics_reify (void) 906periodics_reify (EV_P)
585{ 907{
586 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
587 { 909 {
588 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
589 913
590 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
591 if (w->interval) 915 if (w->interval)
592 { 916 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
595 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
596 } 920 }
597 else 921 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 923
600 event ((W)w, EV_PERIODIC); 924 event (EV_A_ (W)w, EV_PERIODIC);
601 } 925 }
602} 926}
603 927
604static void 928static void
605periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
606{ 930{
607 int i; 931 int i;
608 932
609 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
611 { 935 {
612 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
613 937
614 if (w->interval) 938 if (w->interval)
615 { 939 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
617 941
618 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
619 { 943 {
620 ev_periodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
621 ev_periodic_start (w); 945 ev_periodic_start (EV_A_ w);
622 946
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 948 }
625 } 949 }
626 } 950 }
627} 951}
628 952
629static int 953inline int
630time_update_monotonic (void) 954time_update_monotonic (EV_P)
631{ 955{
632 now = get_clock (); 956 mn_now = get_clock ();
633 957
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
635 { 959 {
636 ev_now = now + diff; 960 rt_now = rtmn_diff + mn_now;
637 return 0; 961 return 0;
638 } 962 }
639 else 963 else
640 { 964 {
641 now_floor = now; 965 now_floor = mn_now;
642 ev_now = ev_time (); 966 rt_now = ev_time ();
643 return 1; 967 return 1;
644 } 968 }
645} 969}
646 970
647static void 971static void
648time_update (void) 972time_update (EV_P)
649{ 973{
650 int i; 974 int i;
651 975
652#if EV_USE_MONOTONIC 976#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic)) 977 if (expect_true (have_monotonic))
654 { 978 {
655 if (time_update_monotonic ()) 979 if (time_update_monotonic (EV_A))
656 { 980 {
657 ev_tstamp odiff = diff; 981 ev_tstamp odiff = rtmn_diff;
658 982
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 { 984 {
661 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
662 986
663 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
664 return; /* all is well */ 988 return; /* all is well */
665 989
666 ev_now = ev_time (); 990 rt_now = ev_time ();
667 now = get_clock (); 991 mn_now = get_clock ();
668 now_floor = now; 992 now_floor = mn_now;
669 } 993 }
670 994
671 periodics_reschedule (diff - odiff); 995 periodics_reschedule (EV_A);
672 /* no timer adjustment, as the monotonic clock doesn't jump */ 996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
673 } 998 }
674 } 999 }
675 else 1000 else
676#endif 1001#endif
677 { 1002 {
678 ev_now = ev_time (); 1003 rt_now = ev_time ();
679 1004
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 { 1006 {
682 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
683 1008
684 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
687 } 1012 }
688 1013
689 now = ev_now; 1014 mn_now = rt_now;
690 } 1015 }
691} 1016}
692 1017
693int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
694 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
695void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
696{ 1034{
697 double block; 1035 double block;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 1037
700 do 1038 do
701 { 1039 {
702 /* queue check watchers (and execute them) */ 1040 /* queue check watchers (and execute them) */
703 if (expect_false (preparecnt)) 1041 if (expect_false (preparecnt))
704 { 1042 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 1044 call_pending (EV_A);
707 } 1045 }
708 1046
709 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
710 fd_reify (); 1048 fd_reify (EV_A);
711 1049
712 /* calculate blocking time */ 1050 /* calculate blocking time */
713 1051
714 /* we only need this for !monotonic clockor timers, but as we basically 1052 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */ 1053 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC 1054#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1055 if (expect_true (have_monotonic))
718 time_update_monotonic (); 1056 time_update_monotonic (EV_A);
719 else 1057 else
720#endif 1058#endif
721 { 1059 {
722 ev_now = ev_time (); 1060 rt_now = ev_time ();
723 now = ev_now; 1061 mn_now = rt_now;
724 } 1062 }
725 1063
726 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.; 1065 block = 0.;
728 else 1066 else
729 { 1067 {
730 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
731 1069
732 if (timercnt) 1070 if (timercnt)
733 { 1071 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
735 if (block > to) block = to; 1073 if (block > to) block = to;
736 } 1074 }
737 1075
738 if (periodiccnt) 1076 if (periodiccnt)
739 { 1077 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
741 if (block > to) block = to; 1079 if (block > to) block = to;
742 } 1080 }
743 1081
744 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
745 } 1083 }
746 1084
747 method_poll (block); 1085 method_poll (EV_A_ block);
748 1086
749 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
750 time_update (); 1088 time_update (EV_A);
751 1089
752 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 1091 timers_reify (EV_A); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
755 1093
756 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt) 1095 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
759 1097
760 /* queue check watchers, to be executed first */ 1098 /* queue check watchers, to be executed first */
761 if (checkcnt) 1099 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 1101
764 call_pending (); 1102 call_pending (EV_A);
765 } 1103 }
766 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
767 1105
768 if (ev_loop_done != 2) 1106 if (loop_done != 2)
769 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
770} 1114}
771 1115
772/*****************************************************************************/ 1116/*****************************************************************************/
773 1117
774static void 1118inline void
775wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
776{ 1120{
777 elem->next = *head; 1121 elem->next = *head;
778 *head = elem; 1122 *head = elem;
779} 1123}
780 1124
781static void 1125inline void
782wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
783{ 1127{
784 while (*head) 1128 while (*head)
785 { 1129 {
786 if (*head == elem) 1130 if (*head == elem)
791 1135
792 head = &(*head)->next; 1136 head = &(*head)->next;
793 } 1137 }
794} 1138}
795 1139
796static void 1140inline void
797ev_clear_pending (W w) 1141ev_clear_pending (EV_P_ W w)
798{ 1142{
799 if (w->pending) 1143 if (w->pending)
800 { 1144 {
801 pendings [w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1146 w->pending = 0;
803 } 1147 }
804} 1148}
805 1149
806static void 1150inline void
807ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
808{ 1152{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
809 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
810} 1158}
811 1159
812static void 1160inline void
813ev_stop (W w) 1161ev_stop (EV_P_ W w)
814{ 1162{
1163 ev_unref (EV_A);
815 w->active = 0; 1164 w->active = 0;
816} 1165}
817 1166
818/*****************************************************************************/ 1167/*****************************************************************************/
819 1168
820void 1169void
821ev_io_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
822{ 1171{
823 int fd = w->fd; 1172 int fd = w->fd;
824 1173
825 if (ev_is_active (w)) 1174 if (ev_is_active (w))
826 return; 1175 return;
827 1176
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1177 assert (("ev_io_start called with negative fd", fd >= 0));
829 1178
830 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833 1182
834 fd_change (fd); 1183 fd_change (EV_A_ fd);
835} 1184}
836 1185
837void 1186void
838ev_io_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
839{ 1188{
840 ev_clear_pending ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
842 return; 1191 return;
843 1192
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
846 1195
847 fd_change (w->fd); 1196 fd_change (EV_A_ w->fd);
848} 1197}
849 1198
850void 1199void
851ev_timer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
852{ 1201{
853 if (ev_is_active (w)) 1202 if (ev_is_active (w))
854 return; 1203 return;
855 1204
856 w->at += now; 1205 ((WT)w)->at += mn_now;
857 1206
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 1208
860 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
862 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
864}
865 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
866void 1217void
867ev_timer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
868{ 1219{
869 ev_clear_pending ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
871 return; 1222 return;
872 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
873 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
874 { 1227 {
875 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
876 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
877 } 1230 }
878 1231
879 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
880 1233
881 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
882} 1235}
883 1236
884void 1237void
885ev_timer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
886{ 1239{
887 if (ev_is_active (w)) 1240 if (ev_is_active (w))
888 { 1241 {
889 if (w->repeat) 1242 if (w->repeat)
890 { 1243 {
891 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
893 } 1246 }
894 else 1247 else
895 ev_timer_stop (w); 1248 ev_timer_stop (EV_A_ w);
896 } 1249 }
897 else if (w->repeat) 1250 else if (w->repeat)
898 ev_timer_start (w); 1251 ev_timer_start (EV_A_ w);
899} 1252}
900 1253
901void 1254void
902ev_periodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
903{ 1256{
904 if (ev_is_active (w)) 1257 if (ev_is_active (w))
905 return; 1258 return;
906 1259
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908 1261
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval) 1263 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
912 1265
913 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
915 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
917}
918 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
919void 1274void
920ev_periodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
921{ 1276{
922 ev_clear_pending ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
924 return; 1279 return;
925 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
926 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
927 { 1284 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
930 } 1287 }
931 1288
932 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
933} 1290}
934 1291
935void 1292void
936ev_signal_start (struct ev_signal *w) 1293ev_idle_start (EV_P_ struct ev_idle *w)
937{ 1294{
938 if (ev_is_active (w)) 1295 if (ev_is_active (w))
939 return; 1296 return;
940 1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357
1358#ifndef SA_RESTART
1359# define SA_RESTART 0
1360#endif
1361
1362void
1363ev_signal_start (EV_P_ struct ev_signal *w)
1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1368 if (ev_is_active (w))
1369 return;
1370
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 1372
943 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946 1376
947 if (!w->next) 1377 if (!((WL)w)->next)
948 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
949 struct sigaction sa; 1382 struct sigaction sa;
950 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
954 } 1388 }
955} 1389}
956 1390
957void 1391void
958ev_signal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
959{ 1393{
960 ev_clear_pending ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
962 return; 1396 return;
963 1397
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
966 1400
967 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
969} 1403}
970 1404
971void 1405void
972ev_idle_start (struct ev_idle *w) 1406ev_child_start (EV_P_ struct ev_child *w)
973{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
974 if (ev_is_active (w)) 1411 if (ev_is_active (w))
975 return; 1412 return;
976 1413
977 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 1416}
981 1417
982void 1418void
983ev_idle_stop (struct ev_idle *w) 1419ev_child_stop (EV_P_ struct ev_child *w)
984{ 1420{
985 ev_clear_pending ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 1422 if (ev_is_active (w))
987 return; 1423 return;
988 1424
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
1056} 1427}
1057 1428
1058/*****************************************************************************/ 1429/*****************************************************************************/
1059 1430
1060struct ev_once 1431struct ev_once
1064 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
1065 void *arg; 1436 void *arg;
1066}; 1437};
1067 1438
1068static void 1439static void
1069once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 1441{
1071 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 1443 void *arg = once->arg;
1073 1444
1074 ev_io_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 1447 ev_free (once);
1077 1448
1078 cb (revents, arg); 1449 cb (revents, arg);
1079} 1450}
1080 1451
1081static void 1452static void
1082once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
1083{ 1454{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 1456}
1086 1457
1087static void 1458static void
1088once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
1089{ 1460{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 1462}
1092 1463
1093void 1464void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 1466{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1097 1468
1098 if (!once) 1469 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1100 else 1471 else
1101 { 1472 {
1104 1475
1105 ev_watcher_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
1106 if (fd >= 0) 1477 if (fd >= 0)
1107 { 1478 {
1108 ev_io_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
1110 } 1481 }
1111 1482
1112 ev_watcher_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 1484 if (timeout >= 0.)
1114 { 1485 {
1115 ev_timer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
1117 } 1488 }
1118 } 1489 }
1119} 1490}
1120 1491
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif
1200
1201
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines