ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
58 80
59#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
61#endif 83#endif
62 84
63#ifndef EV_USEV_POLL 85#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 87#endif
66 88
67#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
69#endif 91#endif
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
73#endif 103#endif
74 104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 127
98#ifndef EV_EMBED
99# include "ev.h" 128#include "ev.h"
100#endif
101 129
102#if __GNUC__ >= 3 130#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 131# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline 132# define inline inline
105#else 133#else
117typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
119 147
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155
122/*****************************************************************************/ 156/*****************************************************************************/
123 157
158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
124typedef struct 203typedef struct
125{ 204{
126 struct ev_watcher_list *head; 205 WL head;
127 unsigned char events; 206 unsigned char events;
128 unsigned char reify; 207 unsigned char reify;
129} ANFD; 208} ANFD;
130 209
131typedef struct 210typedef struct
189 return rt_now; 268 return rt_now;
190} 269}
191 270
192#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
193 272
194#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 274 if (expect_false ((cnt) > cur)) \
196 { \ 275 { \
197 int newcnt = cur; \ 276 int newcnt = cur; \
198 do \ 277 do \
199 { \ 278 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
201 } \ 280 } \
202 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
203 \ 282 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
205 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 285 cur = newcnt; \
207 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 298
209/*****************************************************************************/ 299/*****************************************************************************/
210 300
211static void 301static void
212anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 369 events |= w->events;
280 370
281 anfd->reify = 0; 371 anfd->reify = 0;
282 372
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 374 anfd->events = events;
287 }
288 } 375 }
289 376
290 fdchangecnt = 0; 377 fdchangecnt = 0;
291} 378}
292 379
329 416
330/* called on ENOMEM in select/poll to kill some fds and retry */ 417/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 418static void
332fd_enomem (EV_P) 419fd_enomem (EV_P)
333{ 420{
334 int fd = anfdmax; 421 int fd;
335 422
336 while (fd--) 423 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 424 if (anfds [fd].events)
338 { 425 {
339 close (fd);
340 fd_kill (EV_A_ fd); 426 fd_kill (EV_A_ fd);
341 return; 427 return;
342 } 428 }
343} 429}
344 430
351 /* this should be highly optimised to not do anything but set a flag */ 437 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 438 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 439 if (anfds [fd].events)
354 { 440 {
355 anfds [fd].events = 0; 441 anfds [fd].events = 0;
356 fd_change (fd); 442 fd_change (EV_A_ fd);
357 } 443 }
358} 444}
359 445
360/*****************************************************************************/ 446/*****************************************************************************/
361 447
365 WT w = heap [k]; 451 WT w = heap [k];
366 452
367 while (k && heap [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
368 { 454 {
369 heap [k] = heap [k >> 1]; 455 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
371 k >>= 1; 457 k >>= 1;
372 } 458 }
373 459
374 heap [k] = w; 460 heap [k] = w;
375 heap [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
376 462
377} 463}
378 464
379static void 465static void
380downheap (WT *heap, int N, int k) 466downheap (WT *heap, int N, int k)
390 476
391 if (w->at <= heap [j]->at) 477 if (w->at <= heap [j]->at)
392 break; 478 break;
393 479
394 heap [k] = heap [j]; 480 heap [k] = heap [j];
395 heap [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
396 k = j; 482 k = j;
397 } 483 }
398 484
399 heap [k] = w; 485 heap [k] = w;
400 heap [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
401} 487}
402 488
403/*****************************************************************************/ 489/*****************************************************************************/
404 490
405typedef struct 491typedef struct
406{ 492{
407 struct ev_watcher_list *head; 493 WL head;
408 sig_atomic_t volatile gotsig; 494 sig_atomic_t volatile gotsig;
409} ANSIG; 495} ANSIG;
410 496
411static ANSIG *signals; 497static ANSIG *signals;
412static int signalmax; 498static int signalmax;
413 499
414static int sigpipe [2]; 500static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 501static sig_atomic_t volatile gotsig;
502static struct ev_io sigev;
416 503
417static void 504static void
418signals_init (ANSIG *base, int count) 505signals_init (ANSIG *base, int count)
419{ 506{
420 while (count--) 507 while (count--)
427} 514}
428 515
429static void 516static void
430sighandler (int signum) 517sighandler (int signum)
431{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
432 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
433 524
434 if (!gotsig) 525 if (!gotsig)
435 { 526 {
436 int old_errno = errno; 527 int old_errno = errno;
441} 532}
442 533
443static void 534static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 536{
446 struct ev_watcher_list *w; 537 WL w;
447 int signum; 538 int signum;
448 539
449 read (sigpipe [0], &revents, 1); 540 read (sigpipe [0], &revents, 1);
450 gotsig = 0; 541 gotsig = 0;
451 542
478 569
479/*****************************************************************************/ 570/*****************************************************************************/
480 571
481#ifndef WIN32 572#ifndef WIN32
482 573
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev;
576
483#ifndef WCONTINUED 577#ifndef WCONTINUED
484# define WCONTINUED 0 578# define WCONTINUED 0
485#endif 579#endif
486 580
487static void 581static void
490 struct ev_child *w; 584 struct ev_child *w;
491 585
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 587 if (w->pid == pid || !w->pid)
494 { 588 {
495 w->priority = sw->priority; /* need to do it *now* */ 589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 590 w->rpid = pid;
497 w->rstatus = status; 591 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 592 event (EV_A_ (W)w, EV_CHILD);
499 } 593 }
500} 594}
501 595
502static void 596static void
522# include "ev_kqueue.c" 616# include "ev_kqueue.c"
523#endif 617#endif
524#if EV_USE_EPOLL 618#if EV_USE_EPOLL
525# include "ev_epoll.c" 619# include "ev_epoll.c"
526#endif 620#endif
527#if EV_USEV_POLL 621#if EV_USE_POLL
528# include "ev_poll.c" 622# include "ev_poll.c"
529#endif 623#endif
530#if EV_USE_SELECT 624#if EV_USE_SELECT
531# include "ev_select.c" 625# include "ev_select.c"
532#endif 626#endif
584 methods = atoi (getenv ("LIBEV_METHODS")); 678 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 679 else
586 methods = EVMETHOD_ANY; 680 methods = EVMETHOD_ANY;
587 681
588 method = 0; 682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
589#if EV_USE_KQUEUE 686#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 688#endif
592#if EV_USE_EPOLL 689#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 691#endif
595#if EV_USEV_POLL 692#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 694#endif
598#if EV_USE_SELECT 695#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 697#endif
602} 699}
603 700
604void 701void
605loop_destroy (EV_P) 702loop_destroy (EV_P)
606{ 703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
607#if EV_USE_KQUEUE 709#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 711#endif
610#if EV_USE_EPOLL 712#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 714#endif
613#if EV_USEV_POLL 715#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 717#endif
616#if EV_USE_SELECT 718#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
619 731
620 method = 0; 732 method = 0;
621 /*TODO*/ 733 /*TODO*/
622} 734}
623 735
635 747
636#if EV_MULTIPLICITY 748#if EV_MULTIPLICITY
637struct ev_loop * 749struct ev_loop *
638ev_loop_new (int methods) 750ev_loop_new (int methods)
639{ 751{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
641 755
642 loop_init (EV_A_ methods); 756 loop_init (EV_A_ methods);
643 757
644 if (ev_methods (EV_A)) 758 if (ev_method (EV_A))
645 return loop; 759 return loop;
646 760
647 return 0; 761 return 0;
648} 762}
649 763
650void 764void
651ev_loop_destroy (EV_P) 765ev_loop_destroy (EV_P)
652{ 766{
653 loop_destroy (EV_A); 767 loop_destroy (EV_A);
654 free (loop); 768 ev_free (loop);
655} 769}
656 770
657void 771void
658ev_loop_fork (EV_P) 772ev_loop_fork (EV_P)
659{ 773{
726 840
727 loop_destroy (EV_A); 841 loop_destroy (EV_A);
728} 842}
729 843
730void 844void
731ev_default_fork (EV_P) 845ev_default_fork (void)
732{ 846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
733 loop_fork (EV_A); 851 loop_fork (EV_A);
734 852
735 ev_io_stop (EV_A_ &sigev); 853 ev_io_stop (EV_A_ &sigev);
736 close (sigpipe [0]); 854 close (sigpipe [0]);
737 close (sigpipe [1]); 855 close (sigpipe [1]);
762} 880}
763 881
764static void 882static void
765timers_reify (EV_P) 883timers_reify (EV_P)
766{ 884{
767 while (timercnt && timers [0]->at <= mn_now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 886 {
769 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 890
771 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
772 if (w->repeat) 892 if (w->repeat)
773 { 893 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
777 } 897 }
778 else 898 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 900
783} 903}
784 904
785static void 905static void
786periodics_reify (EV_P) 906periodics_reify (EV_P)
787{ 907{
788 while (periodiccnt && periodics [0]->at <= rt_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
789 { 909 {
790 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
791 913
792 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
793 if (w->interval) 915 if (w->interval)
794 { 916 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
798 } 920 }
799 else 921 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 923
813 { 935 {
814 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
815 937
816 if (w->interval) 938 if (w->interval)
817 { 939 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
819 941
820 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
821 { 943 {
822 ev_periodic_stop (EV_A_ w); 944 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w); 945 ev_periodic_start (EV_A_ w);
884 { 1006 {
885 periodics_reschedule (EV_A); 1007 periodics_reschedule (EV_A);
886 1008
887 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1011 ((WT)timers [i])->at += rt_now - mn_now;
890 } 1012 }
891 1013
892 mn_now = rt_now; 1014 mn_now = rt_now;
893 } 1015 }
894} 1016}
945 { 1067 {
946 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
947 1069
948 if (timercnt) 1070 if (timercnt)
949 { 1071 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1073 if (block > to) block = to;
952 } 1074 }
953 1075
954 if (periodiccnt) 1076 if (periodiccnt)
955 { 1077 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
957 if (block > to) block = to; 1079 if (block > to) block = to;
958 } 1080 }
959 1081
960 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
961 } 1083 }
1078ev_timer_start (EV_P_ struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1201{
1080 if (ev_is_active (w)) 1202 if (ev_is_active (w))
1081 return; 1203 return;
1082 1204
1083 w->at += mn_now; 1205 ((WT)w)->at += mn_now;
1084 1206
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1208
1087 ev_start (EV_A_ (W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
1089 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1215}
1092 1216
1093void 1217void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1219{
1096 ev_clear_pending (EV_A_ (W)w); 1220 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
1098 return; 1222 return;
1099 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
1100 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
1101 { 1227 {
1102 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1230 }
1105 1231
1106 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
1107 1233
1108 ev_stop (EV_A_ (W)w); 1234 ev_stop (EV_A_ (W)w);
1109} 1235}
1110 1236
1111void 1237void
1113{ 1239{
1114 if (ev_is_active (w)) 1240 if (ev_is_active (w))
1115 { 1241 {
1116 if (w->repeat) 1242 if (w->repeat)
1117 { 1243 {
1118 w->at = mn_now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1120 } 1246 }
1121 else 1247 else
1122 ev_timer_stop (EV_A_ w); 1248 ev_timer_stop (EV_A_ w);
1123 } 1249 }
1124 else if (w->repeat) 1250 else if (w->repeat)
1133 1259
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135 1261
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval) 1263 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1139 1265
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
1142 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1272}
1145 1273
1146void 1274void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1276{
1149 ev_clear_pending (EV_A_ (W)w); 1277 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
1151 return; 1279 return;
1152 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
1153 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
1154 { 1284 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1287 }
1158 1288
1159 ev_stop (EV_A_ (W)w); 1289 ev_stop (EV_A_ (W)w);
1160} 1290}
1161 1291
1175{ 1305{
1176 ev_clear_pending (EV_A_ (W)w); 1306 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1307 if (ev_is_active (w))
1178 return; 1308 return;
1179 1309
1180 idles [w->active - 1] = idles [--idlecnt]; 1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1311 ev_stop (EV_A_ (W)w);
1182} 1312}
1183 1313
1184void 1314void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1197{ 1327{
1198 ev_clear_pending (EV_A_ (W)w); 1328 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1329 if (ev_is_active (w))
1200 return; 1330 return;
1201 1331
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1333 ev_stop (EV_A_ (W)w);
1204} 1334}
1205 1335
1206void 1336void
1207ev_check_start (EV_P_ struct ev_check *w) 1337ev_check_start (EV_P_ struct ev_check *w)
1219{ 1349{
1220 ev_clear_pending (EV_A_ (W)w); 1350 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1222 return; 1352 return;
1223 1353
1224 checks [w->active - 1] = checks [--checkcnt]; 1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1355 ev_stop (EV_A_ (W)w);
1226} 1356}
1227 1357
1228#ifndef SA_RESTART 1358#ifndef SA_RESTART
1229# define SA_RESTART 0 1359# define SA_RESTART 0
1242 1372
1243 ev_start (EV_A_ (W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1376
1247 if (!w->next) 1377 if (!((WL)w)->next)
1248 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
1249 struct sigaction sa; 1382 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
1254 } 1388 }
1255} 1389}
1256 1390
1257void 1391void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1443 void *arg = once->arg;
1310 1444
1311 ev_io_stop (EV_A_ &once->io); 1445 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1447 ev_free (once);
1314 1448
1315 cb (revents, arg); 1449 cb (revents, arg);
1316} 1450}
1317 1451
1318static void 1452static void
1328} 1462}
1329 1463
1330void 1464void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1466{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1334 1468
1335 if (!once) 1469 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1471 else
1338 { 1472 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines