ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.7 by root, Wed Oct 31 00:24:16 2007 UTC vs.
Revision 1.73 by root, Tue Nov 6 16:27:10 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h>
4#include <fcntl.h> 59#include <fcntl.h>
5#include <signal.h> 60#include <stddef.h>
6 61
7#include <stdio.h> 62#include <stdio.h>
8 63
9#include <assert.h> 64#include <assert.h>
10#include <errno.h> 65#include <errno.h>
11#include <sys/time.h> 66#include <sys/types.h>
12#include <time.h> 67#include <time.h>
13 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
14#ifdef CLOCK_MONOTONIC 114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
15# define HAVE_MONOTONIC 1 116# define EV_USE_MONOTONIC 0
16#endif 117#endif
17 118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
18#define HAVE_REALTIME 1 121# define EV_USE_REALTIME 0
19#define HAVE_EPOLL 1 122#endif
20#define HAVE_SELECT 1 123
124/**/
21 125
22#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
23#define MAX_BLOCKTIME 60. 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
24 130
25#include "ev.h" 131#include "ev.h"
26 132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146
27struct ev_watcher { 147typedef struct ev_watcher *W;
28 EV_WATCHER (ev_watcher); 148typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT;
150
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152
153#include "ev_win32.c"
154
155/*****************************************************************************/
156
157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
29}; 224};
225# undef VAR
226# include "ev_wrap.h"
30 227
31struct ev_watcher_list { 228#else
32 EV_WATCHER_LIST (ev_watcher_list);
33};
34 229
35static ev_tstamp now, diff; /* monotonic clock */ 230# define VAR(name,decl) static decl;
36ev_tstamp ev_now; 231# include "ev_vars.h"
37int ev_method; 232# undef VAR
38 233
39static int have_monotonic; /* runtime */ 234#endif
40 235
41static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 236/*****************************************************************************/
42static void (*method_modify)(int fd, int oev, int nev);
43static void (*method_poll)(ev_tstamp timeout);
44 237
45ev_tstamp 238inline ev_tstamp
46ev_time (void) 239ev_time (void)
47{ 240{
48#if HAVE_REALTIME 241#if EV_USE_REALTIME
49 struct timespec ts; 242 struct timespec ts;
50 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
51 return ts.tv_sec + ts.tv_nsec * 1e-9; 244 return ts.tv_sec + ts.tv_nsec * 1e-9;
52#else 245#else
53 struct timeval tv; 246 struct timeval tv;
54 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
55 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
56#endif 249#endif
57} 250}
58 251
59static ev_tstamp 252inline ev_tstamp
60get_clock (void) 253get_clock (void)
61{ 254{
62#if HAVE_MONOTONIC 255#if EV_USE_MONOTONIC
63 if (have_monotonic) 256 if (expect_true (have_monotonic))
64 { 257 {
65 struct timespec ts; 258 struct timespec ts;
66 clock_gettime (CLOCK_MONOTONIC, &ts); 259 clock_gettime (CLOCK_MONOTONIC, &ts);
67 return ts.tv_sec + ts.tv_nsec * 1e-9; 260 return ts.tv_sec + ts.tv_nsec * 1e-9;
68 } 261 }
69#endif 262#endif
70 263
71 return ev_time (); 264 return ev_time ();
72} 265}
73 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
273#define array_roundsize(base,n) ((n) | 4 & ~3)
274
74#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(base,cur,cnt,init) \
75 if ((cnt) > cur) \ 276 if (expect_false ((cnt) > cur)) \
76 { \ 277 { \
77 int newcnt = cur ? cur << 1 : 16; \ 278 int newcnt = cur; \
78 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 279 do \
280 { \
281 newcnt = array_roundsize (base, newcnt << 1); \
282 } \
283 while ((cnt) > newcnt); \
284 \
79 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
80 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
81 cur = newcnt; \ 287 cur = newcnt; \
82 } 288 }
83 289
84typedef struct 290#define array_slim(stem) \
85{ 291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
86 struct ev_io *head; 292 { \
87 unsigned char wev, rev; /* want, received event set */ 293 stem ## max = array_roundsize (stem ## cnt >> 1); \
88} ANFD; 294 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
89 297
90static ANFD *anfds; 298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
91static int anfdmax; 299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
92 302
93static int *fdchanges; 303#define array_free(stem, idx) \
94static int fdchangemax, fdchangecnt; 304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305
306/*****************************************************************************/
95 307
96static void 308static void
97anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
98{ 310{
99 while (count--) 311 while (count--)
100 { 312 {
101 base->head = 0; 313 base->head = 0;
102 base->wev = base->rev = EV_NONE; 314 base->events = EV_NONE;
315 base->reify = 0;
316
103 ++base; 317 ++base;
104 } 318 }
105} 319}
106 320
107typedef struct
108{
109 struct ev_watcher *w;
110 int events;
111} ANPENDING;
112
113static ANPENDING *pendings;
114static int pendingmax, pendingcnt;
115
116static void 321static void
117event (struct ev_watcher *w, int events) 322event (EV_P_ W w, int events)
118{ 323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
119 w->pending = ++pendingcnt; 330 w->pending = ++pendingcnt [ABSPRI (w)];
120 array_needsize (pendings, pendingmax, pendingcnt, ); 331 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
121 pendings [pendingcnt - 1].w = w; 332 pendings [ABSPRI (w)][w->pending - 1].w = w;
122 pendings [pendingcnt - 1].events = events; 333 pendings [ABSPRI (w)][w->pending - 1].events = events;
123} 334}
124 335
125static void 336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
126fd_event (int fd, int events) 346fd_event (EV_P_ int fd, int events)
127{ 347{
128 ANFD *anfd = anfds + fd; 348 ANFD *anfd = anfds + fd;
129 struct ev_io *w; 349 struct ev_io *w;
130 350
131 for (w = anfd->head; w; w = w->next) 351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
132 { 352 {
133 int ev = w->events & events; 353 int ev = w->events & events;
134 354
135 if (ev) 355 if (ev)
136 event ((struct ev_watcher *)w, ev); 356 event (EV_A_ (W)w, ev);
357 }
358}
359
360/*****************************************************************************/
361
362static void
363fd_reify (EV_P)
364{
365 int i;
366
367 for (i = 0; i < fdchangecnt; ++i)
368 {
369 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd;
371 struct ev_io *w;
372
373 int events = 0;
374
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events;
377
378 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events;
382 }
383
384 fdchangecnt = 0;
385}
386
387static void
388fd_change (EV_P_ int fd)
389{
390 if (anfds [fd].reify)
391 return;
392
393 anfds [fd].reify = 1;
394
395 ++fdchangecnt;
396 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
397 fdchanges [fdchangecnt - 1] = fd;
398}
399
400static void
401fd_kill (EV_P_ int fd)
402{
403 struct ev_io *w;
404
405 while ((w = (struct ev_io *)anfds [fd].head))
406 {
407 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 }
410}
411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
422/* called on EBADF to verify fds */
423static void
424fd_ebadf (EV_P)
425{
426 int fd;
427
428 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd);
432}
433
434/* called on ENOMEM in select/poll to kill some fds and retry */
435static void
436fd_enomem (EV_P)
437{
438 int fd;
439
440 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events)
442 {
443 fd_kill (EV_A_ fd);
444 return;
137 } 445 }
138} 446}
139 447
140static struct ev_timer **atimers; 448/* usually called after fork if method needs to re-arm all fds from scratch */
141static int atimermax, atimercnt;
142
143static struct ev_timer **rtimers;
144static int rtimermax, rtimercnt;
145
146static void 449static void
147upheap (struct ev_timer **timers, int k) 450fd_rearm_all (EV_P)
148{ 451{
149 struct ev_timer *w = timers [k]; 452 int fd;
150 453
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events)
457 {
458 anfds [fd].events = 0;
459 fd_change (EV_A_ fd);
460 }
461}
462
463/*****************************************************************************/
464
465static void
466upheap (WT *heap, int k)
467{
468 WT w = heap [k];
469
151 while (k && timers [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
152 { 471 {
153 timers [k] = timers [k >> 1]; 472 heap [k] = heap [k >> 1];
154 timers [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
155 k >>= 1; 474 k >>= 1;
156 } 475 }
157 476
158 timers [k] = w; 477 heap [k] = w;
159 timers [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
160 479
161} 480}
162 481
163static void 482static void
164downheap (struct ev_timer **timers, int N, int k) 483downheap (WT *heap, int N, int k)
165{ 484{
166 struct ev_timer *w = timers [k]; 485 WT w = heap [k];
167 486
168 while (k < (N >> 1)) 487 while (k < (N >> 1))
169 { 488 {
170 int j = k << 1; 489 int j = k << 1;
171 490
172 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
173 ++j; 492 ++j;
174 493
175 if (w->at <= timers [j]->at) 494 if (w->at <= heap [j]->at)
176 break; 495 break;
177 496
178 timers [k] = timers [j]; 497 heap [k] = heap [j];
179 timers [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
180 k = j; 499 k = j;
181 } 500 }
182 501
183 timers [k] = w; 502 heap [k] = w;
184 timers [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
185} 504}
505
506/*****************************************************************************/
186 507
187typedef struct 508typedef struct
188{ 509{
189 struct ev_signal *head; 510 WL head;
190 sig_atomic_t gotsig; 511 sig_atomic_t volatile gotsig;
191} ANSIG; 512} ANSIG;
192 513
193static ANSIG *signals; 514static ANSIG *signals;
194static int signalmax; 515static int signalmax;
195 516
196static int sigpipe [2]; 517static int sigpipe [2];
197static sig_atomic_t gotsig; 518static sig_atomic_t volatile gotsig;
198static struct ev_io sigev; 519static struct ev_io sigev;
199 520
200static void 521static void
201signals_init (ANSIG *base, int count) 522signals_init (ANSIG *base, int count)
202{ 523{
203 while (count--) 524 while (count--)
204 { 525 {
205 base->head = 0; 526 base->head = 0;
206 base->gotsig = 0; 527 base->gotsig = 0;
528
207 ++base; 529 ++base;
208 } 530 }
209} 531}
210 532
211static void 533static void
212sighandler (int signum) 534sighandler (int signum)
213{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
214 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
215 541
216 if (!gotsig) 542 if (!gotsig)
217 { 543 {
544 int old_errno = errno;
218 gotsig = 1; 545 gotsig = 1;
219 write (sigpipe [1], &gotsig, 1); 546 write (sigpipe [1], &signum, 1);
547 errno = old_errno;
220 } 548 }
221} 549}
222 550
223static void 551static void
224sigcb (struct ev_io *iow, int revents) 552sigcb (EV_P_ struct ev_io *iow, int revents)
225{ 553{
226 struct ev_signal *w; 554 WL w;
227 int sig; 555 int signum;
228 556
557 read (sigpipe [0], &revents, 1);
229 gotsig = 0; 558 gotsig = 0;
230 read (sigpipe [0], &revents, 1);
231 559
232 for (sig = signalmax; sig--; ) 560 for (signum = signalmax; signum--; )
233 if (signals [sig].gotsig) 561 if (signals [signum].gotsig)
234 { 562 {
235 signals [sig].gotsig = 0; 563 signals [signum].gotsig = 0;
236 564
237 for (w = signals [sig].head; w; w = w->next) 565 for (w = signals [signum].head; w; w = w->next)
238 event ((struct ev_watcher *)w, EV_SIGNAL); 566 event (EV_A_ (W)w, EV_SIGNAL);
239 } 567 }
240} 568}
241 569
242static void 570static void
243siginit (void) 571siginit (EV_P)
244{ 572{
573#ifndef WIN32
245 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
246 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
247 576
248 /* rather than sort out wether we really need nb, set it */ 577 /* rather than sort out wether we really need nb, set it */
249 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
250 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
251 581
252 evio_set (&sigev, sigpipe [0], EV_READ); 582 ev_io_set (&sigev, sigpipe [0], EV_READ);
253 evio_start (&sigev); 583 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */
254} 585}
255 586
587/*****************************************************************************/
588
589static struct ev_child *childs [PID_HASHSIZE];
590
591#ifndef WIN32
592
593static struct ev_signal childev;
594
595#ifndef WCONTINUED
596# define WCONTINUED 0
597#endif
598
599static void
600child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
601{
602 struct ev_child *w;
603
604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
605 if (w->pid == pid || !w->pid)
606 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid;
609 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD);
611 }
612}
613
614static void
615childcb (EV_P_ struct ev_signal *sw, int revents)
616{
617 int pid, status;
618
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 {
621 /* make sure we are called again until all childs have been reaped */
622 event (EV_A_ (W)sw, EV_SIGNAL);
623
624 child_reap (EV_A_ sw, pid, pid, status);
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
626 }
627}
628
629#endif
630
631/*****************************************************************************/
632
633#if EV_USE_KQUEUE
634# include "ev_kqueue.c"
635#endif
256#if HAVE_EPOLL 636#if EV_USE_EPOLL
257# include "ev_epoll.c" 637# include "ev_epoll.c"
258#endif 638#endif
639#if EV_USE_POLL
640# include "ev_poll.c"
641#endif
259#if HAVE_SELECT 642#if EV_USE_SELECT
260# include "ev_select.c" 643# include "ev_select.c"
261#endif 644#endif
262 645
263int ev_init (int flags) 646int
647ev_version_major (void)
264{ 648{
649 return EV_VERSION_MAJOR;
650}
651
652int
653ev_version_minor (void)
654{
655 return EV_VERSION_MINOR;
656}
657
658/* return true if we are running with elevated privileges and should ignore env variables */
659static int
660enable_secure (void)
661{
662#ifdef WIN32
663 return 0;
664#else
665 return getuid () != geteuid ()
666 || getgid () != getegid ();
667#endif
668}
669
670int
671ev_method (EV_P)
672{
673 return method;
674}
675
676static void
677loop_init (EV_P_ int methods)
678{
679 if (!method)
680 {
265#if HAVE_MONOTONIC 681#if EV_USE_MONOTONIC
266 { 682 {
267 struct timespec ts; 683 struct timespec ts;
268 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 684 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
269 have_monotonic = 1; 685 have_monotonic = 1;
270 } 686 }
271#endif 687#endif
272 688
273 ev_now = ev_time (); 689 rt_now = ev_time ();
274 now = get_clock (); 690 mn_now = get_clock ();
275 diff = ev_now - now; 691 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now;
276 693
277 if (pipe (sigpipe)) 694 if (methods == EVMETHOD_AUTO)
278 return 0; 695 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS"));
697 else
698 methods = EVMETHOD_ANY;
279 699
280 ev_method = EVMETHOD_NONE; 700 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
704#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
706#endif
281#if HAVE_EPOLL 707#if EV_USE_EPOLL
282 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
283#endif 709#endif
710#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
712#endif
284#if HAVE_SELECT 713#if EV_USE_SELECT
285 if (ev_method == EVMETHOD_NONE) select_init (flags); 714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
286#endif 715#endif
287 716
288 if (ev_method)
289 {
290 evw_init (&sigev, sigcb, 0); 717 ev_watcher_init (&sigev, sigcb);
291 siginit (); 718 ev_set_priority (&sigev, EV_MAXPRI);
292 } 719 }
293
294 return ev_method;
295} 720}
296 721
297void ev_prefork (void) 722void
298{ 723loop_destroy (EV_P)
299}
300
301void ev_postfork_parent (void)
302{
303}
304
305void ev_postfork_child (void)
306{
307#if HAVE_EPOLL
308 if (ev_method == EVMETHOD_EPOLL)
309 epoll_postfork_child ();
310#endif
311
312 evio_stop (&sigev);
313 close (sigpipe [0]);
314 close (sigpipe [1]);
315 pipe (sigpipe);
316 siginit ();
317}
318
319static void
320fd_reify (void)
321{ 724{
322 int i; 725 int i;
323 726
324 for (i = 0; i < fdchangecnt; ++i) 727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
730#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
732#endif
733#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
735#endif
736#if EV_USE_POLL
737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
738#endif
739#if EV_USE_SELECT
740 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
741#endif
742
743 for (i = NUMPRI; i--; )
744 array_free (pending, [i]);
745
746 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange);
748 array_free_microshit (timer);
749 array_free_microshit (periodic);
750 array_free_microshit (idle);
751 array_free_microshit (prepare);
752 array_free_microshit (check);
753
754 method = 0;
755}
756
757static void
758loop_fork (EV_P)
759{
760#if EV_USE_EPOLL
761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
762#endif
763#if EV_USE_KQUEUE
764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
765#endif
766
767 if (ev_is_active (&sigev))
768 {
769 /* default loop */
770
771 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev);
773 close (sigpipe [0]);
774 close (sigpipe [1]);
775
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A);
325 { 780 }
326 int fd = fdchanges [i];
327 ANFD *anfd = anfds + fd;
328 struct ev_io *w;
329 781
330 int wev = 0; 782 postfork = 0;
783}
331 784
332 for (w = anfd->head; w; w = w->next) 785#if EV_MULTIPLICITY
333 wev |= w->events; 786struct ev_loop *
787ev_loop_new (int methods)
788{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
334 790
335 if (anfd->wev != wev) 791 memset (loop, 0, sizeof (struct ev_loop));
792
793 loop_init (EV_A_ methods);
794
795 if (ev_method (EV_A))
796 return loop;
797
798 return 0;
799}
800
801void
802ev_loop_destroy (EV_P)
803{
804 loop_destroy (EV_A);
805 ev_free (loop);
806}
807
808void
809ev_loop_fork (EV_P)
810{
811 postfork = 1;
812}
813
814#endif
815
816#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop *
821#else
822static int default_loop;
823
824int
825#endif
826ev_default_loop (int methods)
827{
828 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe))
830 return 0;
831
832 if (!default_loop)
833 {
834#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct;
836#else
837 default_loop = 1;
838#endif
839
840 loop_init (EV_A_ methods);
841
842 if (ev_method (EV_A))
336 { 843 {
337 method_modify (fd, anfd->wev, wev); 844 siginit (EV_A);
338 anfd->wev = wev; 845
846#ifndef WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif
339 } 852 }
853 else
854 default_loop = 0;
340 } 855 }
341 856
342 fdchangecnt = 0; 857 return default_loop;
343} 858}
344 859
860void
861ev_default_destroy (void)
862{
863#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop;
865#endif
866
867#ifndef WIN32
868 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev);
870#endif
871
872 ev_ref (EV_A); /* signal watcher */
873 ev_io_stop (EV_A_ &sigev);
874
875 close (sigpipe [0]); sigpipe [0] = 0;
876 close (sigpipe [1]); sigpipe [1] = 0;
877
878 loop_destroy (EV_A);
879}
880
881void
882ev_default_fork (void)
883{
884#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop;
886#endif
887
888 if (method)
889 postfork = 1;
890}
891
892/*****************************************************************************/
893
345static void 894static void
346call_pending () 895call_pending (EV_P)
347{ 896{
348 int i; 897 int pri;
349 898
350 for (i = 0; i < pendingcnt; ++i) 899 for (pri = NUMPRI; pri--; )
900 while (pendingcnt [pri])
351 { 901 {
352 ANPENDING *p = pendings + i; 902 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
353 903
354 if (p->w) 904 if (p->w)
355 { 905 {
356 p->w->pending = 0; 906 p->w->pending = 0;
357 p->w->cb (p->w, p->events); 907 p->w->cb (EV_A_ p->w, p->events);
358 } 908 }
359 } 909 }
360
361 pendingcnt = 0;
362} 910}
363 911
364static void 912static void
365timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 913timers_reify (EV_P)
366{ 914{
367 while (timercnt && timers [0]->at <= now) 915 while (timercnt && ((WT)timers [0])->at <= mn_now)
368 { 916 {
369 struct ev_timer *w = timers [0]; 917 struct ev_timer *w = timers [0];
918
919 assert (("inactive timer on timer heap detected", ev_is_active (w)));
370 920
371 /* first reschedule or stop timer */ 921 /* first reschedule or stop timer */
372 if (w->repeat) 922 if (w->repeat)
373 { 923 {
374 if (w->is_abs) 924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
375 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
376 else
377 w->at = now + w->repeat; 925 ((WT)w)->at = mn_now + w->repeat;
378
379 assert (w->at > now);
380
381 downheap (timers, timercnt, 0); 926 downheap ((WT *)timers, timercnt, 0);
382 } 927 }
383 else 928 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930
931 event (EV_A_ (W)w, EV_TIMEOUT);
932 }
933}
934
935static void
936periodics_reify (EV_P)
937{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
939 {
940 struct ev_periodic *w = periodics [0];
941
942 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943
944 /* first reschedule or stop timer */
945 if (w->interval)
384 { 946 {
385 evtimer_stop (w); /* nonrepeating: stop timer */ 947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
386 --timercnt; /* maybe pass by reference instead? */ 948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0);
387 } 950 }
951 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
388 953
389 event ((struct ev_watcher *)w, EV_TIMEOUT); 954 event (EV_A_ (W)w, EV_PERIODIC);
390 } 955 }
391} 956}
392 957
393static void 958static void
394time_update () 959periodics_reschedule (EV_P)
395{ 960{
396 int i; 961 int i;
397 ev_now = ev_time ();
398 962
399 if (have_monotonic) 963 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i)
400 { 965 {
401 ev_tstamp odiff = diff; 966 struct ev_periodic *w = periodics [i];
402 967
403 /* detecting time jumps is much more difficult */ 968 if (w->interval)
404 for (i = 2; --i; ) /* loop a few times, before making important decisions */
405 { 969 {
406 now = get_clock (); 970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
407 diff = ev_now - now;
408 971
409 if (fabs (odiff - diff) < MIN_TIMEJUMP) 972 if (fabs (diff) >= 1e-4)
410 return; /* all is well */ 973 {
974 ev_periodic_stop (EV_A_ w);
975 ev_periodic_start (EV_A_ w);
411 976
412 ev_now = ev_time (); 977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 }
413 } 979 }
980 }
981}
414 982
415 /* time jump detected, reschedule atimers */ 983inline int
416 for (i = 0; i < atimercnt; ++i) 984time_update_monotonic (EV_P)
985{
986 mn_now = get_clock ();
987
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 {
990 rt_now = rtmn_diff + mn_now;
991 return 0;
992 }
993 else
994 {
995 now_floor = mn_now;
996 rt_now = ev_time ();
997 return 1;
998 }
999}
1000
1001static void
1002time_update (EV_P)
1003{
1004 int i;
1005
1006#if EV_USE_MONOTONIC
1007 if (expect_true (have_monotonic))
1008 {
1009 if (time_update_monotonic (EV_A))
417 { 1010 {
418 struct ev_timer *w = atimers [i]; 1011 ev_tstamp odiff = rtmn_diff;
419 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 1012
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1014 {
1015 rtmn_diff = rt_now - mn_now;
1016
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */
1019
1020 rt_now = ev_time ();
1021 mn_now = get_clock ();
1022 now_floor = mn_now;
1023 }
1024
1025 periodics_reschedule (EV_A);
1026 /* no timer adjustment, as the monotonic clock doesn't jump */
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
420 } 1028 }
421 } 1029 }
422 else 1030 else
1031#endif
423 { 1032 {
424 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1033 rt_now = ev_time ();
425 /* time jump detected, adjust rtimers */ 1034
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 {
1037 periodics_reschedule (EV_A);
1038
1039 /* adjust timers. this is easy, as the offset is the same for all */
426 for (i = 0; i < rtimercnt; ++i) 1040 for (i = 0; i < timercnt; ++i)
427 rtimers [i]->at += ev_now - now; 1041 ((WT)timers [i])->at += rt_now - mn_now;
1042 }
428 1043
429 now = ev_now; 1044 mn_now = rt_now;
430 } 1045 }
431} 1046}
432 1047
433int ev_loop_done; 1048void
1049ev_ref (EV_P)
1050{
1051 ++activecnt;
1052}
434 1053
1054void
1055ev_unref (EV_P)
1056{
1057 --activecnt;
1058}
1059
1060static int loop_done;
1061
1062void
435void ev_loop (int flags) 1063ev_loop (EV_P_ int flags)
436{ 1064{
437 double block; 1065 double block;
438 ev_loop_done = flags & EVLOOP_ONESHOT; 1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
439 1067
440 do 1068 do
441 { 1069 {
1070 /* queue check watchers (and execute them) */
1071 if (expect_false (preparecnt))
1072 {
1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1074 call_pending (EV_A);
1075 }
1076
1077 /* we might have forked, so reify kernel state if necessary */
1078 if (expect_false (postfork))
1079 loop_fork (EV_A);
1080
442 /* update fd-related kernel structures */ 1081 /* update fd-related kernel structures */
443 fd_reify (); 1082 fd_reify (EV_A);
444 1083
445 /* calculate blocking time */ 1084 /* calculate blocking time */
1085
1086 /* we only need this for !monotonic clockor timers, but as we basically
1087 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A);
1091 else
1092#endif
1093 {
1094 rt_now = ev_time ();
1095 mn_now = rt_now;
1096 }
1097
446 if (flags & EVLOOP_NONBLOCK) 1098 if (flags & EVLOOP_NONBLOCK || idlecnt)
447 block = 0.; 1099 block = 0.;
448 else 1100 else
449 { 1101 {
450 block = MAX_BLOCKTIME; 1102 block = MAX_BLOCKTIME;
451 1103
452 if (rtimercnt) 1104 if (timercnt)
453 { 1105 {
454 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
455 if (block > to) block = to; 1107 if (block > to) block = to;
456 } 1108 }
457 1109
458 if (atimercnt) 1110 if (periodiccnt)
459 { 1111 {
460 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
461 if (block > to) block = to; 1113 if (block > to) block = to;
462 } 1114 }
463 1115
464 if (block < 0.) block = 0.; 1116 if (block < 0.) block = 0.;
465 } 1117 }
466 1118
467 method_poll (block); 1119 method_poll (EV_A_ block);
468 1120
469 /* update ev_now, do magic */ 1121 /* update rt_now, do magic */
470 time_update (); 1122 time_update (EV_A);
471 1123
472 /* put pending timers into pendign queue and reschedule them */ 1124 /* queue pending timers and reschedule them */
473 /* absolute timers first */ 1125 timers_reify (EV_A); /* relative timers called last */
474 timers_reify (atimers, atimercnt, ev_now); 1126 periodics_reify (EV_A); /* absolute timers called first */
475 /* relative timers second */
476 timers_reify (rtimers, rtimercnt, now);
477 1127
1128 /* queue idle watchers unless io or timers are pending */
1129 if (!pendingcnt)
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1131
1132 /* queue check watchers, to be executed first */
1133 if (checkcnt)
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1135
478 call_pending (); 1136 call_pending (EV_A);
479 } 1137 }
480 while (!ev_loop_done); 1138 while (activecnt && !loop_done);
481}
482 1139
483static void 1140 if (loop_done != 2)
484wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1141 loop_done = 0;
1142}
1143
1144void
1145ev_unloop (EV_P_ int how)
1146{
1147 loop_done = how;
1148}
1149
1150/*****************************************************************************/
1151
1152inline void
1153wlist_add (WL *head, WL elem)
485{ 1154{
486 elem->next = *head; 1155 elem->next = *head;
487 *head = elem; 1156 *head = elem;
488} 1157}
489 1158
490static void 1159inline void
491wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1160wlist_del (WL *head, WL elem)
492{ 1161{
493 while (*head) 1162 while (*head)
494 { 1163 {
495 if (*head == elem) 1164 if (*head == elem)
496 { 1165 {
500 1169
501 head = &(*head)->next; 1170 head = &(*head)->next;
502 } 1171 }
503} 1172}
504 1173
505static void 1174inline void
506ev_start (struct ev_watcher *w, int active) 1175ev_clear_pending (EV_P_ W w)
507{ 1176{
1177 if (w->pending)
1178 {
1179 pendings [ABSPRI (w)][w->pending - 1].w = 0;
508 w->pending = 0; 1180 w->pending = 0;
1181 }
1182}
1183
1184inline void
1185ev_start (EV_P_ W w, int active)
1186{
1187 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1188 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1189
509 w->active = active; 1190 w->active = active;
1191 ev_ref (EV_A);
510} 1192}
511 1193
512static void 1194inline void
513ev_stop (struct ev_watcher *w) 1195ev_stop (EV_P_ W w)
514{ 1196{
515 if (w->pending) 1197 ev_unref (EV_A);
516 pendings [w->pending - 1].w = 0;
517
518 w->active = 0; 1198 w->active = 0;
519 /* nop */
520} 1199}
521 1200
1201/*****************************************************************************/
1202
522void 1203void
523evio_start (struct ev_io *w) 1204ev_io_start (EV_P_ struct ev_io *w)
524{ 1205{
1206 int fd = w->fd;
1207
525 if (ev_is_active (w)) 1208 if (ev_is_active (w))
526 return; 1209 return;
527 1210
528 int fd = w->fd; 1211 assert (("ev_io_start called with negative fd", fd >= 0));
529 1212
530 ev_start ((struct ev_watcher *)w, 1); 1213 ev_start (EV_A_ (W)w, 1);
531 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1214 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
532 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w); 1215 wlist_add ((WL *)&anfds[fd].head, (WL)w);
533 1216
534 ++fdchangecnt; 1217 fd_change (EV_A_ fd);
535 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
536 fdchanges [fdchangecnt - 1] = fd;
537} 1218}
538 1219
539void 1220void
540evio_stop (struct ev_io *w) 1221ev_io_stop (EV_P_ struct ev_io *w)
541{ 1222{
1223 ev_clear_pending (EV_A_ (W)w);
542 if (!ev_is_active (w)) 1224 if (!ev_is_active (w))
543 return; 1225 return;
544 1226
545 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w); 1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
546 ev_stop ((struct ev_watcher *)w); 1228 ev_stop (EV_A_ (W)w);
547 1229
548 ++fdchangecnt; 1230 fd_change (EV_A_ w->fd);
549 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
550 fdchanges [fdchangecnt - 1] = w->fd;
551} 1231}
552 1232
553void 1233void
554evtimer_start (struct ev_timer *w) 1234ev_timer_start (EV_P_ struct ev_timer *w)
555{ 1235{
556 if (ev_is_active (w)) 1236 if (ev_is_active (w))
557 return; 1237 return;
558 1238
559 if (w->is_abs) 1239 ((WT)w)->at += mn_now;
1240
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242
1243 ev_start (EV_A_ (W)w, ++timercnt);
1244 array_needsize (timers, timermax, timercnt, (void));
1245 timers [timercnt - 1] = w;
1246 upheap ((WT *)timers, timercnt - 1);
1247
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1249}
1250
1251void
1252ev_timer_stop (EV_P_ struct ev_timer *w)
1253{
1254 ev_clear_pending (EV_A_ (W)w);
1255 if (!ev_is_active (w))
1256 return;
1257
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1259
1260 if (((W)w)->active < timercnt--)
1261 {
1262 timers [((W)w)->active - 1] = timers [timercnt];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
560 { 1264 }
561 /* this formula differs from the one in timer_reify becuse we do not round up */ 1265
1266 ((WT)w)->at = w->repeat;
1267
1268 ev_stop (EV_A_ (W)w);
1269}
1270
1271void
1272ev_timer_again (EV_P_ struct ev_timer *w)
1273{
1274 if (ev_is_active (w))
1275 {
562 if (w->repeat) 1276 if (w->repeat)
563 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1277 {
564 1278 ((WT)w)->at = mn_now + w->repeat;
565 ev_start ((struct ev_watcher *)w, ++atimercnt); 1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
566 array_needsize (atimers, atimermax, atimercnt, ); 1280 }
567 atimers [atimercnt - 1] = w;
568 upheap (atimers, atimercnt - 1);
569 }
570 else 1281 else
1282 ev_timer_stop (EV_A_ w);
571 { 1283 }
572 w->at += now; 1284 else if (w->repeat)
573 1285 ev_timer_start (EV_A_ w);
574 ev_start ((struct ev_watcher *)w, ++rtimercnt);
575 array_needsize (rtimers, rtimermax, rtimercnt, );
576 rtimers [rtimercnt - 1] = w;
577 upheap (rtimers, rtimercnt - 1);
578 }
579
580} 1286}
581 1287
582void 1288void
583evtimer_stop (struct ev_timer *w) 1289ev_periodic_start (EV_P_ struct ev_periodic *w)
584{ 1290{
1291 if (ev_is_active (w))
1292 return;
1293
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1299
1300 ev_start (EV_A_ (W)w, ++periodiccnt);
1301 array_needsize (periodics, periodicmax, periodiccnt, (void));
1302 periodics [periodiccnt - 1] = w;
1303 upheap ((WT *)periodics, periodiccnt - 1);
1304
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1306}
1307
1308void
1309ev_periodic_stop (EV_P_ struct ev_periodic *w)
1310{
1311 ev_clear_pending (EV_A_ (W)w);
585 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
586 return; 1313 return;
587 1314
588 if (w->is_abs) 1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
589 { 1316
590 if (w->active < atimercnt--) 1317 if (((W)w)->active < periodiccnt--)
591 {
592 atimers [w->active - 1] = atimers [atimercnt];
593 downheap (atimers, atimercnt, w->active - 1);
594 }
595 } 1318 {
596 else 1319 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
597 { 1321 }
598 if (w->active < rtimercnt--)
599 {
600 rtimers [w->active - 1] = rtimers [rtimercnt];
601 downheap (rtimers, rtimercnt, w->active - 1);
602 }
603 }
604 1322
605 ev_stop ((struct ev_watcher *)w); 1323 ev_stop (EV_A_ (W)w);
606} 1324}
607 1325
608void 1326void
609evsignal_start (struct ev_signal *w) 1327ev_idle_start (EV_P_ struct ev_idle *w)
610{ 1328{
611 if (ev_is_active (w)) 1329 if (ev_is_active (w))
612 return; 1330 return;
613 1331
614 ev_start ((struct ev_watcher *)w, 1); 1332 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w;
1335}
1336
1337void
1338ev_idle_stop (EV_P_ struct ev_idle *w)
1339{
1340 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w))
1342 return;
1343
1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w);
1346}
1347
1348void
1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1350{
1351 if (ev_is_active (w))
1352 return;
1353
1354 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w;
1357}
1358
1359void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{
1362 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w))
1364 return;
1365
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w);
1368}
1369
1370void
1371ev_check_start (EV_P_ struct ev_check *w)
1372{
1373 if (ev_is_active (w))
1374 return;
1375
1376 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w;
1379}
1380
1381void
1382ev_check_stop (EV_P_ struct ev_check *w)
1383{
1384 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w))
1386 return;
1387
1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w);
1390}
1391
1392#ifndef SA_RESTART
1393# define SA_RESTART 0
1394#endif
1395
1396void
1397ev_signal_start (EV_P_ struct ev_signal *w)
1398{
1399#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1401#endif
1402 if (ev_is_active (w))
1403 return;
1404
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1406
1407 ev_start (EV_A_ (W)w, 1);
615 array_needsize (signals, signalmax, w->signum, signals_init); 1408 array_needsize (signals, signalmax, w->signum, signals_init);
616 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
617 1410
618 if (!w->next) 1411 if (!((WL)w)->next)
619 { 1412 {
1413#if WIN32
1414 signal (w->signum, sighandler);
1415#else
620 struct sigaction sa; 1416 struct sigaction sa;
621 sa.sa_handler = sighandler; 1417 sa.sa_handler = sighandler;
622 sigfillset (&sa.sa_mask); 1418 sigfillset (&sa.sa_mask);
623 sa.sa_flags = 0; 1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
624 sigaction (w->signum, &sa, 0); 1420 sigaction (w->signum, &sa, 0);
1421#endif
625 } 1422 }
626} 1423}
627 1424
628void 1425void
629evsignal_stop (struct ev_signal *w) 1426ev_signal_stop (EV_P_ struct ev_signal *w)
630{ 1427{
1428 ev_clear_pending (EV_A_ (W)w);
631 if (!ev_is_active (w)) 1429 if (!ev_is_active (w))
632 return; 1430 return;
633 1431
634 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1432 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
635 ev_stop ((struct ev_watcher *)w); 1433 ev_stop (EV_A_ (W)w);
636 1434
637 if (!signals [w->signum - 1].head) 1435 if (!signals [w->signum - 1].head)
638 signal (w->signum, SIG_DFL); 1436 signal (w->signum, SIG_DFL);
639} 1437}
640 1438
1439void
1440ev_child_start (EV_P_ struct ev_child *w)
1441{
1442#if EV_MULTIPLICITY
1443 assert (("child watchers are only supported in the default loop", loop == default_loop));
1444#endif
1445 if (ev_is_active (w))
1446 return;
1447
1448 ev_start (EV_A_ (W)w, 1);
1449 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1450}
1451
1452void
1453ev_child_stop (EV_P_ struct ev_child *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w))
1457 return;
1458
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w);
1461}
1462
641/*****************************************************************************/ 1463/*****************************************************************************/
642#if 1
643 1464
644static void 1465struct ev_once
645sin_cb (struct ev_io *w, int revents)
646{ 1466{
647 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
648}
649
650static void
651ocb (struct ev_timer *w, int revents)
652{
653 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
654 evtimer_stop (w);
655 evtimer_start (w);
656}
657
658static void
659scb (struct ev_signal *w, int revents)
660{
661 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
662}
663
664int main (void)
665{
666 struct ev_io sin; 1467 struct ev_io io;
667
668 ev_init (0);
669
670 evw_init (&sin, sin_cb, 55);
671 evio_set (&sin, 0, EV_READ);
672 evio_start (&sin);
673
674 struct ev_timer t[10000];
675
676#if 0
677 int i;
678 for (i = 0; i < 10000; ++i)
679 {
680 struct ev_timer *w = t + i;
681 evw_init (w, ocb, i);
682 evtimer_set_abs (w, drand48 (), 0.99775533);
683 evtimer_start (w);
684 if (drand48 () < 0.5)
685 evtimer_stop (w);
686 }
687#endif
688
689 struct ev_timer t1; 1468 struct ev_timer to;
690 evw_init (&t1, ocb, 0); 1469 void (*cb)(int revents, void *arg);
691 evtimer_set_abs (&t1, 5, 10); 1470 void *arg;
692 evtimer_start (&t1); 1471};
693 1472
694 struct ev_signal sig; 1473static void
695 evw_init (&sig, scb, 65535); 1474once_cb (EV_P_ struct ev_once *once, int revents)
696 evsignal_set (&sig, SIGQUIT); 1475{
697 evsignal_start (&sig); 1476 void (*cb)(int revents, void *arg) = once->cb;
1477 void *arg = once->arg;
698 1478
699 ev_loop (0); 1479 ev_io_stop (EV_A_ &once->io);
1480 ev_timer_stop (EV_A_ &once->to);
1481 ev_free (once);
700 1482
701 return 0; 1483 cb (revents, arg);
702} 1484}
703 1485
704#endif 1486static void
1487once_cb_io (EV_P_ struct ev_io *w, int revents)
1488{
1489 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1490}
705 1491
1492static void
1493once_cb_to (EV_P_ struct ev_timer *w, int revents)
1494{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1496}
706 1497
1498void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{
1501 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
707 1502
1503 if (!once)
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else
1506 {
1507 once->cb = cb;
1508 once->arg = arg;
708 1509
1510 ev_watcher_init (&once->io, once_cb_io);
1511 if (fd >= 0)
1512 {
1513 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io);
1515 }
1516
1517 ev_watcher_init (&once->to, once_cb_to);
1518 if (timeout >= 0.)
1519 {
1520 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to);
1522 }
1523 }
1524}
1525

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines